
J Supercomput (2017) 73:3924–3947
DOI 10.1007/s11227-017-1992-z

PSO-DS: a scheduling engine for scientific workflow
managers

Israel Casas1,4 · Javid Taheri2 · Rajiv Ranjan3,4 ·
Albert Y. Zomaya1

Published online: 3 March 2017
© Springer Science+Business Media New York 2017

Abstract Cloud computing, an important source of computing power for the scien-
tific community, requires enhanced tools for an efficient use of resources. Current
solutions for workflows execution lack frameworks to deeply analyze applications
and consider realistic execution times as well as computation costs. In this study, we
propose cloud user–provider affiliation (CUPA) to guide workflow’s owners in identi-
fying the required tools to have his/her application running. Additionally, we develop
PSO-DS, a specialized scheduling algorithm based on particle swarm optimization.
CUPA encompasses the interaction of cloud resources, workflowmanager system and
scheduling algorithm. Its featured scheduler PSO-DS is capable of converging strate-
gic tasks distribution among resources to efficiently optimize makespan and monetary
cost. We compared PSO-DS performance against four well-known scientific work-
flow schedulers. In a test bed based on VMware vSphere, schedulers mapped five
up-to-date benchmarks representing different scientific areas. PSO-DS proved its effi-
ciency by reducing makespan and monetary cost of tested workflows by 75 and 78%,

B Israel Casas
icas8033@uni.sydney.edu.au; israel_fime@hotmail.com

Javid Taheri
javid.taheri@kau.se

Rajiv Ranjan
raj.ranjan@ncl.ac.uk

Albert Y. Zomaya
albert.zomaya@sydney.edu.au

1 School of Information Technologies, The University of Sydney, Sydney, Australia

2 Department of Mathematics and Computer Science, Karlstad University, Karlstad, Sweden

3 Newcastle University, Newcastle upon Tyne, UK

4 Data61, CSIRO, Canberra, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-1992-z&domain=pdf

PSO-DS: a scheduling engine for scientific workflow . . . 3925

respectively, when compared with other algorithms. CUPA, with the featured PSO-
DS, opens the path to develop a full system in which scientific cloud users can run
their computationally expensive experiments.

Keywords Cloud computing · Scientific workflow · Scheduling algorithms · Particle
Swarm Optimization · Virtual machine

1 Introduction

Cloud computing (CC) is a revolutionary solution for science and business communi-
ties demanding powerful computing services. In its Infrastructure as a Service (IaaS)
deployment model, CC offers a virtualized hardware for those applications where
customers require stronger control over computing services. A virtual machine (VM),
the main unit of computation in IaaS, is almost identical to desktop machines. This
flexibility allows users to build a network of VMs to create a strong tool of computing
power. These tools have a great impact over the scientific community which has a
strong dependency on computing tools to solve a wide range of problems, including
scientific workflows.

A workflow is a group of simple processes to solve a complex problem. Scientific-
oriented workflows cover a wide number of areas such as astronomy, geology, biology,
cosmic analysis and biotechnology [1] as well as image processing [2,3]. These appli-
cations demand high computing power and large storage capacity. Current computing
systems have enough capacity to execute these applications; CC possesses an attrac-
tive environment to run the scientific workflows due to (1) its extraordinary computing
power and immense data storage capacity, (2) that contrary to grid computing systems,
any person or institution can access cloud resources, (3) that users do not need to invest
in costly systems as with supercomputers, (4) that as opposed to cluster computing
systems, customers can scale up/down the numbers of resources and (5) that customers
have immediate access to resources in contrast to supercomputing systems where a
waiting list of weeks are common.

Workflow owners must first obtain the required tools in order to run their exper-
iments on the cloud resources. To begin, the application owner must define which
variables need to be optimized based on his/her needs. Secondly, the user must divide
the application into subgroups and upload them into the available resources. Addition-
ally, the user must set computer communication protocols to establish a connection
between computers in order to execute parallel tasks. At the moment, existing tools
offer solutions to the aforementioned issues. For instance, WMS (workflow manager
systems) [4,5] produce a link between workflow owner and cloud resources. WMS
deal with the necessary protocols in order to establish communication among com-
puter resources to trigger experimentation. Even so, most WMS do not offer a critical
analysis of application. To overcome this issue, researchers have developed different
scheduling algorithms that analyze users’ application in order to optimize selected
optimization variables. However, specialized scheduling algorithms have not reached
full computer efficiency. Additionally, cloud users need assistance in building a com-
plete system with the aforementioned tools.

123

3926 I. Casas et al.

To date, different studies exist to guide cloud customers to execute their workflows
on cloud environments; however, these approaches fail in at least one of the following
ways: (1) no complete framework with time and cost estimations to execute workflows
tasks; (2) do not present different options to the user to run his/her experiments; and (3)
do not provide a specialized scheduler that considers inter-dependencies and/or large
data files in their workflows [6–11]. CUPA, our proposed framework in this article,
encompasses the aspects of workflow execution on cloud environments; it acts as a
layer on top of a WMS. In contrast to common WMS, CUPA provides a specialized
scheduler capable of analyzing an application prior to execution in order to discover
file and task dependencies for an efficient distribution of resources.

For the aforementioned reasons, the objective of this study is to provide architecture
for the execution of scientificworkflowson cloud environments. In summary, this study
outlines the following contributions: (1) a cloud architecture with focus on the relation
of provider–customer in executing scientific workflows (i) execution time and cost
estimation, (ii) feedback touserwith the available options to execute his/her application
and (iii) present the user all the stages he/she needs to follow in order to execute his/her
application; and (2) a workflow scheduler based on the PSO metaheuristic able to
analyze both computing- and data-intensive applications.

2 Related work

The background of this study has three foundations: workflow manager systems
(WMS), schedulers and architectures for the execution of applications on cloud sys-
tems.

2.1 Workflow Manager Systems for Cloud Systems

The main objective of a WMS is to act as a link between cloud resources and users’
workflows as expressed in Fig. 1. WMS produce the necessary configuration files to
execute the workflows computer tasks over the available computer resources. Conse-
quently, users do not need to deal with low-level specification such as data transfers
and task dependencies. WMS offer different configuration options to distribute and
execute dedicated workflows over computer systems. Numerous WMS were origi-
nally designed for grid systems. Even though cloud computing and grids systems run
on similar technologies, for this reason, most of these WMS can be used on cloud
systems with minor revision or even without any adjustments. Following is a list of
famous WMS in use in the scientific community. The Pegasus system [4] is able to
handle heterogeneous resources and manage applications ranging from a few tasks up
to one million. This tool has given proof of its functionality on the Amazon EC2 as
well as on the Nimbus cloud platform. HTCondor [5], a specialized system to man-
age computing-intensive tasks, has its main feature in executing tasks on dedicated
and non-dedicated machines, i.e., computer resources being used by a person or other
process which can be used by HTCondor whenever they become idle. Kepler [12], a
workflow manager based on web services, provides a graphical interface to the user
in visualizing the flow of job execution. It simplifies the required effort to create an

123

PSO-DS: a scheduling engine for scientific workflow . . . 3927

Workflow’s tasks Scheduler Configuration and executable files Cloud resources

User
Interface

Middleware

Communication

Protocols

Fig. 1 Representation of the input and output of a workflow manager system. It receives workflow tasks
and produces the required files that the systems need to interpret to execute workflows tasks

executable model by using a visual representation of a particular process. The Taverna
[13] provides a friendly interface to the user to build their workflows. It also provides
the ability to monitor previous and current workflows as well as intermediate and final
results while executing the application. Similarly, SwinDeW-G [14] is a peer-to-peer
manager system. It accepts workflow submission on any peer, and then it distributes it
among near peerswith enough capabilities. However, this tool needs further adaptation
for use on cloud systems.

2.2 Schedulers

A scheduler analyzes an application and distributes its tasks among available resources
in order to optimize particular objectives as represented in Fig. 2. It shows the rep-
resentation of a workflow scheduler. A scheduler receives a workflow description,
and then it defines a number of queues and distributes tasks to efficiently execute the
application based on user demands. Workflows can be sent to resources following
simple approaches such as queues or using more complex techniques. Whenever a
user requires an efficient usage of cloud resources, then he/she requires a special-
ized scheduler focusing on his/her particular objectives. The following works present
applicable scheduling algorithms for cloud environments. The HEFT (Heterogeneous
Earliest-Finish-Time) [15] is a widely recognized scheduler in accomplishing efficient
performance in computing systems. HEFTs objective is to execute tasks onto heteroge-
neous machines in the earliest completion time. An important feature of this scheduler
is its low scheduling overhead time. It first lists tasks based on their computational
demands, and then it starts assigning each task to the VM that executes it in the ear-
liest finishing time. Authors in [16] developed a scheduler which scales up and down
the number of VMs founded on provenance information obtained through execution.
Provenance, as we will denote this algorithm, optimizes execution time, monetary
cost and reliability. This algorithm starts grouping tasks with similar file dependen-
cies; then, it chooses a set of VMs to execute the given tasks. Authors in [17] present a

123

3928 I. Casas et al.

Worfkflow Scheduler Scheduled tasks

Job analysis

Data
dependencies

Data
replication

Variable

optimization

Fig. 2 Representation of a workflow scheduler. A scheduler receives a workflow description, and then it
defines a number of queues and distributes tasks to efficiently execute the application based on user demands

scheduler with a flexible selection of the number of VMs balancing cloud revenue and
customer budget. Flexible, as we will call this scheduler, measures the number of VMs
needed to execute a given application based on its computing requirements. With its
base in microeconomics, Flexible finds equilibrium between cloud user and provider
needs. On the one side, a customer aims to execute his/her workflow within a budget.
On the other side, the cloud provider’s objective is to maximize revenue. Equilibrium
is reached when both parties fulfill their needs. In [18], the authors developed a load
forecasting algorithm, an approach to efficiently manage web applications on cloud
computing environments. This algorithm predicts loads on computer machines based
on historical and current data. The load forecasting algorithm produced outstanding
results regarding its decision making in selecting a target resource. BaRRS [19] is a
scheduler with the objective of balancing task queues to execute the scientific appli-
cation in cloud environments optimizing runtime and monetary cost. GA-ETI [20]
develops a powerful scheduler tool to map workflow application to cloud resources.
It modified the genetic algorithm providing specific alteration to the crossover and
mutation operators with the objective to reduce randomness, an inherent character-
istic of genetic algorithms. After a deep examination of the mentioned scheduling
approaches, we observe most of them (1) do not provide different options to execute
their applicationwith different execution times, budget limits and number of resources;
(2) tend to spend user budget without analyzing different scheduling options that may
end up with higher efficiency; (3) do not analyze the complete application prior to
execution resulting in limited scheduling decisions and a poor performance; or (4)
cause an excessive scheduling overhead time.

2.3 Architectures for execution of application of cloud systems

Architecture, in this context, is a framework with the required components involved
in the execution of applications on cloud environments. Cloud computing only pro-
vides the hardware to run computer experimentation, but additional components are

123

PSO-DS: a scheduling engine for scientific workflow . . . 3929

needed in order to build a complete system for the execution of applications such
as a scheduler, application receiver, workflow editor/engine, application monitor and
a discovery manager. Following is a list of architectures with a similar objective as
this study. The broker-based framework in [7] defines architecture with three main
components: a workflow engine, service broker and cloud providers. Its objective is to
exploit economic benefits from the use of cloud environments. Based on the service
level of agreements chosen by the user, this tool selects adequate resources using a
cloud service broker. The Workflow Engine for Clouds from [9] proposed a versa-
tile architecture for the business perspective of cloud computing. It has a featured
market-orientated component acting as an intermediary between user and computing
resources. The multi-agent architecture presented in [6] runs applications using one
or more cloud providers targeting concurrent and parallel execution. The work in [8]
introduces the SciCumulus middleware that exploits parallelism with two techniques:
parameter sweep and data fragmentation. Nevertheless, these approaches fail in pro-
viding a feedback to users with the options to run his/her application in the cloud.

As previous paragraphs exhibited, each of these foundations has its own objective.
The purpose of this study is to embrace these roots to find a strong architecture to
execute workflows on cloud environments. Firstly, current WMS are well-designed
tools that only require specialized scheduling policies to be added, for this reason,
there is no necessity to develop a new WMS, and instead this study selects one of
them to act as a link between cloud resources and our scheduler. Secondly, we pro-
posed a scheduler capable of overcoming the negative aspects of the aforementioned
scheduling algorithms. Finally, every component is enclosed into the architecture to
exhibit the user the main components he/she needs to retrieve and understand in order
to have the application executed.

3 Cloud user–provider affiliation: architecture to conduct scientific
experiments on cloud systems

CUPA is a mechanism to guide researchers in executing their workflows on cloud
environments acting as a bridge between workflows and cloud resources. CUPA’s
main features are: (1) to specify and provide guidance on the steps a user must follow
to get his/her workflow executed on the cloud resources; (2) to use history data or use
a program profiler to retrieve tasks running time for those cases where information
is unknown; (3) to accept scientific applications demanding high computing power
and/or intense file transferring; and (4) to develop a complete scheduler based on the
PSO to make an efficient use of cloud resources.

The architecture of CUPA is presented in Fig. 4. Stage (1) is a process completed by
user; he/she develops a workflow W = {t1, . . . , tn} to solve a problem in a particular
scientific area. Each task ti fromW has a set of parents tparentsi linked by a set of files
with total size f size. Examples of scientific workflows are presented in Fig. 3. At stage
(2), CUPA requests execution time t̂exei for each task. CUPA gives two options for
obtaining this information, (i) using a Program Profiler and (ii) retrieve historical data
from previous executions. CUPA recommends that a user employs historical data; in
cases where these data are not available, different profilers such as SimpleScalar [21]

123

3930 I. Casas et al.

(a) LIGO (b) Montage (c) Cybershake (d)Epigenomics (e) SIPHT

Fig. 3 Example of five well-known scientific applications from different research areas including astron-
omy, geology, biology, cosmic analysis and biotechnology. The CUPA objective is to guide the user in
analyzing, scheduling and executing these types of workflows

may be used. A user collects the calculated execution time and attaches it to each task.
Then at stage (3) a user selects the optimization level for each objective, i.e., monetary
cost and makespan. It is important to highlight user selects a percentage and not a
budget or time value limit since CUPA’s internal scheduler provides an analysis and
then provides different options based on user selection. Then at stage (4) the PSO-DS
receives a workflow with its information attached including optimization levels. Then
a user receives feedback with the possible scheduling configuration with a different
number of VMs, monetary costMCst and makespanMSpn and then he/she selects the
one that is best for his situation. Finally, at stages (5–6), CUPA requests the required
VMs and submits tasks to each resource based on the selected scheduling configuration
and triggers execution.

3.1 Profiler description

This study proposes the usage of a profiler to obtain task execution time whenever
this information is not available to the user. The objective of a profiler is to examine a
computer program to discern memory usage, instruction count and time complexity.
The profiling process is realized over programcode or binary executable files.Different
profilers are currently available; as an example, SimpleScalar LLC [21], a popular
profiler in the research on computer architecture [22–29], is a system to model a
program’s performance and provide a detailed examination of processor architecture
as well as hardware and software co-verification as exemplified in Fig. 5. SimpleScalar
is able to output the execution time, number of instructions and the requiredCPUcycles
to execute a program on a particular architecture processor. The use of profilers such
as SimpleScalar is recommended for workflows in which the same task/program is
executed with different file inputs; SimpleScalar needs to run the task/program itself
to produce the aforementioned stats.

3.2 The scheduling problem

Scheduler responsibility is to organize tasks into a set of vmqueue
j to be executed

by a given vm j with the objective of minimizing total makespan MSpn (Eq. 1) and

123

PSO-DS: a scheduling engine for scientific workflow . . . 3931

Operating System

Virtualization

Servers

Data storage

Cloud broker/provider

Workflow Manager System

PSO
Scheduler

Optimization objectives

Budget TimeProfiler

HistoryUser’s workflow

Resources for user

1
2 3

4
5

6

Fig. 4 Cloud user–provider affiliation. Cloud affiliation consists of the steps a user’s workflow must take
to be analyzed before a scheduler presents executing options in the cloud system

Input
Task code

SimpleScalar Profiler options

Output
Total instructions executed
Total memory accesses
Total size of memory pages allocated
Total page table accesses

sim-fast

sim-safe

sim-cache

sim-cheetah

sim-profile

sim-outorder

Fig. 5 SimpleScalar basic functions to analyze applications

monetary cost MCst (Eq. 2). To accomplish this task, a scheduler needs to define the
size of pool of resources VM = {vm1, . . . , vmv} based on cost to hire each resource
vmcost

j and the potential time to execute each set of tasks vmtime
j from a given vm j .

Makespan is the latest finishing time (LFT) to execute all vmqueue
j . Equation 3 defines

vmtime
j as the LFT from all tasks assigned to vm j . Equation 4 expresses t̂ totali as the

time to execute ti , while Eq. 5 is the time to execute all its parent tasks. Finally, Eq. 6
is employed to calculate the file transfer between vmp and vmi . Figure 6 presents an

123

3932 I. Casas et al.

Makespan
Largest Finishing Time (LFT)

t1 t2

t3 t4t1

Transfer is not required, file is produced
and consumed on same VM

Transfer between
different VMs is compulsory

Secondly file transfers are required as:Firstly consider tasks distributed as:

Even though does no execute it
must include it only for makespan
calculation purpose

Thirdly execution of task and file transfers
are projected over time:

1+1 1+0

1+1 1+1 1+0

0 1 2 3 4 5

Monetary Cost
time units under consideration are
expressed in hours and

2

4

3

1

Workflow 1

Resources

1 1

1 11

+

Fig. 6 Example to calculate makespan and monetary cost with Eqs. 1–6

example to calculate MSpn and MCst for a four-task workflow and a set of two VMs
with unitary values for t̂exei , f sizei , vmbw

j and vmcost
j . Firstly, consider the four tasks

are equally distributed to the set of VMs as indicated. Secondly, files are transferred
only between tasks residing on different VMs. Thirdly, tasks are presented over the
timeline exhibiting its corresponding execution time t̂exei and its transfer time t̂ fi . Task
t1 must transfer its corresponding f size1 , while t2 does not require data transmission
since it is allocated to same VM. In contrast, t3 must transfer f size3 from vm1 to vm2,
while t4 does not require any data transmission. It is clearly seen that vmtime

1 executes
its set of tasks within three units of time, while vmtime

2 executes its tasks in five units
of time. Finally, MSpn selects the largest value from [vmtime

1 , vmtime
2] obtaining the

value of five. As for MCst, it obtains a value of eight units of time.

MSpn = LFT|V M|
j=1 [vmtime

j] (1)

MCst =
|V M|∑

j=1

�vmtime
j vmcost

j � (2)

vmtime
j = LFT

∣∣vmqueue
j

∣∣
i=1 [t̂ totali] (3)

t̂ totali = t̂ fi + t̂exei + t̂parenti (4)

t̂parenti =
|parents|∑

p=1

t̂ fp + t̂exep (5)

123

PSO-DS: a scheduling engine for scientific workflow . . . 3933

t̂ fi = f sizei

min
(
vmbw

p , vmbw
i

) (6)

This model assumes: (1) every VM has a fixed bandwidth (vmbw
j), number of cores

(vmcores
j), memory size (vmmem

j) and disk size (vmdisk
j) and (2) the CUPA system

negotiates with a cloud provider/broker in obtaining the number of VMs indicated by
scheduling analysis. Since this studyusesPegasus as part of experimentation,workflow
description follows its format including executable files, input data andDAXfilewhich
is an abstract description of the workflow and its internal dependencies. Additionally,
workflow description must include the time to execute each of its tasks. This study
prevents cases where this information is not available. For such cases, it employs
a profiler to retrieve the missing data. Once information is complete, the analyzer
produces scheduling plans with different finishing time, monetary cost and number
of VMs. For this task, CUPA employs a scheduler based on the PSO optimization
technique as described in Sect. 4.

4 Particle Swarm Optimization in solving the scheduling problem

For this study, the authors developed a scheduling approach based on the particle
swarm optimization (PSO) mechanism to solve the aforementioned problem. PSO
is a process to find a solution for nonlinear problems in terms of their optimization
functions. PSO is based on particles continuously moving while aiming to obtain the
coordinates that optimize the evaluation value as illustrated in Fig. 7. PSO is strongly
related to swarming theory and has similarities with genetic algorithms (GAs) [30].
As compared with GA, PSO has lower demands in terms of computational power,
memory capacity and computer coding with exceptional capabilities to solve different
kinds of optimization problems [31].

Start FinishIntermediate

Fig. 7 The PSO process. Each particle (solution) moves through the solution space. Particles change
velocity and direction on each iteration targeting a global best highlighted by a white shadow

123

3934 I. Casas et al.

4.1 Particle Swarm Optimization (PSO): the original model

In the original form of PSO [30], GBESTmodel is a searching technique in the solution
space for an optimal answer. It is orientated for problems expressed with real numbers.
In order to extend PSO’s scope, a discrete version of the swarm algorithm is developed
in [32]. The core of the original version was kept intact, while differing only on the
discretemode tomanipulate the problem.Each particle in the PSO represents a solution
and has a position and a velocity in the search space. Through a series of iterations,
particles swarm through the solution space to find the maximum (or minimum) value
for a given evaluation function. The following is the notation to introduce the discrete
PSO (Algorithm 1).

On a population with size P , consider the position of the ith particle as Xt
i =(

xti1, x
t
i2, . . . , x

t
i D

)
with D bits where xtid ∈ {0, 1}. A particle’s velocity is then defined

as V t
i = (

vti1, v
t
i2, . . . , v

t
i D

)
where vtid ∈ R. The PSO keeps a record of the parti-

cle’s best position on PBESTt
i = (

pbestti1, pbest
t
i2, . . . , pbest

t
i D

)
as well as a global

best solution ever found in GBESTt = (
gbestti1, gbest

t
i2, . . . , gbest

t
i D

)
. Equation 7

presents the function to calculate the velocity vtid for the dth dimension of the ith
particle on the t iteration. The ω term introduced in [33] is a particle’s inertia to con-
tinue moving toward its original destination. Acceleration coefficients of c1, c2 act as
a particles’ memory, inclining it to move toward PBESTt

i and GBESTt , respectively.
The objective of vtid is to drive particles in the direction of a “superior” position in
terms of its evaluation function value. Position Xt

i is updated on every iteration of the
PSO.

Sigmoid function (Eq. 8) is employed to operate velocities, as probabilities val-
ues, in the interval of [0, 1]. Additionally, vtid is limited to a fixed range of values
[−Vmax,+Vmax] to prevent s

(
vtid

)
from falling on the upper or lower bound of [0, 1].

In our experiments, also advised by [34], Vmax = 4. Algorithm 1 presents the generic
discrete version of the PSO for a maximization optimization. In step 1, it initializes
an array of particles with random positions X0

i and velocities V 0
i . In steps 2–20, it

executes its main cycle. It employs function F to evaluate each particle’s value in
step 4; if a particle’s value is greater than its previous best position, then PBESTt

i
is updated by the particle’s value. Similarly, the global best GBESTt value is com-
pared, and updated if required, with Pt

i (steps 7–9). In the sub-cycles in steps 10–18,
Algorithm 1 updates the velocities and positions for all D dimensions of a particle. In
steps 11–12, each particle updates its velocity vtid and caps its values. Finally, based
on the result of the sigmoid function, each particle sets the value for each dimension
xt+1
id for iteration t + 1. The main cycle continues until a termination criterion is
met.

vtid = ωvt−1
id + c1r1

(
pbesttid − xtid

) + c2r2
(
gbesttid − xtid

)
(7)

s
(
vtid

) = 1

1 + exp
(−vtid

) (8)

123

PSO-DS: a scheduling engine for scientific workflow . . . 3935

Algorithm 1 Discrete PSO – The Global model
F: Evaluation Function

1 Initialize an arrangement of particles with random positions
2 While a termination criterion is not met
3 For each particle in
4 if
5
6 end
7 if
8
9 end

10 For each dimension d in D
11 Update (Eq. 7)
12 Limit
13 if > random [0,1]
14 = 1
15 else
16 = 0
17 end
18 end
19 end
20 end

4.2 PSO-DS as the scheduling engine for CUPA

In this section, we present our modified particle swarm optimization with discrete
adaptation and a featured SuperBEST (PSO-DS)—an extension to the generic PSO—
to solve the scheduling problem in this article. Following is the description of the
PSO-DS particles, velocity and the introduction of a featured SuperBEST particle.

4.2.1 Adaptation of particle format

As in to [35], PSO-DS needs to unfold the original discrete PSO particles to inter-
pret integer numbers to solve the scheduling problem. In PSO-DS, particles have
an augmented format Xt

i = (
xti11, x

t
i21, . . . , x

t
inv

)
, xti jk ∈ {0, 1}, where xti jk = 1

if the jth task of the ith particle is executed in vmk , and xti jk = 0 otherwise. For
ease of explanation, this study introduces a short format to represent particles, i.e.,
X ′t
i = (

x ′t
i1, x

′t
i2, . . . , x

′t
in

)
, x ′t

i j ∈ {vm1, . . . , vmv}, is the abstract representation of
particle Xt

i where x
′t
i j is the vmk executing task j of particle i at time t . An example

particle is presented in Fig. 8 for a workflow with four tasksW = {t1, t2, t3, t4}, and a
set of two resources VM = {vm1, vm2}. Here, particle i is expressed in its long and
abstract format Xt

i and X ′t
i , respectively.

For a particle expressed in its abstract format X ′t
i , the number of different values that

each of its dimensions can have is v, given VM = {vm1, . . . , vmv}. At the same time,

123

3936 I. Casas et al.

Particle representationWorkflow

Resources Abstract
format

Long
format

task ID
vm ID

particle ID

Fig. 8 Each particle represents a workflow scheduling configuration. The particle’s long format is used for
velocity calculation, while its abstract representation expresses the scheduling distribution

Because
workflow 1
has a maximum
of 4 parallel
tasks
(third level)

Size of
VM pool is set to
4 machines

Population
can only create particles
with the values

Workflow 1
(8 tasks)

Population Example

8 tasks

Fig. 9 Setting up the maximum number of values particle’s dimensions can have

v is driven by the number of parallel tasks in a given workflow. Figure 9 illustrates
this concept; for Workflow 1, the maximum number of tasks that can be executed in
parallel is four (in the third level of Workflow 1). As a consequence, VM is set to the
values of {vm1, vm2, vm3, vm4} because any additional VM (more than four) in the
pool will remain idle during execution of this workflow.

4.2.2 Particle’s velocity adaptation

The velocity from Eq. 7 is transformed into Eq. 9 in order to follow each particle’s
adaptation. Firstly, for Xt

i (expressed in its long format), the best position is defined
as PBESTt

i = (
pbestti11, pbest

t
i21, . . . , pbest

t
inv

)
, while the global best particle in the

population is defined as GBESTt = (
gbestt11, gbest

t
21, . . . , gbest

t
nv

)
. Parameters ω,

c1, r1, c1, r1 and Vmax have the same functions as in the original discrete PSO described
in the previous section. Additionally, Eq. 8 is slightly modified to produce Eq. 10 for
managing dimension velocities as a set of probabilities, i.e., representing velocities in
the range of [0,1]. Here, each dimension’s velocity vti jk is the probability of vmk to
execute t j .

vti jk = ωvt−1
i jk + c1r1

(
pbestti jk − xti jk

)
+ c2r2

(
gbesttjk − xti jk

)
(9)

123

PSO-DS: a scheduling engine for scientific workflow . . . 3937

ω

Fig. 10 Particle updates its velocity and position on each iteration. The process to calculate the velocity is
done by expressing the particle in its long format

s
(
vti jk

)
= 1

1 + exp
(
−vti jk

) (10)

4.2.3 Scheduling reconstruction from particle velocity

PSO-DS has a population of solutions expressed as velocity probabilities requiring an
interpretation to construct scheduling configurations. In this context, VMs compete to
execute tasks, while each task can only be assigned to a single resource. Unlike [35],
where construction of particles forces consecutive tasks to be assigned to different
VMs, our approach allows to assign sets of successive tasks to the same VM to avoid

unnecessary data transfers. Consider s′
(
vti jk

)
(Eq. 11) as the probability of assigning

the jth task to the kth resource from the pool of v machines where
∑v

k=1 s
′
(
vti jk

)
= 1.

During a process to be repeated for every task j in every particle i , only one dimension,

namely kth, xti jk = 1, while
{
xti jk′ = 0|k′ �= k

}
; k is the index of the dimension with

the maximum value. Figure 10 presents a velocity and position update example for a
single-task workflow and a set of four VMs. Here, the GBESTt indicates that the task
should be allocated to vm4, while the particle Xt

i has assigned the task to vm1. In the
resulting S′ (V t

i

)
, the last dimension exhibits the highest probability to obtain 1, and

thus in the updated particle Xt+1
i , vm4 executes t1.

s′ (vti jk

)
=

s
(
vti jk

)

∑v
k=1s

(
vti jk

) (11)

123

3938 I. Casas et al.

4.2.4 SuperBEST particle and the GBEST

We defined a new particle, namely SuperBESTt , in PSO-DS; SuperBESTt is built
using the most popular particles’ elements in the population. Consider the set

X ′′t
j =

{
x ′′t
j1, x

′′t
j2, . . . , x

′′t
j P

}
, x ′′t

j i ∈ {vm1, . . . , vmv}, where x ′′t
j i is the value assigned to

dimension j in the i th particle (expressed in its abstract format) for a populationwith P
particles. In this case, SuperBESTt = (

sbt1, sb
t
2, . . . , sb

t
n

)
, where sbtj holds the value

with highest frequency from X ′′. Figure 11 illustrates the formation of theSuperBESTt .
Firstly, from a population of three particles Xt

1, X
t
2 and Xt

3, a set of X
′′t
j vectors express

the population; then the frequency of occurrence for each vmk is counted; and finally,
the SuperBESTt is composed. The PSO-DSuses the SuperBESTt to build theGBESTt .
ForGBESTt

Pbased = maxPi=1

[
PBESTt

i

]
andGBESTt

Xbased = maxPi=1

[
XBEST t

i

]
, the

GBESTt = max
(
SuperBESTt ,GBESTt

Pbased,GBEST
t
Xbased

)
.

4.2.5 Evaluation function and termination criterion

This study adopts a maximization optimization for the scheduling process in the PSO-
DS. It employs an evaluation function Evalue that integrates the makespan MSpn and
monetary costMCst with weight values w1 and w2 to control objective optimization.
The variables maxtime,mintime,maxcost and mincost retain maximum and minimum
values of makespan and economical cost through continuous update during PSO-DS
processes. PSO-DS continues until Evalue shows no improvement; PSO-DS outputs
GBEST as the final solution.

Evalue = w1

(
maxMSpn − MSpn

)
(
maxMSpn − minMSpn

) + w2

(
maxCst − MCst

)
(
maxCst − minCst

) (12)

Fig. 11 The SuperBEST particle formation. From every dimension, SuperBEST selects the value with the
higher number of occurrence. SuperBEST is updated and included in PSO-DS

123

PSO-DS: a scheduling engine for scientific workflow . . . 3939

4.2.6 The proposed PSO-DS algorithm

The resulting PSO-DS algorithm is presented in Algorithm 2. In step 1, it creates a
population with size P where random positions Xt

i and velocities V t
i are assigned

to the population. Then steps 2–38 present the main loop. Steps 4–6 update PBESTt
i

for every particle; GBESTt
Xbased and GBESTt

Pbased update their values if the cur-
rent particle has a higher evaluation value. In steps 14–18, the algorithm builds the
SuperBESTt particle. Following in step 19, PSO-DS selects GBESTt from the pool{
SuperBESTt ,GBESTt

Pbased,GBEST
t
Xbased

}
. In steps 23 – 26, velocity vti jk is updated

123

3940 I. Casas et al.

and capped to the range [−Vmax,+Vmax]. Next, s
(
vti jk

)
expresses vti jk as a probabil-

ity in the interval [0,1]; its respective position xti jk is set to 0 as a preliminary step to
update each particle’s position. Steps 28–35 present procedures to update each parti-
cle’s position; it is repeated n times for a given workflowW with size n. Steps 29–34

form a loop to calculate s′
(
vti jk

)
for all k resources that are competing to execute

the jth task in the ith particle. Finally, only the resulting k resource (Step 32) in xti jk
obtains the value of 1 for the jth task in the ith particle.

5 Experiments and analysis

This section evaluates the performance of the PSO-DS in the CUPA using three main
tests. In experiment 1, we compare the execution of workflows using the Pegasus-
WMSwithout any external scheduling policy andwith the complete CUPA framework
including the PSO-DS scheduler. Then in experiment 2, we analyze the need to guide
the user in selecting a limited budget by comparing monetary costs when executing
workflows with/without an unlimited budget. Finally in experiment 3, we compare the
performance of the PSO-DS against Provenance [16], HEFT [15] and Flexible [17]
and GA-ETI [20].

The experiment test bed consists of a private cloud with three Krypton Quattro
R6010 with 4-way AMD OpteronTM 6300 series (64-Cores each). We selected the
Pegasus-WMS (4.2) as theWMS; it is installed onUbuntu 14.04 operating system. The
VMware vSphere (5.5) manages computer resources and provides virtual machines
with the aforementioned platform. As described in the CUPA, the PSO-DS performs
as the scheduling engine with parameters set as shown in Table 1. In order to define the
PSO-DS parameters, we produced preliminary experiments to tested ω in the range
of [0.9, 1.2] and c1 = c2 = 2 as advised in [34,36]. From those trials, a ω value
of 1.2 produced the best results. Additionally [36], recommended a relatively small
population of 20 particles but the nature of the scheduling problem demanded a larger
population; preliminary tests exhibited that 100 particles give the best results. Vmax is
set to 4 to prevent s

(
vtid

)
in Eq. 8 to continuously approaching the upper and lower

bound of [0,1]. Finally, w1 and w2 have a value of 0.5 to give the same priority to
monetary cost and execution time. We selected five scientific workflows from [1] to
produce the experiments. Workflows represent applications from different scientific
areas including astronomy, geology, biology, cosmic analysis and biotechnology. Their
details are presented in Table 2.

5.1 Analysis 1: the need for a specialized scheduler on top of WMS

This first experiment stage has the objective of highlighting the need to add a special-
ized scheduling analysis on top of WMS. Table 3 provides makespan and monetary
cost results for the PSO-DS and Pegasus-WMS. The epigenomics workflow presents
the biggest difference in terms of time and cost due to its great parallelism level. In
this application, PSO-DS converges to solutions where dependent tasks are executed
on the same VM; as a consequence PSO-DS successfully decreases to its minimum

123

PSO-DS: a scheduling engine for scientific workflow . . . 3941

Table 1 PSO-DS setup Parameter Symbol Value

Population P 100

Makespan optimization w1 0.5

Monetary cost optimization w2 0.5

Social acceleration coefficient c2 2

Personal acceleration coefficient c1 2

Velocity limit Vmax 4

Inertia coefficient ω 1.2

Table 2 Characteristics of the scientific workflows employed in experiments to test GA-ETI

Nodes w-Levels Parallel tasks Average file
size (MB)

Average task
execution time
(s)

Dependencies
patterns

Epigenomics 100 8 24 749 2346 (2)(3)(4)

Montage 100 9 62 20.6 11.34 (2)(3)(4)

Cybershake 100 5 48 1156.1 51.70 (1)(3)(4)

Ligo 100 8 24 55.6 222.0 (1)(4)(5)

Sipht 100 7 51 22.02 210.27 (4)(5)

Dependencies patterns: (1) process; (2) pipeline; (3) data distribution; (4) data aggregation; (5) data redis-
tribution

Table 3 Results for makespan and monetary cost for PSO-DS and PEGASUS-WMS

Makespan Monetary cost

PSO-DS Pegasus-WMS PSO-DS Pegasus-WMS

Epigenomics 20,099 89912 4.71 19.625

Cybershake 4377 6049 1.256 1.256

Sipht 3319 6532 0.628 1.57

Montage 160 435 0.785 0.785

Ligo 3560 6944 0.471 2.826

the number of data transfers. Similar scenarios are presented on the rest of the appli-
cations. For example, the Ligo workflow has three main groups of task running in
parallel; PSO-DS converges to solutions where not all of the tasks are executed at
the same time; since monetary cost is also considered as an optimization objective,
it balances the optimization of makespan and cost. As for Pegasus, it presents higher
makespan and cost values due to that fact that its only objective is to execute the appli-
cation. Pegasus uses HTCondor as its internal DAG (direct acyclic graph) executer.
HTCondor receives workflow and sends its tasks for execution with almost no control
on which tasks to execute on a given VM or which data files would be replicated. In
contrast, PSO-DS is able to evaluate a different number of scheduling configurations
and chooses the one that contributes to the highest optimization value .

123

3942 I. Casas et al.

5.2 Analysis 2: the need to guide users in selecting a limited budget

In this experiment, we allow the PSO-DS to produce scheduling configurations relax-
ing the monetary cost optimization. Results are presented in Fig. 12; it first schedules
for twoVMs, then three, four and so on. For eachworkflow, three graphs are presented;
the first graph presents evaluation function values; the second and third columns of
graphs present their corresponding makespan and monetary cost. For each case, a
red shadow highlights the values with function value above 80%. As readers will
notice, makespan drops dramatically as the number of VMs increases, but once a low
makespan is achieved, it does not decrease notably. In contrast, by incrementing the
number of resources the makespan decreases by small amounts of timeframes but
monetary cost increases linearly to the number of VMs.

With the exception of epigenomics, evaluation function values for every case present
similar behavior; they rise as the number of VMs increases, then it reaches a peak
and finally it drops. Peak time is presented when number of VMs is optimal for a
particular case. For instance, when PSO-DS distributes Cybershake’s tasks into four
VMs, it obtains an optimal case with a makespan of 4377s at the cost of 1.256 dlls,
even though the minimal achievable makespan is 3891s at the cost of 3.768 dlls. As for
the epigenomics, its evaluation function starts rising as the number of VMs increases,
it reaches its peak with five VMs, then it starts dropping, but it suddenly has a rise with
12 VMs. The reason for this behavior is that maximum number of parallel tasks is 24;
for this reason, PSO-DS converges with a uniform distribution of these parallel tasks
among 12 VMs. The reason PSO-DS does not produce an improved scenario for 24
VMs is that our scheduling model contemplates an hourly changing model of every
VM, so although the configuration with 24 VMs presents the minimal makespan, its
cost rises tremendously.

5.3 Analysis 3: Performance of PSO-DS in front up-to-date schedulers

In order to provide arguments for the competence of the PSO-DS, in this experiment,
we compare it against the four schedulers previously presented. With the exception of
Cybershake, results show the PSO-DS is able to provide better results especially for
the cases with a low number of VMs and function values above 80% as highlighted
in the previous section. An important reason for these positive results is that PSO-DS
is designed to consider the most predominant factors affecting makespan such as task
grouping that is based on their dependencies, file sizes and available number of VMs.
It is important to highlight that whether HEFT and GA-ETI converge with similar
makespan values they do it when the number of VMs increases. An important factor
to emphasize is that optimal function values (above 80%) are presented as soon as
makespan does the biggest drops. For example, in the Sipht result graph, in Fig. 13c,
the makespan drops from 7188 to 2987s with two and five VMs, respectively, beyond
that number of resources makespan does not provide a substantial improvement for
any of the algorithms. This behavior is presented for the rest of workflow execution.

123

PSO-DS: a scheduling engine for scientific workflow . . . 3943

Evaluation function values above 80% Corresponding values for makespan and monetary cost

(a) Epigenomics

(b)Cybershake

(c) Sipht

(d) Montage

(e) Ligo

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28

E
va

lu
at

io
n

fu
nc

tio
n

No. of VMs
0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29T
im

e
(s

ec
) x

 1
00

0

No. of VMs

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

M
on

et
ar

y
co

st

(d
lls

)

No. of VMs

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21

E
va

lu
at

io
n

fu
nc

tio
n

No. of VMs

0
2
4
6
8

10
12

1 3 5 7 9 11 13 15 17 19 21T
im

e
(s

ec
) x

 1
00

0

No. of VMs

0

2

4

6

8

1 3 5 7 9 11 13 15 17 19 21

M
on

et
ar

y
co

st

(d
lls

)

No. of VMs

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25

E
va

lu
at

io
n

fu
nc

tio
n

No. of VMs

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25T
im

e
(s

ec
) x

 1
00

0

No. of VMs

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25

M
on

et
ar

y
co

st

(d
lls

)

No. of VMs

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21

Ev
al

ua
tio

n
fu

nc
tio

n

No. of VMs

0

1

1

2

1 3 5 7 9 11 13 15 17 19 21Ti
m

e
(s

ec
) x

 1
00

0

No. of VMs

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19 21

M
on

et
ar

y
co

st

(d
lls

)

No. of VMs

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25

Ev
al

ua
tio

n
fu

nc
tio

n

No. of VMs

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25Ti
m

e
(s

ec
) x

 1
00

0

No. of VMs

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25

M
on

et
ar

y
co

st

(d
lls

)

No. of VMs

Fig. 12 Results for evaluation function values,makespan andmonetary cost for thefive scientificworklfows
highlighting the area where evaluation function values are above 80%

6 Discussion

This section provides a deeper analysis of the PSO-DS performance compared with
other algorithms for solid reference.

6.1 PSO-DS performance on a Pareto front fashion

Figure 14 presents results of the five scheduling algorithms on a Pareto front fashion,
i.e., on theMSpn vsMCst graph. Pareto front is a concept in economicswith application
in engineering [37]. It is defined as positioning individuals where no one of them can
improve its position without deteriorating another’s. The Pareto front is built from

123

3944 I. Casas et al.

(a) Epigenomics (b) Cybershake

(c) Sipht (d) Montage

(f) Ligo

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Ti
m

e
(s

ec
) x

 1
00

0

Virtual Machines

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Ti
m

e
(s

ec
) x

 1
00

0

Virtual Machines

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ti
m

e
(s

ec
) x

 1
00

0

Virtual Machines

110

310

510

710

910

1110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Ti
m

e
(s

ec
)

Virtual Machines

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ti
m

e
(s

ec
) x

 1
00

0

Virtual Machines

HEFTGA-ETI Provenance FlexiblePSO-DS

Fig. 13 Execution time results with a different number of VMs

connecting such individuals forming a curved graph which in engineering is used as
a trade-off of values. In this case, we analyze only the epigenomics workflow since
the remaining workflows present similar behavior. Figure 14 exhibits the results for
makespan with its corresponding monetary cost. As readers will notice, the PSO-DS
is able to converge to the values spread along the completeMSpn vsMCst curve. This
analysis provides proof that PSO-DS does not get trapped in particular sections of the
solution space and corroborates that the local best solution does not overdominate the
search for a solution. In a similar manner, GA-ETI and HEFT distribute their values
with great proximity to the PSO-DS due to their analysis and filtering of solutions. In
contrast, flexible and provenance missed the opportunity to provide superior results
due to their minimal workflow analysis.

6.2 Measure scheduling time

An important factor in scheduling algorithms is the time to run the scheduling pro-
cess itself. Table 4 presents timeframes to produce a scheduling configuration for a
workflow with 100 nodes. The PSO-DS and GA-ETI present the highest processing
time with 1300 and 1450 ms, respectively, while the flexible executes the algorithm in
3.1 ms. The reason for this large difference is that flexible does not base its scheduling
approach on an evolution of solutions; it rather chooses a final solution from a limited

123

PSO-DS: a scheduling engine for scientific workflow . . . 3945

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
) x

 1
00

0

Monetary cost (dlls)

GA-ETI HEFT Provenance Flexible PSO-ISI

Fig. 14 Epigenomics’ MSpn–MCst graph to analyze where in the solution space schedulers search for a
solution

Table 4 Scheduling time and its relation with final makespan

Scheduler Scheduling time (ms) Percentage of scheduling time
compare with final makespan

PSO-DS 1300 1300 ms/13,190 s = ∼0.00%

PSO (original) 1250 1250 ms/31,859 s = ∼0.00%

GA-ETI 1450 1450 ms/16,190 s = ∼0.00%

HEFT 16.1 16.1 ms/42,162 s = ∼0.00%

Flexible 3.1 3.1 ms/89,912 s = ∼0.00%

Provenance 68 68 ms/100,291 s = ∼0.00%

number of configurations. Similarly, HEFT considers a single solution executing the
algorithm on only 16.1 ms. On the contrary, PSO-DS and GA-ETI evaluate a group of
solutions on a series of iterations unfolding solutions and executing their algorithms on
a larger timeframe. However, none of the approaches has an excessive execution time
compared with the final makespan as shown in column three of Table 4. Moreover,
the high scheduling time as in PSO-DS yields a reduced final makespan.

7 Conclusion

In this article, we proposed CUPA, an architecture to execute scientific workflows
in cloud computing systems. CUPA provides guidance to users in selecting the tools
he/she needs in order to efficiently run his/her experiments. CUPA features the PSO-
DS, a specialized workflow scheduler. PSO-DS is based on the PSO with a special
adaptation to the scheduling problem including a discrete formatting of particles and an

123

3946 I. Casas et al.

enhanced super element. Using five workflows representing current scientific prob-
lems, PSO-DS was tested and proved its dominance against four cloud schedulers
(HEFT, provenance, flexible and GA-ETI). Through experimentation, PSO-DS high-
lighted the need for a specialized scheduler on top ofWMS. PSO-DS is able to provide
superior results in terms of makespan and monetary cost compared against other
schedulers, in particular in the cases with a small number of resources providing func-
tion values above 80%. Additionally, PSO-DS provides scheduling configuration with
values spread along the complete MSpn vs MCst curve. PSO-DS’s positive results
exhibited the main factors to consider during the scheduling process in order to opti-
mize time and cost; such characteristics include task grouping, job dependencies, file
sizes and available number of VMs. Additionally, PSO-DS demonstrated that supe-
rior solutions execute parallel tasks sequentially on the same VM in order to lower
file transferring. PSO-DS experiments underline the importance of not relaxing the
monetary budget. Users may have an unlimited budget, or some schedulers may con-
sider this assumption. By loosening the monetary budget, the user may obtain similar
results at the expense of a pointless charge. To continue with this work, the authors
aim to produce the CUPA system in order to make it available as a tool for other
studies. As for future studies, the authors are focusing on the analysis of large sets
of files (Big Data) for applications associated with biological viruses, terrorism and
economic crisis behavior.

Acknowledgements The authorswould like to thank theCommonwealth Scientific and IndustrialResearch
Organisation (CSIRO) and Consejo Nacional de Ciencia Tecnología (Conacyt) for supporting this work.

References

1. Bharathi S, Chervenak A, Deelman E, Mehta G, Su M-H, Vahi K (2008) Characterization of scientific
workflows. In: 3rd Workshop on Workflows in Support of Large-Scale Science, 2008. WORKS 2008,
pp 1–10

2. Miao Y,Wang L, Liu D, Ma Y, ZhangW, Chen L (2015) AWeb 2.0-based science gateway for massive
remote sensing image processing. Concurr Comput Pract Exp 27:2489–2501

3. Liu P, Yuan T, Ma Y, Wang L, Liu D, Yue S et al (2014) Parallel processing of massive remote sensing
images in a GPU architecture. Comput Inform 33:197–217

4. Deelman E, Blythe J, Gil Y, Kesselman C, Mehta G, Patil S et al (2004) Pegasus: Mapping scientific
workflows onto the grid. In: undefined. Springer, Heidelberg, pp 11—20

5. HTCondor: High Throughput Computing. http://research.cs.wisc.edu/htcondor/
6. Gutierrez-Garcia JO, Sim KM (2012) Agent-based cloud workflow execution. Integr Comput Aided

Eng 19:39–56
7. Jrad F, Tao J, Streit A (2013) A broker-based framework for multi-cloud workflows. In: Proceedings

of the 2013 International Workshop on Multi-cloud Applications and Federated Clouds, pp 61–68
8. De Oliveira D, Ogasawara E, Baião F, MattosoM (2010) Scicumulus: A lightweight cloud middleware

to explore many task computing paradigm in scientific workflows. In: 2010 IEEE 3rd International
Conference on Cloud Computing (CLOUD), pp 378–385

9. PandeyS,KarunamoorthyD,BuyyaR (2011)Workflowengine for clouds.Cloud computing: principles
and paradigms, pp 321–344. doi:10.1002/9780470940105.ch12

10. Wang L, Chen D, Hu Y, Ma Y, Wang J (2013) Towards enabling cyberinfrastructure as a service in
clouds. Comput Electr Eng 39:3–14

11. Chen D, Wang L, Wu X, Chen J, Khan SU, Kołodziej J et al (2013) Hybrid modelling and simulation
of huge crowd over a hierarchical grid architecture. Future Gener Comput Syst 29:1309–1317

12. The Kepler Project. https://kepler-project.org/
13. Taverna Workflow Management System. http://www.taverna.org.uk/

123

http://research.cs.wisc.edu/htcondor/
http://dx.doi.org/10.1002/9780470940105.ch12
https://kepler-project.org/
http://www.taverna.org.uk/

PSO-DS: a scheduling engine for scientific workflow . . . 3947

14. Yang Y, Liu K, Chen J, Lignier J, Jin H (2007) Peer-to-peer based grid workflow runtime environment
of SwinDeW-G. In: IEEE International Conference on e-Science and Grid Computing, pp 51–58

15. Topcuoglu H, Hariri S, M-yWu (2002) Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans Parallel Distrib Syst 13:260–274

16. deOliveiraD,OcañaKA,BaiãoF,MattosoM(2012)Aprovenance-based adaptive scheduling heuristic
for parallel scientific workflows in clouds. J Grid Comput 10:521–552

17. Tsakalozos K, Kllapi H, Sitaridi E, Roussopoulos M, Paparas D, Delis A (2011) Flexible use of
cloud resources through profit maximization and price discrimination. In: IEEE 27th International
Conference on Data Engineering (ICDE), 2011 pp 75–86

18. Ros S, Caminero AC, Hernández R, Robles-Gómez A, Tobarra L (2014) Cloud-based architecture for
web applications with load forecasting mechanism: a use case on the e-learning services of a distant
university. J Supercomput 68:1556–1578

19. Casas I, Taheri J, Ranjan R, Wang L, Zomaya AY (2016) A balanced scheduler with data reuse and
replication for scientific workflows in cloud computing systems. Future Gener Comput Sys. doi:10.
1016/j.future.2015.12.005

20. Casas I, Taheri J, Ranjan R,Wang L, Zomaya A (2016) GA-ETI: An enhanced genetic algorithm for
the scheduling of scientific workflows in cloud environments. J Comput Sci

21. Burger D, Austin TM (1997) The SimpleScalar tool set, version 2.0. ACM SIGARCH Comput Archit
News 25:13–25

22. Ekman M, Stenstrom P (2003) Performance and power impact of issue-width in chip-multiprocessor
cores. In: Proceedings 2003 International Conference on Parallel Processing, pp 359–368

23. Gordon-Ross A, Vahid F (2005) Frequent loop detection using efficient nonintrusive on-chip hardware.
IEEE Trans Comput 54:1203–1215

24. Krishna R, Mahlke S, Austin T (2003) Architectural optimizations for low-power, real-time speech
recognition. In: Proceedings of the 2003 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, pp 220–231

25. Lau J, Schoenmackers S, Sherwood T, Calder B (2003) Reducing code size with echo instructions.
In: Proceedings of the 2003 International Conference on Compilers, Architecture and Synthesis for
Embedded Systems, pp 84–94

26. Mathew B, Davis A, Fang Z (2003) A low-power accelerator for the SPHINX 3 speech recognition
system. In: Proceedings of the 2003 International Conference onCompilers, Architecture and Synthesis
for Embedded Systems, pp 210–219

27. Suresh DC, Agrawal B, Yang J, Najjar W, Bhuyan L (2003) Power efficient encoding techniques for
off-chip data buses. In: Proceedings of the 2003 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, pp 267–275

28. Zhang W, Kandemir M, Sivasubramaniam A, Irwin MJ (2003) Performance, energy, and reliabil-
ity tradeoffs in replicating hot cache lines. In: Proceedings of the 2003 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, pp 309–317

29. Zhang Y, Gupta R (2003) Enabling partial cache line prefetching through data compression. In: Pro-
ceedings 2003 International Conference on Parallel Processing, pp 277–285

30. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the
6th International Symposium on Micro Machine and Human Science, pp 39–43

31. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, New
York, pp 760–766

32. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997
IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and
Simulation, pp 4104–4108

33. Shi Y, Eberhart R (1998) Amodified particle swarm optimizer. In: 1998 IEEE International Conference
on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, pp
69–73

34. Kennedy J,Kennedy JF, Eberhart RC, ShiY (2001) Swarm intelligence.MorganKaufmann,Burlington
35. Liao C-J, Tseng C-T, Luarn P (2007) A discrete version of particle swarm optimization for flowshop

scheduling problems. Comput Oper Res 34:3099–3111
36. Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: International Con-

ference on Evolutionary Programming, pp 591–600
37. Taheri J, Zomaya AY, Khan SU (2012) Genetic algorithm in finding Pareto frontier of optimizing data

transfer versus job execution in grids. Concurr Comput Pract Exp 28(6):1715–1736

123

http://dx.doi.org/10.1016/j.future.2015.12.005
http://dx.doi.org/10.1016/j.future.2015.12.005

	PSO-DS: a scheduling engine for scientific workflow managers
	Abstract
	1 Introduction
	2 Related work
	2.1 Workflow Manager Systems for Cloud Systems
	2.2 Schedulers
	2.3 Architectures for execution of application of cloud systems

	3 Cloud user–provider affiliation: architecture to conduct scientific experiments on cloud systems
	3.1 Profiler description
	3.2 The scheduling problem

	4 Particle Swarm Optimization in solving the scheduling problem
	4.1 Particle Swarm Optimization (PSO): the original model
	4.2 PSO-DS as the scheduling engine for CUPA
	4.2.1 Adaptation of particle format
	4.2.2 Particle's velocity adaptation
	4.2.3 Scheduling reconstruction from particle velocity
	4.2.4 SuperBEST particle and the GBEST
	4.2.5 Evaluation function and termination criterion
	4.2.6 The proposed PSO-DS algorithm

	5 Experiments and analysis
	5.1 Analysis 1: the need for a specialized scheduler on top of WMS
	5.2 Analysis 2: the need to guide users in selecting a limited budget
	5.3 Analysis 3: Performance of PSO-DS in front up-to-date schedulers

	6 Discussion
	6.1 PSO-DS performance on a Pareto front fashion
	6.2 Measure scheduling time

	7 Conclusion
	Acknowledgements
	References

