
J Supercomput (2017) 73:4190–4205
DOI 10.1007/s11227-017-1987-9

Investigating Apache Hama: a bulk synchronous
parallel computing framework

Kamran Siddique1 · Zahid Akhtar2 · Yangwoo Kim1 ·
Young-Sik Jeong1 · Edward J. Yoon3

Published online: 25 February 2017
© Springer Science+Business Media New York 2017

Abstract The quantity of digital data is growing exponentially, and the task to effi-
ciently process such massive data is becoming increasingly challenging. Recently,
academia and industry have recognized the limitations of the predominate Hadoop
framework in several application domains, such as complex algorithmic computa-
tion, graph, and streaming data. Unfortunately, this widely known map-shuffle-reduce
paradigm has become a bottleneck to address the challenges of big data trends. The
demand for research and development of novel massive computing frameworks is
increasing rapidly, and systematic illustration, analysis, and highlights of potential
research areas are vital and verymuch in demand by the researchers in the field. There-
fore,we explore oneof the emerging andpromisingdistributed computing frameworks,
Apache Hama. This is a top level project under the Apache Software Foundation and a
pure bulk synchronous parallel model for processing massive scientific computations,
e.g. graph, matrix, and network algorithms. The objectives of this contribution are
twofold. First, we outline the current state of the art, distinguish the challenges, and
frame some research directions for researchers and application developers. Second,
we present real-world use cases of Apache Hama to illustrate its potential specifically
to the industrial community.

Keywords Apache Hama ·Bsp ·Bulk synchronous parallel ·Distributed computing ·
Mapreduce · Hadoop

B Yangwoo Kim
ywkim@dongguk.edu

1 Dongguk University, Seoul, South Korea

2 University of Quebec, Montreal, Canada

3 Samsung Electronics, Seoul, South Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-1987-9&domain=pdf


Investigating Apache Hama: a bulk synchronous parallel. . . 4191

1 Introduction

In recent years, there has been unprecedented data growth as information is con-
tinuously and rapidly generated from large internet sites, scientific experiments,
government records, and sensors networks. The terminologies ‘big data’ and ‘large
scale data’ were introduced to identify data that cannot be captured, curated, managed,
or processed by traditional tools in a reasonable timeframe [1]. Big data or large scale
data has four main characteristics: (i) very large data volume; (ii) data cannot be struc-
tured into regular database tables; (iii) data is produced at great velocity and must be
captured and processed rapidly; (iv) low value density, large volumes datamust be pro-
cessed to extract the desired information. The quantity of data being generated every
day is growing exponentially without apparent end, and it is one of the largest techno-
logical challenges in computing systems research to provide mechanisms for storage,
information retrieval, and manipulation of these massive datasets. A rich set of tools
have been developed to handle these huge volumes of data. The sheer volume of data
requires significant computing power and space for processing. Generally, specialized
hardware, such as super computers, to process the data is economically infeasible.
Thus, particular frameworks such as parallel and distributed computing have been
adopted as an economical alternative to provide the required computing power and
resources. However, these large hardware clusters impose further challenges to tra-
ditional high-end hardware and processing, and it is vital to devise successful big
data frameworks specifically addressing these challenges [2–4]. The requirements for
research and development of massive computing frameworks are increasing tremen-
dously, and emerging frameworks with sound technical and research potential could
be major assets in the field.

Therefore, we present Apache HamaTM [5], a pure bulk synchronous parallel (BSP)
massive computing framework established in 2012, inspired by Google’s Pregel and
DistBelief.

Necessity is the mother of invention, and MapReduce/Hadoop is no exception.
These giant frameworks have dominated big data for over a decade and theMapReduce
and Hadoop labels have almost become a synonymous with big data. However, the sit-
uation has changed, and the predominant Hadoop is approaching its limits. Academia
and industry have recently recognized the limitations of the Hadoop framework in
several application domains, and acknowledged that it cannot provide a one-size-fits-
all solution for large scale processing [6]. In particular, a static map-shuffle-reduce
pipeline of Hadoop architecture has become a major performance bottleneck in com-
putationally intensive applications, and some applications have been compelled to
replace MapReduce with new technologies [7], e.g. Google has already replaced it
with Dataflow [8]. Thus, there is great interest to tackle big data processing challenges
with a new wave of promising frameworks, such as Apache Spark, Apache Giraph,
and Apache Hama. In contrast to Spark and Giraph, Hama has not yet been widely
adopted, although some of its key features and performance benchmarks are sufficient
to show its potential [9].

Our contribution in this particular area is motivated by observation of current trends
in large scale data processing and observing the search log regarding Apache Hama
over several research platforms [10,11]. The main contributions of this article are:

123



4192 K. Siddique

• Present an emerging high performance computing framework,
• Investigate research directions in big data processing using Hama,
• Document Hama’s significant progress,
• Provide a thorough analysis for practitioners and users to acquaint themselves with
Hama, and

• Unleash Hama’s potential by presenting real-world use cases.

2 Research methodology

A systematic literature review requires comprehensive and unbiased coverage of rel-
evant literature sources. The objective is to provide a valid assessment of a research
topic through the application of a reliable, rigorous, and scrutinized methodology.

2.1 Sources

We chose the following digital libraries sources:

• IEEExplore Digital Library,
• ACM Digital Library, and
• WILEY.

2.2 Search strings

The following keywords or search terms were used:

• Apache Hama,
• Hama,
• Hama BSP, and
• Hama bulk synchronous parallel.

2.3 Selection of studies

After obtaining the results from the digital libraries, each candidate study must be
analyzed individually to assure relevance with Hama. We did not limit the publication
year, since Hama was proposed in 2010, rather, we limited the search to research
papers available online and written in English. To select or discard studies, inclusion
and exclusion criteria were defined as shown in Table 1.

2.4 Stages of selection

The stages involved in the selection of papers are listed in Table 2.
Searches on the digital libraries were conducted on October, 2015 and updated

in January, 2016. To ensure an unbiased approach in subjective preference, two

123



Investigating Apache Hama: a bulk synchronous parallel. . . 4193

Table 1 Include and exclude criteria

Include criteria Exclude criteria

Directly or indirectly related to Apache Hama Studies that only mention introduction to Hama

Studies using Hama as an experimental tool Studies that do not have the complete text
available at source

Studies published in journals and/or conferences Not written in English

Written in English

Table 2 Studies selection stages

Stages Description

Stage 1 Using the defined keywords, apply the search query and gather the results

Stage 2 Exclude invalid and duplicate papers

Stage 3 Exclude studies on the basis of abstract, introduction, and conclusion

Stage 4 Review the selected studies and assess the relevance with topic of interest

Table 3 Studies by year

Publication year Journal Conference References

IEEE ACM Wiley IEEE ACM Wiley

2015 0 0 1 2 0 0 [13–15]

2014 0 0 1 1 2 0 [16–19]

2013 0 0 0 2 1 0 [20–22]

2012 0 0 0 1 1 0 [23,24]

2011 0 0 0 1 0 0 [25]

2010 0 0 0 1 0 0 [26]

researchers extracted the data, while others scrutinized the extraction. The bibliog-
raphy and citation tool Zotero [12] was used to manage all extracted studies. Table 3
presents the yearly distribution of the selected papers.

After completing selection, each selected study was analyzed and reviewed. The
next section provides an in-depth, unbiased and critical analysis of Apache Hama
formulated as an interrogation session, based on the research literature.

3 Interrogation session

3.1 What is Hama?

Hama, previously known as HAdoopMAtrix and short for ApacheHama, is a top level
project of the Apache Software Foundation. Hama is a distributed computing frame-
work based on the BSP programming model [27], which acts as a bridge between

123



4194 K. Siddique

Fig. 1 Apache Hama follows bulk synchronous parallel (BSP) model a BSP model b A BSP computing
example c Hama BSP framework

software and hardware for parallel computing. In BSP model, a parallel program runs
across a set of virtual processors and executes as a sequence of parallel supersteps sep-
arated by barrier synchronization, as shown in Fig. 1a. This facilitates programmers
by reducing the overhead of managing memory in local computations, manipulating
global communications, and implementing efficient barrier synchronization. Figure 1b
shows an example of computing the maximum vertex value using a BSP program-
ming technique. The overall computation in a BSP based solution involves multiple
supersteps and each superstep is composed of the following three ordered phases.

• Local computation
• Each process performs local computation using local data values and issues
communication requests for remote memory read and write operations.

• Global communication
• Processes exchange their locally produced data according to the requests made
during the local computation phase.

• Barrier synchronization
• Ensures completion of all communication actions and makes previously
exchanged data available to processes for use in the next superstep.

Apart from using the BSP model for computation and solving scientific problems
based on graphs and matrices [28], Hama also provides deep learning packages for
implementing scalable machine learning algorithms [29]. Hama was developed in
Java, deployed on Hadoop Distributed File System (HDFS) as shown in Fig. 1c and
can work seamlessly in any Hadoop environment.

3.2 What is Hama’s architecture?

Apache Hama is based on a layered architecture and utilizes HDFS as the default
file system. Hama’s internal architecture differs from other known computational
frameworks due to its underlying BSP based communication and synchronization
mechanisms (see Fig. 2). It is based on a Master-Slave model consisting of three
major components [30]:

123



Investigating Apache Hama: a bulk synchronous parallel. . . 4195

Fig. 2 Apache Hama architecture

1. BSP master performs the following functions:
• Schedules jobs and assigns the tasks to a Groom Server,
• Maintains the Groom Server status and job progress information,
• Controls faults and supersteps in a cluster,
• Distributes execution classes to its slaves, and
• Provides a cluster control interface for users.

2. Groom Server, or simply Groom, acts as a slave component and it is responsible
for running BSP peer tasks assigned by the BSP Master. It launches one or more
BSP peer tasks and then each task acts as a worker task where the actual compu-
tation occurs. Each Groom sends a heartbeat to BSP master to report the status
of processes and other metrics using periodical piggybacks. A Groom is flexible
enough to run with any distributed storage in addition to HDFS. To achieve best
performance, a Groom and a data node should run on the same physical node.

3. Zookeeper or synchronization component provides efficient barrier synchroniza-
tion of the BSP peer tasks. Zookeeper and BSPMaster execute on the same master
node due to central barrier synchronization.

Figure 2 illustrates the Hama core architecture. BSP Program runs a job and BSP
JobClient establishes the communication channel with BSP Master using Hadoop
RPC framework. This component first partitions the input and then stores the chunks
to HDFS before a new job is submitted to the BSP Master. It is executed locally, and
periodically sends status updates including memory usage statistics for each process
and superstep count. Each time theBSPMaster receives a heartbeatmessage, it updates
the Groom Server status. Using the updated status, the BSP Master efficiently assigns
tasks to idle Grooms and returns a heartbeat response containing the set of actions to
perform. Once a task is assigned, a Groom Server continues its execution until the last

123



4196 K. Siddique

Fig. 3 Comparison between Hama and Hadoop architectures

superstep is executed. Upon task failure, it is marked failed and gets killed. During
the whole execution life cycle, ZooKeeper manages efficient barrier synchronization
of the processes.

3.3 How is Hama different from other big data frameworks?

Hama is a pure BSP model inspired by Google Pregel. Hama is more focused towards
processing complex computation intensive tasks rather data intensive tasks, which
makes it different from other frameworks. Despite Hama’s similar architecture with
Apache Hadoop and the inspiration from Google Pregel, it has significant differences.
It aims to provide a more general purpose framework than Pregel and Apache Hadoop,
supporting massive scientific computations such as matrix, graph, machine learning,
business intelligence, and network algorithms. It is not restricted to graph processing,
but also provides a full set of primitives that allows creation of generic BSP applica-
tions. The main differences between Hama and Hadoop architecture are illustrated in
Fig. 3. In Hama, BSP tasks can communicate with each other, whereas communica-
tion between Map and Reduce tasks is forbidden in Hadoop. The MapReduce model
also allows communication between the tasks only through the persistence of data
on the disk, because the model enforces all Map tasks to complete execution before
execution of any Reduce task. In contrast, Hama provides direct message exchange
for the BSP tasks, which leads to better efficiency as I/O operation overheads are
avoided.

3.4 What are the strengths of Hama?

Hama is a pure BSP programming model, and its versatile processing techniques and
diverse application domains distinguish it from other distributed computing frame-

123



Investigating Apache Hama: a bulk synchronous parallel. . . 4197

Table 4 Key attribute comparison of Hama with some well adopted frameworks

Framework Processing 
Method

Application Domains

Graph Streaming Machine Learning Incremental 
Learning

Hama DMV

Hadoop D

Spark D

Giraph V

Processing technique: D Directed Acyclic Graph;M Matrix; V Vertex-centric

Table 5 Some powerful BSP primitive operations implemented in Hama

Operation Description

getPeerName() Returns the name of the peer

getSupestepCount() Returns the count of supersteps

send() Sends a message to another peer

getCurrentMessage() Returns a message received from the peer

getNumCurrentMessages() Returns the number of received messages from the peer

clear() Clears the entries of all queues

write() Writes a key/value pair to the output interface

sync() Performs barrier synchronization operations

works, as shown inTable 4. The robust BSPmodel also enablesHama to avoid conflicts
and deadlines during communication at the largest scale. Unlike other frameworks,
Hama provides BSP primitives to allow researchers and developers to operate at a
lower level, rather than relying on limited graph processing APIs. Thus, Hama fol-
lows the standard BSP library at large scale.

Table 5 lists some powerful primitive operations or functions, and Fig. 4 demon-
strates their use with an example. These simple, small, and flexible primitives have
been used to create significant projects, such asApacheHorn, a neuron centricmachine
learning package.

Hama was primarily proposed to be used with java, but later enabled programmers
to write in C++ [31]. An explicit support to the message passing interface is another
advantage. Hama is flexible enough to be used with any distributed file system in
addition to HDFS, and supports general purpose computing on graphics processing
units (GPGPU) acceleration.

However, no system comes without limitations, whether they are related to basic
architecture, development, or performance. In the case of Hama, BSP Master is a
single point of failure and the application will stop if it dies. Despite great advances
in graph processing performance, the manipulation functions remain somewhat lim-
ited. The graph partitioning algorithm needs to be customized, which will help avoid
communication overhead between nodes.

123



4198 K. Siddique

Fig. 4 pseudo code demonstrating some BSP operations

3.5 Which application domains would Hama be the most suitable choice?

Hama is a general purpose solution for large scale computing and may be more suit-
able for intensive iterative applications. Hama outperforms MapReduce frameworks
[25,26,32,33] in such application domains because it avoids MapReduce processing
overheads, such as sorting, shuffling, reducing the vertices, etc. MapReduce inher-
its this overhead in each iteration, and there are at least millions of iterations. Hama
provides a message passing interface and each BSP superstep is faster than a full job
execution in the MapReduce framework, such as Hadoop.

3.6 Can Hama be applied to deep learning frameworks?

Recent advances in deep learning could potentially allowmachine learning algorithms
to extract discriminative information from big data without labor intensive feature
engineering. Although a few very large companies, such as Google and Microsoft,
have developed distributed deep learning systems, these are closed source systems.
However, Apache Hama provides open source distributed training of artificial neural
networks (ANNs) using the BSP computing engine. Two types of components are
involved in the training procedure: (i) master task (merge the model, update infor-
mation, and send model update information to all groom tasks); and (ii) groom task
(calculate the weight updates according to the training data). Hama’s ANN is currently
data parallel only. Research is underway to support data and model parallelism.

3.7 Can Hama outperform MapReduce based frameworks?

Ting et al. [25] proposed a system architecture based on the concept of cloud comput-
ing. The proposed system is not only a data warehousing system but also a social
networks analysis (SNA) engine that can be used to perform several SNAs with
high performance. A performance comparison between MapReduce and Hama was

123



Investigating Apache Hama: a bulk synchronous parallel. . . 4199

also demonstrated, running a crawling program on different uniform resource loca-
tors (URLs). The authors highlighted a MapReduce weakness in mathematical graph
processing, and showed Hama had a superior computation engine [26,32,33]. Since
MapReduce is originally a function, it must pass the graph state from one step to
another, which causes low efficiency during graphic algorithm processing. The exper-
iment was performed to retrieve and store data from 100, 1000, 2000 and 10,000
different URLs.With increasing number of URLs, Hama provided better performance
than MapReduce, accomplishing the task in less time.

Clustering techniques are important unsupervised learning methods, and K-means
is one of most widely used and fast clustering algorithms in data mining. However, it
has various issues, particularly for high dimensional and/or large data sets.MapReduce
and BSP models are the prominent candidates to address these problems, used by
Hadoop and Hama respectively. Although the MapReduce model is reliable and fault
tolerant, it does not consider the distribution of input splits in the distributed file system
during allocation of input files for map tasks, which results in increased data transfer
overheads when runningmap tasks [34]. BSP overcomes this drawback by running the
algorithms entirelywithin the clustermemory. Golghate and Shende [32] evaluated the
performance of parallel K-means clustering using MapReduce and BSP techniques,
and showed that BSP programming completed text clustering in a relatively short
period, i.e., Hamawasmuch faster thanMapReduce because it does not have to submit
a new job for each corresponding computation. The BSP superstep is computationally
inexpensive compared to a MapReduce job, which provides better performance.

The performance of any distributed computing frameworks impacts several impor-
tant applications. Li and Xu [33] analyzed Hama and Hadoop performance for
efficiency and accuracy of their iterative algorithms. In particular, they selected the
Monte Carlo calculation of Pi [35] since the algorithm has fixed execution results and
is suitable for parallelization. The experiments in the study were conducted on a 4
node Hadoop cluster, and the Monte Carlo algorithm was implemented in Hama and
Hadoop using the same software and hardware environment. They showed that Hama
was superior to Hadoop, because Hama does not require excessive read and write
operations, whereas Hadoop suffers from the large number of I/O operations.

3.8 Is there any framework that claims to outperform Hama?

Some big data processing solutions have demonstrated they outperform Hama. For
example, Wang et al. [20] proposed a BSP based system (BC-BSP+) to process large
graphs iteratively. BC-BSP+ supports a flexible configuration, efficient buffer disk
management and multiple graph partition strategies as key features. The solution
exploits the concept of virtual memory to store graph data and intermediate messages,
dividing the JVMheap space into three parts to cache graph data objects andmessages.
The communication overhead is similarly reduced by introducing three graph partition
strategies: i) randomized hash partitioning, ii) balanced hash partitioning, and iii)
vertex-cut based on the range partition. The first scheme is simple while the others
are used for load balancing and efficient utilization of the graph locality, respectively.

123



4200 K. Siddique

Thus, the proposed solution demonstrated better performance than Hama and Giraph
as well.

Similarly, Ho et al. [21] proposed Kylin, also based on the BSP model, to provide
efficient graph processing. The authors highlighted some limitations of existing BSP
based frameworks: i) if message passing among workers is not handled properly the
synchronization phase becomes the performance bottleneck ii) existing systems suffer
from lack of data locality due to using the hashing technique for distributed data iii)
most existing systems use the HDFS storage system, which does not provide a data
scheme orAPI for datamanagement, so users need to implement various input formats.
It also does not support any indexing mechanism. Kylin addressed these issues by
introducing three techniques: pullmessaging, lazy vertex loading, and vertex-weighted
partitioning. The proposed solution demonstrated up to 5 times better performance than
that of Hama.

Chen et al. [18] identified issues with existing graph processing frameworks, and
compared Hama and Cyclops, a vertex-oriented graph processing framework. They
proposed a key abstraction technique, distributed immutable view (DIV), which pro-
vided a shared memory abstraction for graph algorithms. The evaluation tests were
performed on typical pull and push graph algorithms, using datasets with 48 nodes.
Their proposed solution outperformed Hama considerably. For pull-mode algorithms
such as PageRank, the performance enhancement was due to the elimination of redun-
dant computation and message passing for converged vertices, and exploiting the
parallelism and locality ofmessage passing via contention elimination. For push-mode
algorithms such as single source shortest path (SSSP), the performance enhancement
was due to optimizedmessage passing and efficient vertex access through sharedmem-
ory. Experiments were also performed to measure memory usage, computation, and
communication efficiency, and Cyclops also showed better performance than Hama.

Zhou et al. [16] proposed Arbor, a large scale graph data processing system focused
on efficient space utilization, fast processing, and increased parallelism. Arbor incor-
porates the advantages of hyper-graph and simple-graph by the proposed extended
simple graphs (ESGs), which reduced data representation complexity. A control mes-
sage mechanism was proposed to mitigate the expensive synchronization operations
during data iterations, and two optimization strategies, check before sending (CBS)
and avoid unnecessary messages (AUM), were also introduced to improve overall
system performance. Experiments were performed on two applications, PageRank
and SSSP, using average response time as the key metric for performance compari-
son. The performance evaluation of the SSSP algorithm found that Arbor’s average
response time was at least 59% lower than Hama, and Arbor’s performance increased
with increasing number of vertexes. Arbor also outperformed Hama significantly in
the PageRank evaluation, with reduced average response time of at least 17% in all
scenarios.

Luo et al. [17] discuss drawbacks of the BSP graph partitioning mechanism used in
Hama. The authors studied and analyzedHama source code (version 0.6.3) which does
not use any special algorithm for graph partitioning. Although BSP provides better
performance than MapReduce for parallel graph mining, network communication
between nodes is still the performance bottleneck in this model because it is slower
than memory or disk I/O. The number of edges in the partition should be higher than

123



Investigating Apache Hama: a bulk synchronous parallel. . . 4201

the number of cross partition edges. An efficient partition algorithm can minimize
the number of cross partition edges and reduce the communication overhead between
computers. The authors suggested that Hama’s graph partition strategy may have a
negative performance impact because of the unnecessary communication between
nodes.

4 Use cases

We present some real-world use cases of Apache Hama to illustrate its current state
and potential at industrial scale.

4.1 Hama at Sogou

4.1.1 Summary

A well-known Chinese search engine, Sogou [36], successfully deployed Hama to
compute SiteRank.

4.1.2 The challenge

Efficient searching tools have been a boon to web users. With continuous growth of
online data, querying and retrieving relevant information is becoming increasingly
challenging. The classic PageRank algorithm still provides tremendous service to
facilitate web users provided the response time and result relevancy is significant.
This requires an efficient data processing engine to accomplish the task.

4.1.3 Solution

PageRank is one of themethods used by search engines to determine a page’s relevance
or importance.When a user enters a search query, the search engine’s number one goal
is to return results that are highly relevant in a timelymanner.Generally, a search engine
considers 200+ factors to determine relevance, and PageRank is the most common
algorithm employed. On similar patterns, the Sogou search engine runs PageRank
algorithm on 7200 core Hama clusters, over a dataset exceeding 400 GB, containing
600 M vertices and 6 Billion edges.

4.2 Hama at Korea telecom

4.2.1 Summary

A large mobile carrier, Korea Telecom [37], used Hama to monitor its network traffic
and capture issues as they arose.

123



4202 K. Siddique

4.2.2 The Challenge

Korea telecom, similar to most large telecom operators, monitors their traffic to ana-
lyze and identify issues related to network outages or changed network loads that need
to be managed. Prior analysis and prediction of outages or workload changes offers
advantages in terms of lower operational costs and better service. However, abrupt
network issues and workload changes arise irregularly, and often unpredicted. There-
fore, prediction quality and speed of reaction to changes in bandwidth are critical. To
address such issues, the company needs to

• Analyze historical network data,
• Analyze sensor and related data, and
• Provide real-time services and reports.

4.2.3 Solution

Korea Telecom deployed Hama, and achieved the following:

• Processing network data in real-time and identified problems,
• Identified patterns in the data to forecast problems,
• Maintained aggregate statistics and related data to immediately report patterns of
interest, and

• Efficient storage system to keep historical records of network data.

4.3 Hama at Samsung electronics

4.3.1 Summary

Samsung Electronics [38] employs Hama for real-time and large scale processing.

4.3.2 The challenge

Samsung Electronics has “brick and mortar” stores as well as a huge medical services
system, where it has recently applied deep learning technology to assist doctors in
diagnosing diseases, such as breast tumors, etc. The company primarily wants to
facilitate its customers providing purchasing recommendations in real-time.To achieve
this, they must integrate data and information from different sources, such as social
media, point of sale, historical web logs, inventory, customer relationshipmanagement
(CRM), and real-time web activity.

4.3.3 Solution

The solution was implemented using Hama in a series of steps:

• Analyze the data sources to determine customer likes, dislikes, andbuyingbehavior
using logged activity;

123



Investigating Apache Hama: a bulk synchronous parallel. . . 4203

• Integrate the resulting information with CRM, inventory, and stock information;
and

• Instant recommendations provided for products the customer may be interested in
purchasing.

5 Conclusions and future directions

In the digital and computing world, information is generated and collected at an expo-
nentially expanding rate. Therefore, big data concepts have received much attention
from both academia and the IT industry. Big data concepts and infrastructures are
becoming the standard approach for many applications. Apache Hama is a relatively
new framework, that is rapidly gaining momentum.

This paper highlighted and explored Hama as a potential research area for big data
processing. While research on big data processing using Apache Hama is in its early
stages, it is essential to identify future directions from a critical analysis. Therefore,
we provided a significant and focused interrogation session for Hama, identifying
promising areas that justify further exploration and development, e.g. specialized
graph partitioning algorithms, load balancing, optimization of memory usage, and
fault tolerance mechanisms.

We also presented some real-world use cases that show Hama’s current position in
both academia and industry. To the best of our knowledge, this Apache Hama update
is missing from the current literature, and we hope this article will assist researchers
to focus their research time and career in this particular area.

In the future, we intend to conduct several benchmark evaluations comparing
Apache Hama performance with other massive computing frameworks. This will fur-
ther help forecastApacheHama’s future and open newdoors for interested researchers.

Acknowledgements This research was supported by the MSIP (Ministry of Science, ICT and Future
Planning), Korea, under the University Information Technology Research Center support program (IITP-
2016-R2720-16-0004 and IITP-2016-H8501-16-1015) supervised by the IITP (Institute for Information &
Communications Technology Promotion).

References

1. Anagnostopoulos I, Zeadally S, Exposito E (2016) Handling big data: research challenges and future
directions. J Supercomput 72(4):1494–1516. doi:10.1007/s11227-016-1677-z

2. Gebara FH, Hofstee HP, Nowka KJ (2015) Second-generation big data systems. IEEE Comput
48(1):36–41. doi:10.1109/MC.2015.25

3. Yu N, Yu Z, Li B, Gu F, Pan Y (2016) A comprehensive review of emerging computational methods
for gene identification. J Inf Process Syst 12(1):1–34. doi:10.3745/JIPS.04.0023

4. Kolici V, Herrero A, Xhafa F (2014) On the performance of oracle grid engine queuing system for
computing intensive applications. J Inf Process Syst 10(4):491–502. doi:10.3745/JIPS.01.0004

5. Apache Hama. https://hama.apache.org/. Accessed 25 March 2016
6. Kalavri V, Vlassov V (2013) MapReduce limitations, optimizations and open issues. In: The IEEE

12th International Conference on Trust, Security and Privacy in Computing and Communications, pp
1031–1038

7. Fortune. http://fortune.com/2015/09/09/cloudera-spark-mapreduce/. Accessed 25 March 2016

123

http://dx.doi.org/10.1007/s11227-016-1677-z
http://dx.doi.org/10.1109/MC.2015.25
http://dx.doi.org/10.3745/JIPS.04.0023
http://dx.doi.org/10.3745/JIPS.01.0004
https://hama.apache.org/
http://fortune.com/2015/09/09/cloudera-spark-mapreduce/


4204 K. Siddique

8. InformationWeek. http://www.informationweek.com/cloud/software-as-a-service/google-i-o-hello-
dataflow-goodbye-mapreduce/d/d-id/1278917. Accessed 25 March 2016

9. Elser B, Montresor A (2013) An evaluation study of BigData frameworks for graph processing. In:
IEEE Big Data pp 60–67

10. Apache Apache Software Foundation blogging in action. https://blogs.apache.org/Hama/. Accessed
10 January 2016

11. Mailing list archives. https://hama.apache.org/mail-lists.html. Accessed 10 January 2016
12. Zotero. https://www.zotero.org/. Accessed 15 October 2015
13. Friedman R, Portnoy A (2015) A generic decentralized trust management framework. Softw Pract Exp

45(4):435–454. doi:10.1002/spe.2226
14. Zhang X, Wang R, Chen X, Wang J, Lukasiewicz T, Han D (2015) Achieving up to zero communi-

cation delay in BSP based graph processing via vertex categorization. In: International Conference on
Networking, Architecture, and Storage, IEEE, Boston, pp 112–121. doi:10.1109/NAS.2015.7255213

15. Ratnaparkhi AA, Pilli E, Joshi RC (2015) Scaling GMM expectation maximization algorithm using
bulk synchronous parallel approach. In: International Conference on Green Computing and Internet
of Things, IEEE, Noida, pp 558–562. doi:10.1109/ICGCIoT.2015.7380527

16. Zhou W, Han J, Gao Y, Xu Z (2016) An efficient graph data processing system for large-scale social
network service applications. Concurr Comput 28(3):729–747. doi:10.1002/cpe.3393

17. Luo S, Liu L, Wang H, Wu B, Liu Y (2014) Implementation of a parallel graph partitioning algorithm
to speed up BSP computing. In: The 11th International Conference on Fuzzy Systems and Knowledge
Discovery. IEEE, China, pp 740–744

18. Chen R, Ding X, Wang P, Chen H, Zang B, Guan H (2014) Computation and communication efficient
graph processing with distributed immutable view. In: The 23rd International ACM Symposium on
High Performance Parallel and Distributed Computing. Vancouver, Canada, pp 215–226

19. McColl R, EdigerD, Poovey J, Campbell D, BaderDA (2014)A performance evaluation of open source
graph databases. In: The Proceedings of the First Workshop on Parallel Programming for Analytics
Applications. Orlando, Florida, pp 11–17

20. Wang Z, Bao Y, Gu Y, Leng F, Yu G, Deng C, Guo L (2013) A BSP based parallel iterative processing
system with multiple partition strategies for big graphs. In: IEEE International Congress on Big Data,
CA, pp 173–180

21. Ho LY, Li TH, Wu JJ, Liu P (2013) Kylin: an efficient and scalable graph data processing system. In:
IEEE International Conference on Big Data, CA, USA, pp 193–198

22. Khayyat Z, Awaraz K, Alonaziz A, Jamjoomy H, Williamsy D, Kalnis P (2013) Mizan: a system for
dynamic load balancing in large-scale graph processing. In: Proceedings of the 8th ACM European
Conference on Computer Systems. Czech Republic, Prague, pp 169–182

23. Zhang J, Ge S (2012) A parallel algorithm to find overlapping community structure in directed and
weighted complex networks. In: 2nd International Conference on Instrumentation and Measurement,
Computer, Communication and Control, IEEE, Harbin City, Heilongjiang, China, pp 1561–1564.
doi:10.1109/IMCCC.2012.364

24. Chen R,Weng X, He B, YangM, Choi B, Li X (2012) Improving large graph processing on partitioned
graphs in the cloud. In: ACM Symposium on Cloud Computing, San Jose, CA. doi:10.1145/2391229.
2391232

25. Ting IH, Lin CH, Wang CS (2011) Constructing a cloud computing based social networks data ware-
housing and analyzing system. In: International Conference on Advances in Social Networks Analysis
and Mining. IEEE, Kaohsiung, Taiwan, pp 735–740

26. Seo S, Yoon EJ, Kim J, Jin S, Kim JS, Maeng S (2010) HAMA: an efficient matrix computation with
the MapReduce framework. In: Proceedings of the IEEE Second International Conference on Cloud
Computing Technology and Science (CloudCom). Greece, Athens, pp 721–726

27. Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33(8):103–111
28. Hama Graph Tutorial. https://hama.apache.org/hama_graph_tutorial.html. Accessed 10 January 2016
29. Apache Horn. http://horn.incubator.apache.org/index.html. Accessed 10 January 2016
30. Apache Hama Design Document V0.6. http://people.apache.org/~tjungblut/downloads/hamadocs/

ApacheHamaDesign_06.pdf. Accessed 20 December 2015
31. Apache Hama Pipes Development Repository. https://github.com/millecker/hama-0.5.0-gpu.

Accessed 10 January 2016
32. GolghateAA, Shende SW (2014) Parallel K-means clustering based on hadoop and hama. Int J Comput

Technol 1(3):33–37

123

http://www.informationweek.com/cloud/software-as-a-service/google-i-o-hello-dataflow-goodbye-mapreduce/d/d-id/1278917
http://www.informationweek.com/cloud/software-as-a-service/google-i-o-hello-dataflow-goodbye-mapreduce/d/d-id/1278917
https://blogs.apache.org/Hama/
https://hama.apache.org/mail-lists.html
https://www.zotero.org/
http://dx.doi.org/10.1002/spe.2226
http://dx.doi.org/10.1109/NAS.2015.7255213
http://dx.doi.org/10.1109/ICGCIoT.2015.7380527
http://dx.doi.org/10.1002/cpe.3393
http://dx.doi.org/10.1109/IMCCC.2012.364
http://dx.doi.org/10.1145/2391229.2391232
http://dx.doi.org/10.1145/2391229.2391232
https://hama.apache.org/hama_graph_tutorial.html
http://horn.incubator.apache.org/index.html
http://people.apache.org/~tjungblut/downloads/hamadocs/ApacheHamaDesign_06.pdf
http://people.apache.org/~tjungblut/downloads/hamadocs/ApacheHamaDesign_06.pdf
https://github.com/millecker/hama-0.5.0-gpu


Investigating Apache Hama: a bulk synchronous parallel. . . 4205

33. Li S, Xu B (2015) Performance comparison between hama and hadoop. Int J Database Theory Appl
8(3):77–84

34. Jin S, Yang S, Jia Y (2012) Optimization of task assignment strategy for map-reduce. In: 2nd Interna-
tional Conference on Computer Science and Network Technology. Changchun, China, pp 57–61

35. Module for Monte Carlo Pi. http://mathfaculty.fullerton.edu/mathews/n2003/montecarlopimod.html.
Accessed 10 January 2016

36. Sogou Inc. https://www.sogou.com. Accessed 10 January 2016
37. KT Corporation. https://www.kt.com/eng. Accessed 10 January 2016
38. Samsung Electronics. https://www.samsung.com. Accessed 10 January 2016

123

http://mathfaculty.fullerton.edu/mathews/n2003/montecarlopimod.html
https://www.sogou.com
https://www.kt.com/eng
https://www.samsung.com

	Investigating Apache Hama: a bulk synchronous parallel computing framework
	Abstract
	1 Introduction
	2 Research methodology
	2.1 Sources
	2.2 Search strings
	2.3 Selection of studies
	2.4 Stages of selection

	3 Interrogation session
	3.1 What is Hama?
	3.2 What is Hama's architecture?
	3.3 How is Hama different from other big data frameworks?
	3.4 What are the strengths of Hama?
	3.5 Which application domains would Hama be the most suitable choice?
	3.6 Can Hama be applied to deep learning frameworks?
	3.7 Can Hama outperform MapReduce based frameworks?
	3.8 Is there any framework that claims to outperform Hama?

	4 Use cases
	4.1 Hama at Sogou
	4.1.1 Summary
	4.1.2 The challenge
	4.1.3 Solution

	4.2 Hama at Korea telecom
	4.2.1 Summary
	4.2.2 The Challenge
	4.2.3 Solution

	4.3 Hama at Samsung electronics
	4.3.1 Summary
	4.3.2 The challenge
	4.3.3 Solution


	5 Conclusions and future directions
	Acknowledgements
	References




