
J Supercomput (2017) 73:3796–3820
DOI 10.1007/s11227-017-1983-0

Cloudlet dynamic server selection policy for mobile task
off-loading in mobile cloud computing using soft
computing techniques

Shima Rashidi1 · Saeed Sharifian1

Published online: 20 February 2017
© Springer Science+Business Media New York 2017

Abstract Wide acceptance of mobile phones and their resource hungry applications
have highlighted resource limitations of mobile devices. In this regard, cloud com-
puting has provided mobile phones with unlimited resources in order to help them
overcome their constraints and enable them to support wider range of applications;
so, mobile devices can outsource their tasks to public or local clouds. To accommo-
date to exponential growth of requests, user requests should be distributed to different
cloudlets and then transparently and dynamically redirected to the servers according to
the latest network and server status. Therefore, finding the best place to off-load is vital
and crucial to both functionality and performance of the system. However, accurate
and timely parameters of network and servers’ status are improbable to achieve, so the
traditional algorithms cannot perform effectively and fully efficient. As a solution in
this paper, an adaptive neuro-fuzzy inference system is proposed and trained to assign
tasks to the servers efficiently. The trained system is robust to imprecise context infor-
mation and is tolerable measurement noise and errors. We have considered improving
both system performance and user quality of service parameters in this paper. Sim-
ulation results demonstrate that, compared with other server selection schemes, the
proposed scheme can achieve higher resource utilization (utilization is a percentage
of time that a server is busy doing something), provide better user-perceived quality
of service, and efficiently deal with network dynamics. Simulation results show that
our proposed algorithm excels over the compared works in terms of performance, at
the best case about 30% and at the worst case about 8.93%.

B Saeed Sharifian
sharifian_s@aut.ac.ir

Shima Rashidi
shima.rashidi@aut.ac.ir

1 Department of Electrical Engineering, Amirkabir University of Technology, Tehran 15914, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-1983-0&domain=pdf

Cloudlet dynamic server selection policy for mobile task… 3797

Keywords Mobile cloud computing · Task scheduling · Off-loading · ANFIS

1 Introduction

Mobile phones are becoming more popular day by day, and their applications are
developing more and more [1,2]. New coming mobile applications usually demand
infinite battery power, high bandwidth, or high processing power [3], and development
of these applications is hindered by the inability of mobile devices in execution of
resource hungry applications; this inability is driven from their resource limitations.
In the recent years, cloud computingwas suggested as a novel solution for this problem
so that the mobile phones can outsource their applications to clouds. Cloud computing
(CC) can be defined as a computing service provider which is accessible through
Internet [4]. Integration of mobile devices and cloud computing results in mobile
cloud computing (MCC) is a promising technology which can help mobile devices to
overcome their resource constraints and run various range of applications [5,6].

Public clouds which can provision service for mobile devices are located in coarse
grained geographical regions. Because of their dispersion, mobile phones which use
cloud services may tolerate delays due to their remoteness from the clouds. As a
solution, cloudlets are established infinegrained regions to provide a faster and cheaper
connection for mobile users [7]; a user can optionally decide where to off-load in
order to improve its own profits and get its desired service faster. However, such high-
handedly approaches may cause in using only one cloud or cloudlet as the resource
provider, resulting in high latency and resource inadequacy. So, some server selection
algorithms should be used in such systems. The selection method should consider the
following factors: (i) user–server proximity in a MCC system; (ii) server load; or (iii)
network connectivity between user and server. Intuitively, a good algorithm should
choose a nearby, lightly loaded, and reachable server for a user request. In order to
achieve mentioned goals in the server selection process, servers’ load and network
status are needed at any moment, but gaining such accurate data is unlikely and all we
can have is estimated data; so, traditional algorithmsmay fail to suggest the best place.
As a solution, we have proposed ANFIS (Adaptive Neuro-Fuzzy Inference System)
which can act well with estimated data and is not vulnerable to data oscillations.
Our goal is improving both system performance and user QoS (quality of service)
parameters.

The remainder of this paper is as follows: Sect. 2 discusses related works and men-
tions our difference or priority upon them. In Sect. 3, an overall view of the system is
given and different possible scenarios are discussed. In Sect. 4, the overall flow of the
proposed algorithm is described and its parameters are introduced. Section5 explains
used ANFIS and formulates it. Results of the simulation with a brief explanation about
each result are given in Sect. 6.

2 Related works

Mobile cloud computing and task allocation are developing concepts which have
attracted much attention recently. A few surveys about mobile cloud computing, its

123

3798 S. Rashidi, S. Sharifian

challenges and applications can be found in [6,8,9]. According to these papers, task
allocation algorithms can be categorized in many ways, such as central or distributed,
dynamic or static, deterministic or context aware algorithms.

Task allocation algorithms can be central or distributed. In [10], two distributed
dynamic load balancing algorithms, LBA and MELISA, in network environments
are presented. These algorithms try to solve the problems caused by network delays,
sharing, and job migration from one machine to another. They estimate completion
time of jobs in processors and try to allocate tasks to resources in a way that response
time of tasks is reduced. Authors in [33] have tried to reduce the energy consumption
of networked data centers with a distributed and scalable scheduler. They have used
an optimization algorithm in order to optimize the load provisioning process so both
network devices and servers energy consumptionwill be decreased. Shojafar et al. [34]
proposed a novel dynamic distributed resource allocation scheduler in mobile cloud
computing environments for reducing energy consumption of both data centers and
mobile connections. At the same time, it tries to meet quality of service requirements.
The test results show its superiority over other algorithms. In [11], a central offline
and a distributed online algorithms, used in heterogeneous mobile cloud computing
environments (in which the configuration of the resource providers differs from each
another), are presented. In this paper, besides response time of the executing tasks
and their waiting time in the queues, cloudlet and user distance is also considered
in the task allocation process. In [12], the authors proposed a probabilistic algorithm
for online distributed scheduling, in which power consumption of the mobile devices
and completion time of the tasks are reduced. Because of the resemblance of its
assumptionswith our proposed algorithm, it is chosen for comparison in the simulation
scenarios. In [13], a distributed decision-making algorithm is proposed for off-loading
to remote clouds. It uses game theory to find the optimal trade-off point between power
consumption and network latency

Our problem can be modeled as a job scheduling problem which is mostly solved
with static or dynamic algorithms. Static algorithms need to have prior knowledge of
the system; they better answer in systems that do not have sharp fluctuations. There
are a lot of deterministic algorithms for choosing the best place to off-load, but they
usually consider only one or two specific parameters as their selection criteria. For
example, a server might be chosen only because of its proximity to a user, its signal
strength, or being less loaded. Despite the simplicity of these algorithms, inefficacy of
them has been proven by practical applications [14]. An example of these algorithms
is round-robin (RR) which is presented in [15] and is compared to our proposed
algorithm in the simulation scenarios. This algorithm assigns tasks in a round and
sequential manner. In the dynamic algorithms, decision is based on the current condi-
tion of the system. Therefore, status of all the nodes should be monitored constantly
and the tasks should be allocated due to these statuses. These approaches are more
flexible and can adapt to changes more easily; so they can have a better performance in
dynamic and heterogeneous environments. In [16], in order to optimize management
of the resources, mobile users are clustered based on their accessibility and movabil-
ity. This clustering should be performed dynamically. Resources are assigned to each
cluster based on its characteristics. Another dynamic algorithm which tries to reduce
transmission and completion time of the tasks is proposed in [17]. This algorithm

123

Cloudlet dynamic server selection policy for mobile task… 3799

considers k resources for each task, using KNN (k-Nearest Neighbors) algorithm, and
among those k resources, finds the most proper resource which reduces drop rate,
power consumption, and completion time of the task.

Context aware algorithms operate real time and need updated context information
constantly to make proper and aware decisions. The authors in [18] proposed a cost
and energy aware algorithm for service provision in mobile clouds. Although updating
context information has an overhead for the network [19], the context aware algorithms
may have to update their information periodically [20]. Also, uncertainty in server load
estimation and network status is a challenge in extracting precise context information
which can be used for more proper decisions. In order to reduce algorithms’ errors
while facing imprecise context information, we suggest using ANFIS to make the
algorithm more robust. ANFIS is used in many other fields such as prediction [21],
modeling [22], load balancing [23], decision making [24].

3 System architucture introduction

In this part, the proposed distributed task allocation algorithm which can work in
dynamic and heterogeneous environments (environments in which the configuration
of the resource providers such as clouds and cloudlets differ from each another, so
the response time of one task is different in each service provider), named Distributed
Heterogeneous Task Allocation (DHTA), is proposed. In DHTA architecture, task
allocation is online, adaptive and DHTA is designed in a way that mobile user mobility
is considered. The cloudlets are connected together via Internet network and can send
tasks to each other through the Internet backbone. Their connection with public clouds
is also possible through Internet. As a result of Internet connection, user locationwould
not matter anymore and then move after transmitting its task to its nearest cloudlet.
Then, user’s mobile device will go to the idle state till the task completion. When the
user task is completed, a message about task completion is sent to the user. Results
are uploaded on the cloudlet which is the nearest one to the user’s new location and
then sent to the user. In this condition, round-trip time (RTT) between cloudlets over
Internet will be important and taken into account.

As shown in Fig. 1, the cloudlets are spread over different geographical areas and the
users off-load their requests to their nearest cloudlet, named the host cloudlet, in their
geographical zone which is determined by a circle with radius R. The task is actually
off-loaded to the proxy of the cloudlet as a request to be processed for allocation;
connection with the proxy of the cloudlet is possible via its access point through Wi-
Fi. The proxy of the host cloudlet, after receiving the requests, studies network status,
its own and other cloudlets’ load and then makes a decision for offering the best place
for processing each request. The best place to off-load is calculated in such a way that
QoS parameters and system performance are optimized.

As it is known, bandwidth cost in 3G networks is higher than Wi-Fi [25] and also
energy consumption of transferring data through 3G/4G network is higher than Wi-Fi
[26,27]. Considering these two facts, three cases can happen in this system; in the
first case, the host processes the request itself, so network delay, cost, and energy
consumption would be minimized. This case occurs when forwarding the request to

123

3800 S. Rashidi, S. Sharifian

Fig. 1 System model for mentioned three cases

other cloudlets takes longer than waiting in the queue of the same cloudlet. In the next
case, the host cloudlet off-loads the request to another cloudlet, named the executive
cloudlet, or to the public cloud through Internet. In this case, in addition to server
response time for processing the request, network delay caused by retransmission of
the request should also be taken. In the last case, if there are not enough resources to
process user requests or user waiting time is too much to bear, system will drop the
request. To obtain optimalQoS parameters, this case should be avoided, since dropping
the requests causes bad user experience and consequently reduces QoS parameters.

In the suggested system, it is assumed that there are n cloudlets and each cloudlet,
cloudleti, (i = 1, . . . , n), receives m tasks in each time interval. Suppose that the
request R j , (j = 1, . . . ,m) from the user Uk, (k = 1, . . . , u) is off-loaded to its
nearest cloudlet, cloudleti . All the received requests are transmitted to the local cloud
or other cloudlets or public cloud via the distributer in the host cloudlet. Since task
transmission through Internet to other cloudlets results in time overhead for the system,
it is preferred that cloudleti executes the task itself in order to reduce cost, energy,
and network delay. These decisions are made in decision-making unit which uses
proposed AOTA (Adaptive Online Task Allocation) algorithm and its robust version,
named FDM (Fuzzy-based Decision Maker). The purpose of this unit is selecting the
server which is the closest one to the user and also has the least load. For an appropriate
decision regarding how to find the best place to off-load, decision-maker unit needs to
know information such as server parameters and network status among the cloudlets.
RTT among the cloudlets and utilization of their servers are gathered in a repository in
the proxy of the cloudlets. As shown in Fig. 2, decision-making unit in the host cloudlet

123

Cloudlet dynamic server selection policy for mobile task… 3801

Fig. 2 Proposed off-loading mechanism

rates other cloudlets using this information considering its goal and produces a rating
table in which the probability of outsourcing tasks to other cloudlets is inserted. Then,
the distributer uses the produced rating table and distributes the tasks accordingly.

A deterministic decision maker should decide for each task where to off-load it.
For this purpose, the decision maker should know the exact load of the cloudlets and
exact RTTs, so it can send the task to the nearest and least loaded cloudlet. Since this
informationmay not be accurate, the decisionmaker will not perform sowell. Another
problem is that during the data collection process, this informationmay bemanipulated
or their integrity may be distorted. So, maintaining the security and integrity of these
information is of high importance. There are some routine protocols for data security
purposes like SSL and TSL or even or even anyVPN. Also, the integrity of messages is
guaranteed by hashing mechanism. These standards require asymmetric cryptography
like RSA and certificate and key management infrastructure. So, we can use such
approaches to insure the security of data collection and integration in our system [35].
After the data collection stage, the obtained context information, used for decision
making, is updated via Internet periodically using the mentioned protocols. Then,
they are used at the start of a period to make a decision for all incoming requests
in that period. So, this information may be inaccurate as they belong to the previous

123

3802 S. Rashidi, S. Sharifian

period. As the network traffic is dependent on various parameters and is constantly
changing, it cannot be measured precisely. Also, network requests are not completely
predictable, because of users’ mobility, so the network traffic characteristics cannot
correctly be estimated. Therefore, measuring and updating accurate network delay
between different servers is not possible. On the other hand, when the number of
servers in a network is high, server load estimation is also almost impossible, since the
number of requests is constantly changing. According to the subjects that were told,
estimation of immediate network parameters and servers’ loads is very difficult. Given
that the proposed algorithm should operate online, a solution is presented below.

In every periodic time interval, depending on the performance of the system, the
average number of the requests and servers’ loads in that time slot is obtained. It is
expected that in the next period, the systemshows the same treatment and its parameters
do not change so much. Therefore, the obtained values in the prior period would be
used in the next period; then, the rating table for each cloudlet would be updated. But
measurements are not accurate and may have some deviations; so a fuzzy system is
suggested. The proposed fuzzy system has multiple inputs and also is noise resistant,
so it can perform well with inconsistent input values.

4 Formulation of the proposed algorithm

In this section, the problem is formulized; then, the assumptions and used parameters
are mentioned. Using the rating tables produced in the decision-making unit, tasks are
sent to cloudleti with probability PCLi . For modeling the system and better predicting
its behaviors, cloudlets are modeled asM/M/Vs/Qmax systems. In this model, accord-
ing to Kendall notation, incoming request rate is a Poisson procedure and the modeled
cloudlet has Vs servers and one queue. The cloudlet can have maximum number of
Qmax clients in its queue, and extra tasks should be sent to other cloudlets or dropped.
Service rate of the servers is an exponential distribution with mean μ. Public cloud
is modeled as a M/M/∞ queue. This queue model also has Poisson arrival rate and
exponential service rate. Public clouds have somewhat infinite sources in comparison
with cloudlets, so its queue and number of servers are considered infinite to bold this
difference. Therefore, response time of the executing tasks in a public cloud is almost
zero and completion time is only proportional to the transmission time of sending
tasks to the public cloud via Internet (μin). Probability of sending a task to the public
cloud is Pin . The tasks are dropped with probability of P3G and should be off-loaded
to public cloud via 3G connection; it takes μin +μ3G . In conclusion, completion time
of all tasks in the system can be calculated with (1).

T f = P3G(μ3G + μin) + Pinμin + PClTtotal (1)

in which Ttotal is the mean completion time of the allocated tasks to the cloudlets.
In order to formulize this problem, host cloudlets are shown with index i and

executive cloudlets are specified with index (j = 1, . . . , n). i and j can be equal
when a host cloudlet is the executive itself. Each incoming request to host cloudleti
is specified with cloudlet’s index (i). In order to model allocating tasks to cloudlets,

123

Cloudlet dynamic server selection policy for mobile task… 3803

a n × n matrix, named S, is considered. In each period, every time that an incoming
request to host cloudleti is outsourced to executive cloudletj, corresponding element,
Sij is incremented. S is set to zero at the start of each period. A 1 × n array, named
alloc, is considered to save the number of allocated tasks to each cloudlet. Aggregate
number of tasks outsourced to executive cloudletj and its incoming tasks which itself
executes are inserted in alloc j . The alloc array is used for calculating the utilization
of cloudlets and is used in our proposed algorithm as the context information for the
next period. Completion time of each incoming task to executive cloudlet, Cl j , from
host cloudleti is shown with T c

i j and can be calculated with (2).

T c
ij = T txr

ij + T r
j (2)

T r
j is response time of executing the task in Cl j and T txr

i j is transmission time of
sending the task from Cli to Cl j . If i equals j, T txr

i j is zero. It should be noticed that
the size of all tasks is considered the same in this article, so transmission time is
proportional to round-trip time of sending the task. As calculated in (3), response time
of executing a task in executive cloudletj is a summation of service time of cloudlet’s
servers and the time taken for the task waiting in the cloudlet’s queue.

T r
j = T s

j + Tw
j (3)

in which T s
j is service time of cloudlet’s servers and Tw

j is the time taken for the task
waiting in the cloudlet’s queue. Completion time of all the tasks to all the cloudlets is
calculated with aggregating completion time of each task. It can be calculated using
(4).

TTotal =
n∑

i=1

n∑

j=1

(T c
i j × Si j) (4)

One of the proposed algorithm’s main goals is reducing total completion time in
order to meet QoS conditions. This condition is written in (5).

min(TTotal), s.t.
n∑

j=1

alloc j < Qmax j (5)

in which Qmax j is the queue length for cloudletj. If the condition in (5) is not met,
second scenario will occur and extra tasks will be sent to public cloud. According to
(6), this scenario has financial costs for the user.

n∑

j=1

alloc j > Qmax j → CostC = αcNc (6)

in which CostC is total expenses for system to off-load to public cloud. αc and Nc are
cost of a service in public cloud and number of tasks transmitted to public cloud by

123

3804 S. Rashidi, S. Sharifian

cloudlets, respectively. The bandwidth dedicated to cloudlets is limited, and number of
tasks which can be sent to public cloud by each cloudlet is limited to Nthr . Therefore,
if Nc exceeds Nthr , extra requests will be dropped. In this way, Nd requests will be
off-loaded to public cloud via 3G connection. This causes extra financial and time
costs for the dropped users (7).

Nc > Nthr → Costd = (α3G + αc)Nd (7)

where α3G is cost of task transmission via 3G connection.

5 Procedure explanation of the proposed algorithm

Our proposed algorithm considers the aforementioned problem formulation and acts
online and distributed. It is adaptive and can perform in heterogeneous environments
as well. Distributed task allocation feature can be explained as followed. All the nodes
are aware of each other’s information, and each cloudlet decides for its own incoming
requests, whether to process them or outsource them. In such a system, the cloudlets
broadcast just their utilization and they are not aware of each other’s incoming tasks,
so the proposed algorithm is distributed. In the proposed system, all the cloudlets
receive different requests in each period simultaneously and all the host cloudlets
rank their hypothetical executive clouded based on the shared context information. In
this situation, if all cloudlets choose a cloudlet with lower response time in a greedy
manner that cloudlet will get overloaded and its response time will increase. To solve
this problem, AOTA has considered RTT as well as cloudlets’ utilization and also
adopted a probabilistic approach. As the result, the cloudlets with higher probability
get higher chance to be chosen and the cloudlets with lower probability have also a
little chance to be chosen. The probability of sending a task from host cloudlet (Cli)
to executive cloudlet (Cl j) can be calculated using (8) and it should get inserted in
each cloudlet’s rating table.

PCli→Cl j =
α

α×Tw
j +(1−α)×RTTi j

∑ 1
Tw
j +RTTi j

, α ∈ [0, 1] (8)

in which α is the adaptability coefficient which puts weigh on either load balancing or
transfer time reduction by the system administrator. This equation helps to have load
balancing while reducing transfer time. If α is set to 1, the algorithm just focuses on
load balancing, and transfer time reduction is not considered for task allocation. If α

is set to 0, the algorithm minimizes transfer time without load balancing.
In the proxy of every cloudlet, there is a decision-making unit which decides for

input requests where to off-load. This unit needs precise context information to make
a proper decision. Since updating these information causes time overhead, decision-
making unit cannot access context information at anymoment instantly. So, it has to use
previous period’s information to assign tasks in current period. Since the information
is old and the system cannot decide based on its current status, the algorithm will
face some errors. In order to solve this problem, fuzzy inference system is suggested,

123

Cloudlet dynamic server selection policy for mobile task… 3805

Fig. 3 Flowchart of FDM algorithm

so that the system will be robust to the uncertainty of input control parameters. As
the result, in the decision-making unit there is a fuzzy inference engine. The fuzzy
system inputs are utilization of cloudlets’ servers and the RTT of sending a task from
cloudleti (host) to cloudletj (executive), which is shown with RTTi j . The output of the
fuzzy system is a rating table for each server to allocate its received tasks accordingly.
Thus, the rating table would be updated for each time slot and each request would be
allocated to the cloudlet with higher rate more likely.

The dataset that is used in this algorithm is gathered with the use of aforementioned
algorithm, AOTA, which objective is minimizing the servers’ response time and net-
work latency of the system. Making it robust and better, AOTA is developed to FDM
by integrating it with a fuzzy inference system. One of the most important benefits
of FDM is that it can be trained with any other task allocation algorithm with any
other objective. This algorithm should be implemented for each server individually in
each period to update the rating table for new requests. Flowchart of AOTA and FDM
algorithms is illustrated in Fig. 3.

The proposed task allocation algorithm is performed in the proxy of each host
cloudlet and decides only for host cloudlet’s arrival requests. Utilization of cloudlets

123

3806 S. Rashidi, S. Sharifian

Fig. 4 Decision-maker unit used in the proxies of cloudlets

and their RTT is the inputs of AOTA algorithm, and this information belongs to pre-
vious period. Using (8), the probability of sending a task to executive cloudlets is
calculated and inserted in the host’s rating table. Executive cloudlet of each task is
determined using the rating table and roulette wheel selection. At the end of the period,
utilization of cloudlets will be calculated and network status is updated. AOTA is exe-
cuted on a standard workload offline, and the results are saved to be used as the training
data for FDM algorithm. FDM has a similar performance like AOTA, although FDM
has more certainty and status adaptability.

Suggested decision-making unit, using FDM algorithm, is illustrated in Fig. 4.
Designed fuzzy inference system uses a series of knowledge-based rules and a fuzzy
inference engine to estimate the probability of sending a task from host cloudlets to
executive ones. RTT of sending a task between cloudlets and servers’ utilization is two
inputs of fuzzy inference engine. So RTTi j , i, j = 1, . . . , n, and ρ j , j = 1, . . . , n, are
linguistic variables and Pi j (probability of sending a task from cloudleti to cloudletj) is
the output of the fuzzy inference engine. These probabilities are inserted in cloudleti’s
rating table. The produced rating tables go to the Roulette wheel selection, and final
decision for each task is the output of the decision-making unit.

5.1 Used ANFIS in the proposed system

“A fuzzy set is a class of objects with a continuum of grades of membership,” Zadeh
proposed the fuzzy set theory for the first time [28]. Fuzzy logic is the process of

123

Cloudlet dynamic server selection policy for mobile task… 3807

finding a relationship between given fuzzy inputs and outputs. In this section, we tune
an initial FIS, using ANFIS. ANFIS is proposed in early 1990 and is an adaptive
neuro-fuzzy inference system which works based on Takagi–Sugeno (TS) [29]. This
method combines both learning features of neural networks and fuzzy logic aspects,
so we can efficiently train a system to work with fuzzy inputs. Its inference system is
adaptive with If–Then rules and provides the learning ability for estimating nonlinear
functions. At first, a dataset with input parameters and target measurements should
be loaded to create initial FIS. The initial FIS is created using FCM method, which
extracts a set of proper rules regarding input and target data behavior. The generated
FIS is of Sugeno type with Gaussian membership functions.

Every fuzzy inference system has some specific parameters such as type, defuzzi-
fication method, input, output, rule. Output and input membership functions can be
defined of any distribution, so it can be trained by changing these parameters in a
proper way. So as the next step, ANFIS is used to calculate parameters of the member-
ship functions of fuzzy antecedent parameters, and linear consequent parameters of
fuzzy rules for Takagi–Sugeno [30] FIS. Takagi–Sugeno (TS) is used as a basic fuzzy
inference system for ANFIS [31]. Takagi–Sugeno can model many nonlinear systems
and be used for approximating them. Each rule in TS can be a linear function or crisp
number, as shown in (9).

Ri : IF x is Ai THEN yi = aT x + bi , i = 1, 2, . . . , M and 0 < Ri < 1 (9)

inwhichX, the inputs, is the antecedent and yi is the consequent of the i’th rule. Ai is x’
membership function; ai and bi are consequent parameters which can be regulated in
order to improve model’s behavior. The TS antecedent usually uses and-conjunction.

μi (x) =
p∏

j=1

μi j (x j) (10)

which is gained by multiplying membership degrees of x j in Ai . So, the total output
for the input x is computed by aggregating the individual rules contributions:

y =
∑

r yr . exp
(
− 1

2

∑
r

(xi−mri
σ

)2)

∑
r exp

(
− 1

2

∑
i

(xi−mri
σ

)2) (11)

in which xi (i = 1, ..., n) is inputs of the fuzzy system, r is the representative of
different rules and yr is the consequent of the r’th rule. σ and mri are parameters of
membership functions for each input. These parameters can be regulated in order to
improve system approximation.

In Fig. 5, the used ANFIS is illustrated. ANFIS is based on Takagi–Sugeno fuzzy
inference system, so its rules are as follows:

123

3808 S. Rashidi, S. Sharifian

Fig. 5 Used ANFIS algorithm

R1 : IF x1 is A11 and x2 is A21 Then y = p1x1 + q1x2 + r1 (12)

R2 : IF x1 is A12 and x2 is A22 Then y = p2x1 + q2x2 + r2 (13)

⇒ Rr : IF xi is Ai j Then y

= p j x1 + q j x2 + · · · + r j i = 1, . . . , n and j = 1, . . . ,m (14)

As it is shown, each n input can be defined with m membership functions in the
first layer and μnm(xn) is the membership degree of xn in Anm fuzzy set. Layer two
is the T.norm creating fuzzy rules that assigns the minimum membership degree of xi
in its membership functions as wr . So wr for each rule (used in (11)) is achieved and
will be normalized in the next layer.

wi = wi∑n
i=1 wi

(15)

So, in the next layer weighted outputs will be calculated and at last the output will
be obtained from (16).

y =
∑

r yrwr∑
r wr

=
n∑

i=1

yiwi (16)

For a better answer, the membership function parameters are extracted from the
FIS resulted from the previous step and are fed into an optimization algorithm. For
this problem, AI algorithms are used since the number of these parameters are very
high, resulting in a big solution space. Cost function would be obtained from (18), in
order to reduce FIS error.

ei = ti − yi (17)

123

Cloudlet dynamic server selection policy for mobile task… 3809

Table 1 Parameters that are used in the FDM algorithm

Parameter Value

Number of cloudlets 20

Period time used for updating context information (s) 5

Mean of service rate (μ) (req/s) 0.98

Mean of number of servers in each cloudlet (VSj) 2.55

Maximum number of cloudlets (Qmax) 5

Maximum number of tasks allowed to off-load to public cloud (Nthr) 4

Adaptability coefficient (α) 0.4

MSE = 1

N

N∑

i=1

e2i (18)

where t is the train data targets which is desired and y is the output of the FIS for the
train data inputs.

6 Evaluation of the proposed method

In this section, simulation results are illustrated and the proposed algorithm is com-
pared to the state of art.

6.1 Evaluation setup and comparison scheme

In order to evaluate performance of the proposed algorithm properly, a scenario is
simulated as follows: There is an urban area in which 20 cloudlets are distributed
randomly. Mean delay of transferring a 20Mb packet from a cloudlet to another one
is about 7/568 s. The used parameters in the algorithm are given in Table1. The
values of these parameters are gained practically through a large number of trial and
error experiments. They are set to the values with which the algorithm shows its best
performance.

All the cloudlets are connected through the Internet backbone. Noting Fig. 6, RTT
for connection between cloudlets can be calculated using (19).

RTTij = RTT1 + RTT2 + RTT3 (19)

in which RTT1 is the network delay of cloudleta from the metro ring, RTT2 is a very
short delay time on the metro ring and RTT3 is the network delay of metro ring from
cloudletb.

Average of incoming requests to all the cloudlets in 500 seconds (100 Time Steps),
taken from two weeks of HTTP logs from a busy Internet service provider WWW
server, CLARKNET [32], is shown in Fig. 7.

Parameters which are studied in this article are as follows:

123

3810 S. Rashidi, S. Sharifian

Fig. 6 RTT for cloudlets’
connection

Fig. 7 Average of incoming
requests to all cloudlets

• Mean transfer time Host cloudleti sends some of its tasks to other cloudlets in
a specific transfer time (

∑
j T

txr
i j) which is proportional to

∑
j RTTij. So, mean

transfer time in each period can be calculated with (20).

mean(T txr) = 1

n

∑
i

∑
j
T txr
ij × Si j (20)

in which n is the total number of cloudlets and Si j is the assignment matrix.
• Utilization CV Utilization shows that to what percent the cloudlets are busy. Uti-
lization of each executive cloudlet j (ρ j) is calculated by (21).

ρ j = alloc j
V s jμ j

(21)

123

Cloudlet dynamic server selection policy for mobile task… 3811

in which alloc j is the number of requests that cloudlet j should execute in each
period. V s j and μ j are number of servers and service time of cloudlet j , respec-
tively. CV is coefficient of variation which can be calculated with (22).

E(x) = μ = 1

n

n∑

i=1

xi → σ =
√
E[x2] − (E[x])2 → CV = σ

μ
(22)

in which E(x) is the average of variant x and σ is the standard deviation. Utilization
CV of cloudlets is a proper criterion for load balancing evaluation. The more
little its value is the more balanced the loads of cloudlets are. Little utilization
CV represents that the tasks are distributed more uniformly among the cloudlets’
servers and the cloudlets are more equivalently utilized.

• Mean completion time Mean completion time can be calculated with (23) using
equation mentioned in (2) in each period.

TTotal = 1∑
alloc

n∑

j=i

∑

j

(T c
i j × Si j) (23)

• Summation of drop requests Summation of dropped requests of all cloudlets in
each period is considered and evaluated as a parameter for QOS of the system.

6.2 Evaluation results

In this section, evaluation results are given and discussed. At first, the performance of
the algorithm is verified and then it is compared with the state of art.

In order to verify the performance of rating tables (Rtable) in FDM algorithm, trend
of probabilities of sending tasks to other cloudlets for 4 host cloudlets as samples in
100 time steps is shown in Fig. 8. System prefers that the host cloudlet processes its
incoming request itself, so the task’s completion time would be minimized. So, as
shown in Fig. 8, the queue of host cloudlets with less servers (Fig. 8a, c with two
servers) get full faster and the probability of executing incoming tasks themselves
reduces (blue and yellowgraph in Fig. 8a, c, respectively). But host cloudletswithmore
servers (Fig. 8b, d with 3 and 5 servers, respectively) prefer to execute the incoming
task themselves most of the times, so the probability for them doing the task is high
in most of the time steps (red and green graphs in Fig. 8b, d, respectively).

Another parameter which is considered in the proposed algorithm and studied here
is the queue length. If the number of tasks in the queue of cloudlets reaches the queue
length, extra requests will be dropped. Queue length is not specific and is determined
by the cloudlet’s owner. So, the proposed algorithm should adapt with any queue
length. Increasing queue length results in reduction of dropped requests since more
requests can wait in the queue and the queue will not overflow quickly. The simulation
results of AOTA’s performance with different queue lengths are given in Table2.

123

3812 S. Rashidi, S. Sharifian

Fig. 8 Rating tables for host cloudlets a rating table for a host cloudlet with 2 servers, b rating table for a
host cloudlet with 3 servers, c rating table for a host cloudlet with 2 servers, d rating table for a host cloudlet
with 5 servers

Table 2 Average and standard deviation of “summation of dropped requests”

Qmax=5 Qmax=8 Qmax=10 Qmax=15 Qmax=20

Average 30.8430 30.7525 28.9675 27.0340 25.9875

SD 11.7482 11.6351 11.7476 11.2450 11.5707

As given in Table2, with the increase in queue length from 5 to 20 requests, average
of sum of dropped requests is decreased. If we increase aggregate number of servers of
all cloudlets to 79, as shown inFig. 9, number of dropped requests reduces significantly.

Number of servers’ accretion cause more requests being served simultaneously, so
the number of tasks waiting in the queues will reduce. As a result, it will take longer
for the queues to get full and so under the condition in which queue length is 20, drop
request rate gets zero (Fig. 9).

In order to verify adaptability of the proposed algorithm, value of parameter α is
changed from 0.1 (more focus on task completion time reduction) to 0.9 (more focus
on load balancing of cloudlets) and its results on utilization CV of the cloudlets and
mean transfer time of all tasks being send to other cloudlets are shown in Figs. 10 and
11. Average and standard deviation of these graphs is given in Table3. Utilization CV

123

Cloudlet dynamic server selection policy for mobile task… 3813

Fig. 9 Summation of dropped requests of all cloudlets with different queue lengths

Fig. 10 Utilization CV of cloudlets in terms of α variation in each period

and mean transmission time are studied as representatives of load balancing and mean
completion time, respectively.

Regarding Figs. 10 and 11 and due to α’s nature in (8), it is verified that with the
increase of α, utilization CV is reduced and mean transmission time is increased.

With the above-mentioned experiments, well performance of AOTA algorithms is
proved. In the next step in order to reduce the error of online execution and using
last period’s context information, an ANFIS is trained to simulate AOTA and FDM
algorithms. The results of training ANFIS are shown in Figs. 12 and 13. Two thousand
and three hundred samples are extracted from offline execution of AOTA as the train
data. These data include two input data (executive cloudlet’s utilization and RTT of
host and executive cloudlet in the network) and one output (probability of sending the
task from host cloudlet to executive cloudlet). Input data of the system are shuffled,
and then, 70% of it is used as train data and residual 30% is used as test data for the

123

3814 S. Rashidi, S. Sharifian

Fig. 11 Mean transfer time in terms of α variation in each period

Table 3 Average and standard deviation of “utilization CV and mean transfer time in terms of α variation”

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 09

Average (Fig. 11) 0.6927 0.6324 0.5937 0.5856 0.5753

SD (Fig. 11) 0.0182 0.0180 0.0312 0.0390 0.0673

Average (Fig. 12) 3.0821 4.8814 5.4293 6.74 7.5378

SD (Fig. 12) 0.4701 0.3179 0.2616 0.143 0.0676

ANFIS. To evaluate the performance of training process, two factors, Mean Squared
Error (MSE) and Root Mean Square Error (RMSE) are used. Selection of the type
of membership function has a giant impression on the system performance and ease
of system compliance. The most commonly used membership functions are Gaussian
and triangular functions. In this article, we have chosen theGaussian functions because
they can better model the nature of the network and load conditions of the cloudlets
in the proposed architecture.

RMSE of the generated Fuzzy Inference System is only about 0.014 for training
data and 0/01472 for the test data. So, the system has been trainedwell to followAOTA
algorithm.

After all the above steps, we will have a trained system for task allocation in
dynamic, distributed and heterogeneous mobile cloud computing environments. The
system takes utilization rate of cloudlets and RTT of them in the Internet network from
the previous period, and gives the proper probability of outsourcing incoming tasks for
each host cloudlet. FDM is compared with one other algorithms from previous works
done in [12], round-robin (RR) algorithm (as a central algorithm) and a probabilistic
algorithm (Ra) in order to evaluate its performance in comparison with the state of
art. [12] is a probabilistic algorithm for online distributed scheduling, in which power
consumption of the mobile devices and completion time of the tasks are reduced.

In the first experiment, utilization CV of cloudlets are compared in order to study
algorithms’ ability in balancing the load of cloudlets. Utilization CV is an appropriate

123

Cloudlet dynamic server selection policy for mobile task… 3815

Fig. 12 ANFIS output for train data

Fig. 13 ANFIS output for test data

criterion for load balancing verification and little values of it shows more balanced
servers and vice versa. Figure14 shows that FDM algorithm decreases utilization CV
more because of its appropriate cost function and probability criteria. Average and
standard deviation of Utilization CV graph is inserted in Table4.

In the second experiment, drop rate of the system using different algorithms is
studied. Reduction of drop rate results in client pleasure and refinement in quality of
service parameters. Experiment results are shown in Fig. 15. As it can be seen, FDM
acts better in drop rate reduction since it balances loads of cloudlets more equivalently.
Better distribution of tasks among cloudlets causes lower drop rate. Matching Fig. 14
and 15, it can be found out that in the period intervals 50–100 and 300–350, number of
dropped requests is increased because of unbalanced loads in the cloudlets. Average
and standard deviation of some of dropped requests graph is given in Table5.

In the next experiment mean Transfer time using different algorithms is studied.
Results are shown in Fig. 16 and Table6 fromwhich it can be concluded that FDM has

123

3816 S. Rashidi, S. Sharifian

Fig. 14 Utilization CV of cloudlets using different algorithms in each period

Table 4 Average and standard
deviation of “utilization CV of
cloudlets” over time

FDM RR Ra ASP [12]

Average 0.5937 0.7122 0.7340 0.6657

SD 0.0312 0.0155 0.0183 0.0194

Fig. 15 Summation of dropped requests using different algorithms in each period

Table 5 Average and standard
deviation of “Summation of
dropped requests” over time

FDM RR Ra ASP [12]

Average 34.1250 62.7650 64.1880 47.9240

SD 12.7807 10.9280 11.0975 11.9622

123

Cloudlet dynamic server selection policy for mobile task… 3817

Fig. 16 Mean transmission time using different algorithms in each period

Table 6 Average and standard
deviation of “Mean
Transmission Time” over time

FDM RR Ra ASP [12]

Average 5.4293 7.5689 7.5691 5.6990

SD 0.2616 0.000303 0.0448 0.2102

a better performance in decreasing transfer time because of its robustness to uncertain
network information.

Although time criteria is considered in both FDMandASP and these two algorithms
are almost the same but FDM uses ANFIS to reduce errors of uncertain context infor-
mation. So FDMhas a better performance in transfer time decreasing. MR uses Round
Robbin selection and tasks are sent to specific cloudlets, respectively, so transfer time
is the same in all time steps and doesn’t differ much.

Next experiment is designed to study mean completion time of the tasks.
Mean completion time is the aggregation of transfer, waiting and executing time of

the tasks in servers of cloudlets. Since FDM has a better performance in balancing the
loads of the cloudlets, waiting time of the tasks in servers would be minimum. Due
to the results of the previous experiment, transfer time is also minimum when using
FDM; in conclusion, as it can be seen in Fig. 17 and Table7, mean completion time
of tasks using FDM would be the least compared with other algorithms. Comparing
Figs. 15, 16 and 17, it can be seen that with the increase of requests in 50–100 and
300–350 periods, transfer time, completion time and drop rate get higher.

In order to study all the mentioned parameters and overall performance of the
compared algorithms, a figure of merit is defined as in (24):

FoM = 1/(Tc + DropRate + Tt + CVρ) (24)

in which all the above mentioned parameters Tc (mean completion time), DropRate
(summation of drop rates), Tt (mean transfer time), CVρ (utilization CV) are normal-
ized and considered in figure of merit. Results are shown in Fig. 18.

123

3818 S. Rashidi, S. Sharifian

Fig. 17 Mean completion time of the tasks using different algorithms in each period

Table 7 Average and standard
deviation of “Mean completion
Time of the tasks” over time

FDM RR Ra ASP [12]

Average 8.4261 10.9245 10.0221 9.718

SD 0.4156 0.0865 0.0983 0.2423

Fig. 18 Figure of merit of different algorithms in each period

Table 8 Average and standard
deviation of “Figure of Merit”
over time

FDM RR Ra ASP [12]

Average 0.3608 0.2761 0.2815 0.3312

SD 0.0258 0.0096 0.0091 0.0162

It is shown in Fig. 18 that FDM has a better performance over other tested algo-
rithms because of its robustness to imprecise context information. According to the
numbers inserted in Table8, FDM excels RR, Ra, and ASP about 30, 28.17 and 8.93%,
respectively.

123

Cloudlet dynamic server selection policy for mobile task… 3819

7 Conclusion

Maingoal of the proposed algorithm is calculating the probability for eachhost cloudlet
to send a task to other cloudlets and update the host’s rating table regarding obtained
probabilities. These rating tables are produced considering system’s goal which is load
balancing of the cloudlets, drop rate reduction and task completion time reduction. The
used context information should be updated in a periodic manner, so they can adapt
system’s new situations and adjust system behavior properly and proportionally. Since
the time overhead of updating the context information needed for rating tables is high,
context aware scheduling algorithms usually cannot be executed online. As a solution,
context should be updated periodically, but it results in uncertainty and errors. In this
paper a novel algorithm using ANFIS is proposed to reduce the errors caused by
using last interval’s context information for updating rating tables in the new period.
Simulation results show that our proposed algorithm has a better performance over
RR, Ra, and ASP [12] about 30, 28.17 and 8.93%, respectively.

References

1. Itu-t: Ict facts and figures (2014) [Online]. https://www.itu.int/en/itud/statistics/documents/facts/
ictfactsfigures2014-e.pdf. Accessed 1 Sep 2014

2. Perez S (2010) Mobile cloud computing: $9.5 billion by 2014 [Online]. http://exoplanet.eu/
3. ChenM,WuY,VasilakosAV (2014)Advances inmobile cloud computing.MobNetwAppl 19(2):131–

132
4. Mell P, Grance T (2011) The NIST definition of cloud computing. National Institute of Standards and

Technology
5. Rahimi MR, Ren J, Liu CH, Vasilakos AV, Venkatasubramanian N (2014) Mobile cloud computing: a

survey, state of art and future directions. Mob Netw Appl 19(2):133–143
6. Fernando N, Loke SW, Rahayu W (2013) Mobile cloud computing: a survey. Future Gener Comput

Syst 29(1):84–106
7. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for VM-based cloudlets in mobile

computing. IEEE Perv Comput 8(4):14–23
8. Dinh HT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud computing: architecture, appli-

cations, and approaches. Wirel Commun Mob Comput 13(18):1587–1611
9. Sanaei Z, Abolfazli S, Gani A, Buyya R (2013) Heterogeneity in mobile cloud computing: taxonomy

and open challenges. IEEE Commun Surv Tutor 16(1):369–392
10. Shah R, Veeravalli B, Misra M (2007) On the design of adaptive and decentralized load-balancing

algorithms with load estimation for computational grid environments. IEEE Trans Parallel Distrib Syst
18(12):1675–1686

11. Lu Z, Zhao J, Wu Y, Cao G (2015) Task allocation for mobile cloud computing in heterogeneous
wireless networks. In: 24th International Conference on Computer Communication and Networks
(ICCCN), Las Vegas, NV

12. Shi T, YangM, LiX, Lei Q, JiangY (2015)An energy-efficient scheduling scheme for time-constrained
tasks in local mobile clouds. Perv Mob Comput 27:90–105

13. Dai M, Liu D, Fan Y, Wang H, Lin X, Chen B, Lu Z (2016) Evolutionary study on mobile cloud
computing. Neural Comput Appl 1–10 doi:10.1007/s00521-016-2217-8

14. Patel N, Chauhan S (2014) A survey on load balancing and scheduling in cloud computing. IJIRST
Int J Innov Res Sci Technol 1(7):185–189

15. Chun BG, Maniatis P (2009) Augmented smartphone applications through clone cloud execution. In:
12th Conference on Hot topics in Operating Systems, Berkeley, CA

16. Park J, YuH, KimH, Lee E (2014) Dynamic group-based fault tolerance technique for reliable resource
management in mobile cloud computing. Practice and Experience, no. special issue, Concurrency and
Computation

123

https://www.itu.int/en/itud/statistics/documents/facts/ictfactsfigures2014-e.pdf
https://www.itu.int/en/itud/statistics/documents/facts/ictfactsfigures2014-e.pdf
http://exoplanet.eu/
http://dx.doi.org/10.1007/s00521-016-2217-8

3820 S. Rashidi, S. Sharifian

17. Shah SC (2015) Energy efficient and robust allocation of interdependent tasks on mobile ad hoc
computational grid. Concurr Comput Pract Exp 27(5):1226–1254

18. Lin Y, Chu ET, Lai Y, Huang T (2015) Time-and-energy-aware computation offloading in handheld
devices to coprocessors and clouds. IEEE Syst J 9(2):393–405

19. Patel N, Chauhan S (2014) A survey on load balancing and scheduling in cloud computing. Int J Innov
Res Sci Technol 1(7):185–189

20. Broch J, Maltz DA, Johnson DB, Hu Y-C, Jetcheva J (1998) A performance comparison of multi-hop
wireless ad hoc network routing protocols. In New York, MobiCom ’98 Proceedings of the 4th Annual
ACM/IEEE International Conference on Mobile Computing and Networking

21. ÇevikHH, ÇunkaşM (2015) Short-term load forecasting using fuzzy logic andANFIS. Neural Comput
Appl 26(6):1355–1367

22. El-Shafie A, Najah A, Karim OA (2014) Amplified wavelet-ANFIS-based model for GPS/INS inte-
gration to enhance vehicular navigation system. Neural Comput Appl 24(7–8):1905–1916

23. Cho KM, Tsai PW, Tsai CW, Yang CS (2014) A hybrid meta-heuristic algorithm for VM scheduling
with load balancing in cloud computing. Neural Comput Appl 26(6):1297–1309

24. Ertunc HM, Ocak H, Aliustaog C (2013) ANN- and ANFIS-based multi-staged decision algorithm for
the detection and diagnosis of bearing faults. Neural Comput Appl 22(1 Supplement):435–446

25. Flickenger R, Okay S, Pietrosemoli E, Zennaro M, Fonda C (2008) Very long distance wi-fi networks.
In: Second ACM SIGCOMM Workshop on Networked Systems for Developing Regions, New York

26. Balasubramanian N, Balasubramanian A, Venkataramani A (2009) Energy consumption in mobile
phones: a measurement study and implications for network applications. In: 9th ACM SIGCOMM
Conference on Internet Measurement Conference, New York

27. Raiciu C, Niculescu D, Bagnulo M, Handley MJ (2011) Opportunistic mobility with multipath tcp. In:
MobiArch ’11 Proceedings of the Sixth International Workshop on MobiArch, New York

28. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
29. Jang J-SR (1993) ANFIS: adaptive network based fuzzy inference systems. IEEE Trans Syst Man

Cybern 23(3):665–685
30. Takagi T, SugenoM (1985) Fuzzy identification of systems and its application to modeling and control.

IEEE Trans Syst Man Cybern 15(1):116–132
31. Lohani AK, Goel NK, Bhatia KK (2006) Takagi–Sugeno fuzzy inference system for modeling stage-

discharge relationship. J Hydrol 331(1–2):146–160
32. Arlitt MF, Williamson CL, (1996) Web server workload characterization: the search for invariants. In:

Proceedings of the 1996ACMSIGMETRICS International Conference onMeasurement andModeling
of Computer Systems, New York, NY, USA

33. Baccarelli E, Vinueza Naranjo PG, Shojafar M, Scarpiniti M (2016) Q*: Energy and delay-efficient
dynamic queue management in TCP/IP virtualized data centers. Comput Commun doi:10.1016/j.
comcom.2016.12.010

34. Shojafar M, Cordeschi N, Abawajy JH, Baccarelli E (2015) Adaptive energy-efficient qos-aware
scheduling algorithm for TCP/IP mobile cloud. In: Globecom Workshops (GC Wkshps), 2015 IEEE

35. Yang H, Luo H, Ye F, Lu S, Zhang L (2004) Security in mobile ad hoc networks: challenges and
solutions. IEEE Wirel Commun 11(1):38–47

123

http://dx.doi.org/10.1016/j.comcom.2016.12.010
http://dx.doi.org/10.1016/j.comcom.2016.12.010

	Cloudlet dynamic server selection policy for mobile task off-loading in mobile cloud computing using soft computing techniques
	Abstract
	1 Introduction
	2 Related works
	3 System architucture introduction
	4 Formulation of the proposed algorithm
	5 Procedure explanation of the proposed algorithm
	5.1 Used ANFIS in the proposed system

	6 Evaluation of the proposed method
	6.1 Evaluation setup and comparison scheme
	6.2 Evaluation results

	7 Conclusion
	References

