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Abstract As a typical Gauss–Seidel method, the inherent strong data dependency
of lower-upper symmetric Gauss–Seidel (LU-SGS) poses tough challenges for
shared-memory parallelization. On early multi-core processors, the pipelined parallel
LU-SGS approach achieves promising scalability. However, on emerging many-core
processors such as Xeon Phi, experience from our in-house high-order CFD program
show that the parallel efficiency drops dramatically to less than 25%. In this paper,
we model and analyze the performance of the pipelined parallel LU-SGS algorithm,
present a two-level pipeline (TL-Pipeline) approach using nested OpenMP to further
exploit fine-grained parallelisms and mitigate the parallel performance bottlenecks.
Our TL-Pipeline approach achieves 20% performance gains for a regular problem
(256 × 256 × 256) on Xeon Phi. We also discuss some practical problems including
domain decomposition and algorithm parameters tuning for realistic CFD simula-
tions. Generally, our work is applicable to the shared-memory parallelization of all
Gauss–Seidel like methods with intrinsic strong data dependency.

Keywords LU-SGS · Multi-/many-core processor · Xeon Phi · Pipeline ·
Shared-memory parallelization · CFD

B Chuanfu Xu
xuchuanfu@nudt.edu.cn

1 College of Computer Science, National University of Defense Technology, Changsha 410073,
People’s Republic of China

2 State Key Laboratory of Aerodynamics, P.O. Box 211, Mianyang 621000, People’s Republic of
China

3 National University of Defense Technology, Changsha 410073, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1943-0&domain=pdf


Performance modeling and optimization of parallel… 2507

1 Introduction

The lower-upper symmetric Gauss–Seidel (LU-SGS) [4,24] algorithm is a popu-
lar implicit method for solving large sparse linear equations in computational fluid
dynamics (CFD) and many other PDE (partial differential equation)-based computa-
tional science areas. LU-SGS combines the LU factorization and the Gauss–Seidel
relaxation, demonstrating high algorithmic efficiency with excellent convergence rate
in many realistic CFD simulations. On the other hand, as other Gauss–Seidel like
methods, it has strong data dependency. As Fig. 1 shows for a 3D structured grid,
generally the forward (lower) sweep calculation of grid point (i, j, k) needs the data
from grid points (i − 1, j, k), (i, j − 1, k) and (i, j, k − 1), and the data dependence
of backward (upper) sweep is vice versa. This characteristic poses tough challenge
for shared-memory parallelization of LU-SGS algorithm using OpenMP as what we
usually do for typical loops [26].

In CFD applications, researchers have proposed the hyper-plane/hyper-line
approach (for 3D/2D grids) and the pipeline approach, for shared-memory paral-
lelization of LU-SGS. The key idea is to exploit parallelism among independent grid
points from different grid lines/planes. The hyper-plane/hyper-line strategy is based
on the fact that grid points with the same index sum can be updated in parallel,
and the pipeline strategy resolves the data dependency through thread synchroniza-
tion. Experience shows that generally the pipeline approach largely outperforms the
hyper-plane/hyper-line approach [25]. The same performance gap is also discovered
in our in-house high-order CFD program. By carefully constructing a pipeline with
each parallel thread/core acting as a pipeline stage, the LU-SGS computation on a
grid is decomposed into many sub-tasks/sub-grids, and they will be scheduled to
execute on the pipeline at different time according to the data dependency among
them. The pipeline approach achieves promising scalability results on early multi-
core processors andSMPsystems.However, on latestmulti-core processors, especially
many-core processors with tens to hundreds of concurrent cores/threads, the pipeline
LU-SGS algorithm performance is far from satisfactory [3]. Our experiences from
the pipeline parallel LU-SGS kernel in our in-house high-order 3D structured CFD
software HOSTA [22] show that the parallel efficiency is still over 70% on two shared-
memory Xeon E5-2692 v2 (24 cores in total) using 24 OpenMP threads. However, on
emerging many-core processors such as Xeon Phi 31S1P with 57 cores, the efficiency
drops dramatically to less than 25% when using all 228 OpenMP threads.

Fig. 1 Data dependence of
LU-SGS forward sweep
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The scalability degradation can be explained from two aspects: (1) with more
pipeline stages or threads/cores (i.e., increasing the pipeline depth) on many-core
processors, the overall startup and finishing overhead for the pipeline increases, for
mesh block with relatively small outer k dimension, probably even there is not enough
sub-tasks in the task queue to fully load the pipeline; and (2) the load balance of
pipeline LU-SGS computation among tens or even hundreds of threads on many-core
processors will generally be worse.

In this paper, we model and optimize the performance of the pipeline parallel LU-
SGS algorithm for 3D structured grids on modern multi-/many-core processors. The
main contributions of this paper are as follows:

– We present a performance model for the pipeline parallel LU-SGS on 3D grids.
We use two performance metrics to evaluate the pipeline efficiency: the ratio
of all pipeline stages under full-load operations (RPFO) to estimate the overall
startup and finishing overheads, and the ratio of upper-/lower-bound load (RULL)
between pipeline stages to estimate load imbalance. With the model, we analyze
the performance behavior of the pipeline approach on Xeon CPU and Xeon Phi
many-core processor, achieving similar scalability trends in line with the realistic
test results.

– Guided by the model, we present a two-level pipeline (TL-Pipeline) approach
for 3D problems and extend the performance model accordingly. A sub-pipeline
(second-level pipeline) is implemented in each original (first-level) pipeline-stage
to further exploit fine-grained parallelisms among grid dimensions (sub-planes)
in a grid-plane. Particularly, the original pipeline parallel LU-SGS algorithm can
be regarded as a special case of TL-Pipeline LU-SGS algorithm. The TL-Pipeline
approach is implemented using nested OpenMP in the LU-SGS kernel of HOSTA.
We model and analyze the performance of TL-Pipeline using a fixed problem size
(256×256×256)with various pipeline depths for the second-level pipeline and the
first-level pipeline. Compared to the original pipeline approach, realistic tests show
that onXeon Phimany-core processor TL-Pipeline can achieve a performance gain
of 20%.

– Furthermore, we discuss how grid dimension size and the pipeline depth could
impact the parallel performance, and much more impressive performance gains
are obtained. We also study the feedback effects of improved two-level pipeline
approach on domain decomposition. At last we give some useful suggestions in
algorithm parameter configuration, making our method more practical in realistic
CFD simulations. Generally, our work provides a common practice and is appli-
cable to the shared-memory parallelization of all Gauss–Seidel like methods with
intrinsic strong data dependency.

The remainder of this paper is organized as follows. We first present some related
work in Sect. 2, and briefly introduces the LU-SGS algorithm and its parallel com-
puting in Sect. 3. We model and analyze the performance of the pipelined parallel
LU-SGS in Sect. 4. In Sect. 5, we detail the two-level pipeline approach. Several
algorithmic problems are further discussed in Sect. 6. Finally, we conclude in Sect. 7.
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2 Related work

Due to its algorithmic efficiency and convergence rate, LU-SGS has been very popular
in CFD since it was first proposed by Seokkwan Yoon et al. [24]. Seokkwan Yoon
presented a vectorizable and unconditionally stable LU-SGSmethod, achieving a 30%
speedup with respect to the LU implicit scheme for transonic flow simulations. For
specific CFD application problems, researchers also developed some improved LU-
SGS variants. For example, Chen et al. [4] developed a block LU-SGS (BLU-SGS)
for unstructured meshes, and at the cost of 20–30% more memory usage, BLU-SGS
increases converges many times faster than conventional LU-SGS approaches in the
simulations of transonic flows over the NACA 0012 airfoil and ONERA M6 wing,
as well as supersonic flows over a 3D forebody. Yuzhi Sun et al. [20] developed an
implicit nonlinear LU-SGS solver for high-order spectral difference Navier–Stokes
problems, and achieved a speedups of 1 to 2 orders of magnitude over a Runge–Kutta
scheme for inviscid flow and steady viscous flow simulations. Gang Wang et al. [12]
proposed an improved LU-SGS scheme to meet the needs of high Reynolds number
problems, and gained a significantly efficiency increase in the simulations of turbulent
flows around the NACA 0012 airfoil, RAE 2822 airfoil and LANN wing. Besides,
LU-SGS is also used as an efficient preconditioner for Krylov sub-space iterative
algorithms [9,15,16,19] and multigrid iterative methods [14,17,18]. Generally, our
parallel approach is applicable to shared-memory parallelization of LU-SGS and all
its variants in various CFD applications.

To enable MPI/OpenMP hybrid parallelization of implicit CFD codes based on
LU-SGS on large-scalemulti-coreHPC systems, researchers have proposed the hyper-
plane/hyper-line approach and the pipeline approach for multithreading LU-SGS.
Djomehri et al. [8] implemented both the hyper-plane and the pipeline strategies for
hybrid MPI+OpenMP CFD simulations on Cray SX6, IBM Power3 and Power4, and
SGI origin3000. In [25], Seokkwan Yoon investigated the performance of the hyper-
plane and the pipeline strategies for real gas flow simulations, and the results show that
the pipeline approach achieves better scalabilities on SMP platforms. Rupak Biswas et
al. [1,2] implemented the LU-SGS linear solver of OVERFLOW-D using the pipeline
approach on the Columbia supercomputer. Satoru Yamamoto et al. [23] developed
a parallel “Numerical Turbine” to simulate 3D multistage stator-rotor cascade flows,
using a pipelined parallel LU-SGS for implicit time-integration. All of the aboveworks
are implemented and evaluated on early multi-core processors and SMP systems.

With the development and complexity of both CFD applications and computer
architectures, especially the shift frommulti-core technology tomany-core technology
in HPC systems, it is essential to understand the behavior of the pipelined LU-SGS on
modern multi-core HPC processors or even many-core processors such as GPU and
MIC. Recently, Yonggang Che et al. [3] implemented a pipelined parallel LU-SGS
method for supersonic combustion simulations on an compute node of Intel Xeon
CPUs, observing a severe drop of parallel efficiency of 33.8%with 24 threads, and the
poor scalability may be attributed to their relatively small test problem (only 812835
cells) according to our performance model. Due to the strong data dependency of
LU-SGS, researchers tend to adopt more parallel-friendly time advancing methods
on many-core platforms, e.g., Runge–Kutta method [21] and Jacobi iterative method
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[22], and we seldom see researchers choose LU-SGS when porting their codes onto
GPUs. To our knowledge, this is the first paper that presents a performance model and
an improved parallel implementation for LU-SGS on Xeon Phi.

3 LU-SGS and its parallel computing

3.1 The LU-SGS algorithm

InCFD, after discretization and linearization,we need to solve a large equation system,

Ax = b, (1)

where A is the left-hand-side (LHS) matrix, b is the right-hand-side (RHS) vector,
and x is the solution vector. In LU-SGS, a lower-upper splitting or decomposition is
applied on A, and in each iteration the solution is separated into a forward sweep and
a backward sweep. For example, in the lower-upper decomposition method, the LHS
matrix A is decomposed and approximated as follows:

A = D + L +U = D(I + D−1L + D−1U )

= D
(
I + D−1L

) (
I + D−1U

)
+ LD−1U

≈ D
(
I + D−1L

) (
I + D−1U

)

= (D + L) D−1(D +U ),

(2)

where D, L and U are the diagonal part, the lower triangular part and the upper
triangular part of A, respectively. Thus the Eq. (1) can be rewritten as

(D + L)D−1(D +U )x = b. (3)

An intermediate variable y is introduced into Eq. (3) to form two symmetric Gauss–
Seidel sweep stages, i.e., a forward sweep and a backward sweep.

(D + L) y = b

(D +U ) x = Dy,
(4)

where y and x can be solved by back substitution.
In CFD, the entries of LHS matrix A (also called the Jacobian matrix) are usually

approximated using grid points and their neighboring grid points. In structured CFD
applications, those grid points form a regular computational stencil. Typically, the
7-point stencil is used in three-dimensional cases and the matrix A can be illustrated
as follows:
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where i , j , and k represent the indexes of three spatial dimensions, respectively.
Elements of l and u in the same line are neighbors of d in physical and logical space,
but in memory space with linear storage feature, they are of different distances to d.
All entries of A are zero, except the entries at the diagonal and the six symmetric
off-diagonals.

3.2 The pipeline approach

In CFD, other researches [25] and our experience show that the pipeline approach
generally outperforms the hyper-plane/hyper-line approach for shared-memory par-
allelization of LU-SGS. Thus, we focus on the parallel performance modeling and
optimization of the pipeline approach. Algorithm 1 presents the pseudo-code skeleton
of forward LU-SGS sweep with a pipelined OpenMP parallel implementation. Due to
the data dependency, we cannot simply add some OpenMP directives on the I /J /K
loop for multithreading. The key idea of the pipelined parallel LU-SGS is to construct
a pipeline on the K dimension, with each parallel thread acting as a pipeline-stage,
and on the J dimension, the LU-SGS computation is statically decomposed into many
sub-tasks (i.e., I − J grid sub-planes) and scheduled to the threads, the variable f lag
is used for thread synchronization.

Algorithm 1 The pseudo-code skeleton of forward sweep of pipelined LU-SGS
01 !$OMP PARALLEL NUM_THREADS(dp)
02 idt=omp_get_thread_num();
03 f lag(idt) = 0;
04 !$OMP BARRIER
05 DO k = 1, nk
06 IF(idt > 0) THEN
07 Wait until f lag(idt − 1) = 1;
08 f lag(idt − 1) = 0;
09 END IF
10 !$OMP DO SCHEDULE(STATIC)
11 DO j = 1, nj
12 DO i = 1, ni
13 vi, j,k = F(vi, j,k , vi−1, j,k , vi, j−1,k , vi, j,k−1);
14 END DO
15 END DO
16 !$OMP END DO NOWAIT
17 IF(idt < dp − 1) f lag(idt) = 1;
18 END DO
19 !$OMP END PARALLEL

Figure 2 shows a schematic illustration for both task scheduling and the execution
timeline of the pipelinewith 4 threads (pipeline stages). For themth layer (i.e., k = m),
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(a) (b)

Fig. 2 Schematic illustration of the forward sweep stage of pipelined LU-SGS. a Workload partitioning
and task scheduling. b Execution timeline of sub-tasks

the I−J plane is divided into n (n = 4 for this example) sub-planes/sub-tasks (denoted
as Km Jn). Obviously, the sub-task Km Jn depends on Km−1 Jn and Km Jn−1 in the task
queue, due to the data dependency. Those sub-tasks are carefully scheduled to threads
in the pipeline, and in each sub-task/thread the grid points are calculated along the
I dimension serially. Figure 2b shows the execution timeline, in this way, dependent
sub-tasks from different K and J are pipelined with multithreading and parallelisms
along K − J dimensions are exploited. As we will analyze in the following sections,
the pipeline efficiency will vary dramatically for different problems with various K /J
and pipeline depth (i.e., the number of threads).

3.3 Implementation and experimental setup

The traditional pipeline approach and our two-level pipeline approach are imple-
mented in the LU-SGS kernel from our in-house high-order 3D structured software
HOSTA[22].HOSTAsolves theNavier–Stokes equations of fluidflow in compressible
and incompressible forms with a self-developed weighted compact nonlinear scheme
(WCNS) [5–7], and it has been used extensively for aerodynamic research and design
optimization of realistic aircrafts such as China’s civil large airplane C919. In HOSTA,
LU-SGS is a very popular solving method with both favorable algorithmic efficiency
and convergence rate.

The test platformweuse contains on Intelmany integrated cores (MIC) coprocessor,
specifically Intel Xeon Phi Knight’s Corner (KNC) 31S1P [10,11,13], and two shared
memory Xeon E5-2692 v2 (Ivy Bridge) CPUs. The Xeon Phi 31S1P has 57 cores,
with 4 hardware threads per core (i.e., supporting 228 concurrent threads in total),
delivering 1 TFLOPS peak performance in double precision. The coprocessor has an
on-chip memory of 8 GB, with a peak memory bandwidth of 352GB/s. Each CPU has
12 cores and the two CPUs share a 64 GB memory with a peak memory bandwidth of
204.8 GB/s, delivering 422 GFLOPS peak performance in double precision. Both the
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CPUs and the Xeon Phi have extended math unit (EMU) and vector processing unit
(VPU)with 256 and 512 bit vector width, respectively.We use the native programming
model on Xeon Phi and compile our code using Intel ifort with -mmic option. The
baseline 3D problem size is (ni , n j , nk) = (256, 256, 256), and other problem sizes
are evaluated by altering I /J /K dimensions arbitrarily.

4 Performance modeling of pipelined LU-SGS

4.1 Performance metrics

It is clearly stated in [25] that the pipeline efficiency is limited by the startup and fin-
ishing procedures. We define the ratio of all pipeline stages under full-load operations
(RPFO) to evaluate the overhead of the startup and finishing. For a 3D problem with
(ni , n j , nk) grid points on a pipeline with dp pipeline stages, suppose all sub-tasks are
well balanced on every pipeline stages, and RPFO is defined as

RPFO =
⎧⎨
⎩

(nk − dp + 1)

(nk + dp − 1)
× 100% , nk ≥ dp

0% , nk < dp,
(6)

where nk +dp −1 is the number of pipeline cycles including the startup and finishing,
and nk − dp + 1 is the cycles when the whole pipeline is fully occupied. If there are
not enough sub-tasks in the task queue (i.e., nk < dp), the pipeline cannot be under
full-load (i.e., RPFO = 0).

Aswe can see fromEq. (6), on earlymulti-core processors with only a few cores, dp
is generally much less than nk , and correspondingly RPFOwill be close to 100%, indi-
cating a high pipeline efficiency. However, on modern multi-/many-core processors,
the number of threads is likely comparable to nk , andRPFOwill decrease dramatically.

With the increase of the number of threads, the load balance among threads (pipeline
stages) could be worse. Since we assume a static workload allocation among the J
dimension of threads, we define the ratio of upper-/lower-bound load (RULL) between
pipeline stages to estimate load imbalance as follows:

RULL =
⌊
n j

dp

⌋
/

⌈
n j

dp

⌉
× 100%, (7)

where n j/dp is the ideal workload size for each thread, and “� �” and “� �” represent
rounding to the floor and ceiling, respectively. Assume n j = dp × t +r(0 ≤ r < dp),
i.e., for r threads their workload size is t + 1, and for the other dp − r threads, their
workload size is t . When the pipeline depth dp is much less than n j or n j can be
divided by dp with no remainder, RULL is nearly or equals to 100%. However, when
dp is comparable to n j , and n j cannot be exactly divided by dp, RULL becomes
worse. An extreme case is that r equals to 1 and t is very small, the total performance
would be limited by the single thread with a workload size t + 1, indicating a poor
load balance.
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(a) (b)

Fig. 3 Performance metrics of the pipelined LU-SGS algorithm. a Xeon CPUs. b Xeon Phi

Figure 3a, b shows the variation of RPFO and RULL on the Xeon CPUs and Xeon
Phi coprocessor, respectively, for a (256, 256, 256) problem. Both metrics drop with
the increase of the number of threads (pipeline depth). On the two Xeon CPUs, RPFO
drops from 100% to less than 85%, and RULL drops from 100% to about 90%. On
Xeon Phi, the two metrics drops significantly after the pipeline depth scales beyond
32. When all 228 threads are used (i.e. dp = 228), RPFO drops sharply to less than
10% and RULL drops to 50%. Consequently, we estimate a severe parallel scalability
loss for the pipelined parallel LU-SGS algorithm on many-core processors, such as
Xeon Phi, with tens or even hundreds of threads according to our performancemetrics.

4.2 Performance issues

Suppose the computational cost of LU-SGS for each grid point is an equal unit, then
for a given (ni , n j , nk) problem, the wall-time cost for a serial LU-SGS calculation
WTs is ni × n j × nk , and for a pipelined implementation, the wall-time cost WTpp

is (nk + dp − 1) × ⌈
n j/dp

⌉ × ni . We derive the speedup of the pipelined parallel
LU-SGS Spp as follows:

Spp = WTs

WTpp
= nk × n j × ni

(nk + dp − 1) ×
⌈
n j

dp

⌉
× ni

= nk × n j

(nk + dp − 1) ×
⌈
n j

dp

⌉ . (8)

This performance model combines the aforementioned two performance metrics
and ignores the impact of memory bandwidth and cache efficiency for simplicity.

We compare the predicted speedup based on Eq. (8) with the test results and the
ideal/linear speedup tovalidate our performancemodel. Figure 4 shows the comparison
on Xeon CPUs and Xeon Phi coprocessor for a (256, 256, 256) problem.

As Fig. 4 indicates, the predicted speedup (Spp) is smaller than the ideal speedup
(S∗

pp), this is due to the overhead of pipelinemechanism.The performance gap between

Spp and test speedup (Ŝpp)may be attributed to the memory bandwidth limitation and
other potential hardware limitations. On Xeon CPUs (Fig. 4a), the three speedups are
fairly closewhen the number of threads (pipeline depth) is relatively small (6 or less). A
detaching point between Spp and Ŝpp(DP2) occurs at 6 threads, and another detaching
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(a) (b)

Fig. 4 The contrast of ideal, predicted and test speedups of the pipelined LU-SGS algorithm. a On Xeon
CPUs node. b On Xeon Phi

point between S∗
pp and Spp(DP1) occurs at 8 threads. In Fig. 4a, the gap between S∗

pp

and Spp is much smaller than the gap between Spp and Ŝpp, indicating that the pipeline
approach is almost optimal on Xeon CPUs, and the parallel performance is limited by
the memory bandwidth and other hardware limitations.

On Xeon Phi coprocessor (Fig. 4b) DP1 and DP2 appear at 16 and 57 threads,
respectively. Unlike the results in Fig. 4a, the gap between S∗

pp and Spp is much larger

than the gap between Spp and Ŝpp. This means that the pipeline approach has a severe
adaptability problem on the Xeon Phi coprocessor. Because of the relatively larger
memory bandwidth and lower core/thread average floating performance, the DP1 and
DP2 on Xeon Phi appears later than on Xeon CPU node.

5 The two-level pipeline LU-SGS approach

5.1 Fundamental ideas and implementation

As both the predicted and test results show in Sect. 3, although we could utilize more
available cores for pipelined parallelization on many-core processors, the speedup
drops significantly due to a long pipeline depth. Based on an in-depth analysis, we
propose a two-level pipeline (TL-pipeline) approach for multithreading LU-SGS. The
fundamental idea is to further exploit parallelism in each 2D sub-task/sub-plane for 3D
LU-SGS problems. This is accomplished by transforming a long deep original pipeline
(with depth dp) into a relatively short first-level pipeline (with depth dp1), with each
pipeline-stage containing a second-level sub-pipeline (with depth dp2). Obviously,
dp = dp1 × dp2 holds. The sub-pipeline is constructed in the J dimension, and each
sub-task is statically decomposed along the I grid line. Figure 5 shows the task schedule
for TL-Pipeline with both dp1 = 4 and dp2 = 4. In this case, K2 J4 is decomposed
into some more fine-grained sub-tasks/grid-lines Jm In to be scheduled on the sub-
pipeline. Similarly, Fig. 6 presents the execution timeline for the TL-Pipeline model.
The TL-Pipeline approach is implemented using nested OpenMP. For each level of
OpenMP threads, we need a separate flag array for synchronization. We customize the
number of threads of each pipeline level (dp1 and dp2) using num_threads() directive
clause.
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Fig. 5 Workload dispatching of TL-Pipeline LU-SGS algorithm

Fig. 6 Execute procedure of TL-Pipeline LU-SGS algorithm

5.2 Performance evaluation

We extend the performance model in Sect. 3 for our TL-pipeline approach. The two
performance metrics, RPFO and RULL, are evaluated according to Table 1. For the
first-level pipeline, RPFO1 and RULL1 are calculated in the sameway as Eq. (8) with a
pipeline depth dp1. On a sub-pipeline with depth dp2, sub-tasks from a I − J sub-plane
of (ni , n j/dp1) are scheduled, thus the RPFO2 and RULL2 are slightly different.

Figure 7 shows the variation of the two metrics for our TL-Pipeline on Xeon CPUs
and Xeon Phi for a (256, 256, 256) problem. On Xeon CPUs, appropriate dp1 and dp2
configuration (dp1 × dp2) can enhance both RPFO and RULL of the two pipelines
to a nearly ideal level (i.e., 100%). For example, for a dp1 × dp2 = 4 × 6 case on
Xeon CPUs with 24 cores, all metrics except RPFO2 are all between 95 and 100%.
The superiority of TL-Pipeline is particularly ’ outstanding on Xeon Phi coprocessor
with hundreds of threads. RPFO1 can be increased from under 10% to nearly 100%.
Although RPFO2 decreases rapidly, the overall performance is a combined effect of
both pipelines and its impact is limited to a certain extent.
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Table 1 Performance metrics of the TL-pipeline LU-SGS algorithm

Level RPFO RULL

1

⎧
⎨
⎩

nk − dp1 + 1

nk + dp1 − 1
× 100% , nk ≥ dp1

0% , n j < dp1

⌊
n j

dp1

⌋
/

⌈
n j

dp1

⌉
× 100%

2

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⌈
n j

dp1

⌉
− dp2 + 1

⌈
n j

dp1

⌉
+ dp2 − 1

× 100% ,

⌈
n j

dp1

⌉
≥ dp

0% ,

⌈
n j

dp1

⌉
< dp

⌊
ni
dp2

⌋
/

⌈
ni
dp2

⌉
× 100%

(a) (b)

Fig. 7 Performance metrics of the TL-Pipeline LU-SGS algorithm. a Xeon CPUs. b Xeon Phi

Similar to Eq. (8), the speedup of our TL-Pipeline approach compared to a serial
LU-SGS, Stlp, can be evaluated as follows:

Stlp = WTs

WTtlp
= nk × n j × ni

(nk + dp1 − 1) ×
(⌈

n j

dp1

⌉
+ dp2 − 1

)
×

⌈
ni
dp2

⌉ . (9)

Equation (9) is the same as Eq. (8) if dp2 = 1, which indicates that the original
pipeline approach is a special case of our TL-Pipeline approach.

Figure 8 shows the predicted speedups (Stlp) and test speedups (Ŝtlp) of the
TL-Pipeline approach with different dp1 × dp2 configurations for a (256, 256, 256)
problem. In Fig. 8a, both the Stlp and Ŝtlp vary slightly with dp1 × dp2 on Xeon
CPUs. Note that the test speedup for the 1× 24 case drops a lot, this is mainly due to
a worse data locality and cache efficiency when decomposing the I dimension with
large numbers of threads (dp2 = 24). Although for this regular problem with the
same size of ni /n j /nk , TL-Pipeline has little performance advantage over the original
pipeline approach (i.e., 24×1), for other problem with various ni /n j /nk , the benefit of
TL-Pipeline is certain, as we will discuss in Sect. 5. In Fig. 8b, the Stlp has a maximum
improvement of nearly 70% (dp1 × dp2 = 6× 38) compared to the original approach
on Xeon Phi coprocessor, while the Ŝtlp has a much more moderate improvement of
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(a) (b)

Fig. 8 The contrast of predicted and test speedups of TL-Pipeline LU-SGS. a Xeon CPUs. b Xeon Phi

nearly 20% (76 × 3, 57 × 4 and 38 × 6), because of memory bandwidth and other
hardware limitations. Both the Stlp and the Ŝtlp start to drop when dp2 > 38, and this
is mainly caused by the increase of the overhead of the sub-pipeline (RULL2) as well
as the performance problems such as cache efficiency and nested OpenMP costs.

6 Further analyses and discussions

As we can see in the previous sections, the problem size (ni , n j , nk) and the depth
of the two pipelines (dp1 and dp2) have an direct impact on the performance of TL-
Pipeline. This section presents further discussions and suggestions helpful to achieve
optimal performance in practical CFD applications.

6.1 The impact of each dimension size

Previous results are obtained using a regular problem size (i.e., ni = n j = nk = 256);
however in practice, both the problem size (ni × n j × nk) and the (ni , n j , nk) dimen-
sion size vary significantly for complex multi-block structured grids. For example,
a 3D delta wing grid used in our daily CFD simulations has 30 grid blocks with 16
million grid points in total. Figure 9 presents the dimension sizes and the geometric
average dimension size ( 3

√
ni × n j × nk) for each grid block. We can find that the

dimension sizes of each block vary in a large range. In realistic applications with vari-
ous (ni , n j , nk) sizes on different multi-/many-core processors, if it is not convenient
to decide an optimal dp1 × dp2 configuration for each grid block, users can achieve a
roughly optimal configuration according to our performance model.

We change on dimension in the range of 0.1 × nc to 10 × nc (nc is the number
of cores/threads of a given processor), with the other two dimensions fixed to 256, to
analyze its independent performance effect on TL-Pipeline. Figures 10 and 11 present
the predicted and test performance increases for different scale ratios (from 0.1 to
10) compared to the traditional pipeline approach on Xeon CPUs and Xeon Phi, with
each dimension in a sub-figure. For the K dimension on Xeon CPUs (Fig. 10a), we
can see that the predicted increase is remarkable (up to 1000%) for small-scale ratios,
and drops to less than 10% with large-scale ration. The test results show a similar
increase, indicating that our TL-Pipeline is much more superior for the case with

123



Performance modeling and optimization of parallel… 2519

Fig. 9 Dimension sizes of a Delta Wing mesh with 30 blocks
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Fig. 10 The performance impact of each dimension size on Xeon CPUs node. a nk , b n j , c ni
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Fig. 11 The performance impact of each dimension size on Xeon Phi. a nk , b n j , c ni

smaller K dimension. On the other hand, for the J and I dimension (Fig. 10b, c), the
variation only has slight impact on performance: less than 8 and 3%, respectively, for
the predicted performance and no improvement observed for the test performance. On
Xeon Phi, we observe a similar variation as that of the result on Xeon CPUs: for the K
dimension (Fig. 11a), both the predicted and test results have a significant increase up
to 200 and 500%; for the other two dimensions (Fig. 11b, c), the predicted increases
indicate a up to 80% increase, and the test result show a up to 20 and 40% increase.
This is reasonable since our TL-Pipeline approach is much more superior with more
thread numbers on Xeon Phi. Limited by its relatively small memory space, further
tests with larger scale ratios on Xeon Phi are unavailable.

6.2 The impact of workload shape

Solving realistic CFD problems on HPC systems often involves partitioning the
original grid blocks into many sub-blocks and mapping them to large-scale paral-
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Table 2 The relative speedups of TL-pipeline for different workload shapes on Xeon CPUs node

1/16 1/8 1/4 1/2 1 2 4 8 16 (α)

(a) Predicted values

1/16 – – – – 0.728 0.724 0.716 0.701 0.672

1/8 – – – 0.73 0.728 0.726 0.721 0.712 0.694

1/4 – – 0.971 0.966 0.955 0.934 0.896 0.833 0.806

1/2 – 0.974 0.971 0.966 0.956 0.949 0.926 0.924 0.929

1 1.059 1.053 1.042 1.019 1 0.996 1 1 1.006

2 1.059 1.054 1.049 1.045 1.037 1.029 1.043 1.043 –

4 1.072 1.07 1.066 1.058 1.042 1.042 1.066 – –

8 1.082 1.078 1.07 1.054 1.053 1.053 – – –

16 (β) 1.084 1.075 1.059 1.028 1.059 – – – –

(b) Test results

1/16 – – – – 0.839 0.75 0.809 0.72 0.739

1/8 – – – 0.849 0.951 0.83 0.813 0.808 0.653

1/4 – – 1.181 0.868 1.19 1.046 0.97 0.613 0.74

1/2 – 1.034 0.872 1.043 1.039 1.015 0.954 0.607 0.76

1 1.002 1.194 1.219 1.09 1 0.998 0.857 0.782 0.832

2 0.95 1.037 1.059 1.03 0.983 0.845 0.848 0.783 –

4 0.938 0.975 0.991 0.921 0.831 0.826 0.79 – –

8 0.807 0.942 0.652 0.624 0.763 0.766 – – –

16 (β) 0.81 0.756 0.805 0.718 0.761 – – – –

Bold values highlight relative speedups of the baseline workload shape, the best performance workload
shape, and the worst performance workload shape

lel processes. The (ni , n j , nk) size of sub-blocks is determined according to the
average workload of each process. As we can see in Sect. 5.1, the performance of
TL-Pipeline varies a lot with different (ni , n j , nk) sizes. In this subsection, given a
fixed overall workload ni × n j × nk , we discuss some guidelines to partition optimal
workload/sub-blocks for TL-Pipeline. We use the cubic grid block (256, 256, 256) as
our baseline workload and compare the performance of TL-Pipeline for various grid
blocks with the same workload and with scale factors α, β and γ for ni , n j and nk ,
i.e., (α × ni ) × (β × n j ) × (γ × nk) = 256× 256× 256 and α × β × γ = 1. Tables
2 and 3 present both the predicted result and test result on Xeon CPUs and Xeon Phi,
respectively, assuming α, β and γ ranging from 1/16 to 16 and γ determined by α and
β according to the identical equation.

OnXeonCPUs (Table 2a, b), compared to the baselinewith (α = 1, β = 1, γ = 1),
we observe a speedup of up to 1.084 × (α = 1/16, β = 16, γ = 1) for predicted
results, and a speedup of up to 1.219 × (α = 1/4, β = 1, γ = 4) for test results.
On the other hand, both results show cases with significant performance degrada-
tion: 0.672× for the predicted performance and 0.607× for the test performance,
respectively. The results have a strong implication for grid partition strategies in CFD
simulations for achieving an optimal parallel performance using TL-Pipeline. On
Xeon Phi, the variation of speedup is even more significant. In Table 3a, the max-
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Table 3 The relative speedups of TL-pipeline for different workload shapes on Xeon Phi

1/16 1/8 1/4 1/2 1 2 4 8 16 (α)

(a) Predicted values

1/16 – – – – 0.138 0.137 0.136 0.134 0.131

1/8 – – – 0.275 0.272 0.267 0.26 0.245 0.245

1/4 – – 0.543 0.534 0.516 0.485 0.436 0.436 0.436

1/2 – 1.057 1.004 0.913 0.773 0.713 0.711 0.715 0.715

1 1.10 1.085 1.057 1.008 1 1.033 1.037 1.051 1.051

2 1.447 1.41 1.34 1.282 1.276 1.317 1.334 1.373 –

4 1.611 1.532 1.417 1.444 1.455 1.487 1.528 – –

8 1.650 1.501 1.483 1.473 1.489 1.53 – – –

16 (β) 1.562 1.526 1.537 1.492 1.425 – – – –

(b) Test results

1/16 – – – – 0.187 0.181 0.239 0.238 0.22

1/8 – – – 0.351 0.356 0.369 0.402 0.373 0.327

1/4 – – 0.656 0.564 0.66 0.631 0.598 0.43 0.509

1/2 – 0.208 0.932 1.086 1.02 0.868 0.761 0.65 0.743

1 0.184 0.808 1.102 1.036 1 0.97 0.984 0.97 0.973

2 0.408 1.383 1.272 1.163 1.129 1.074 1.155 1.24 –

4 1.032 1.294 1.246 1.206 1.108 1.151 1.297 – –

8 1.323 1.174 1.097 1.058 1.119 1.178 – – –

16 (β) 1.105 1.104 1.025 1.062 1.088 – – – –

Bold values highlight relative speedups of the baseline workload shape, the best performance workload
shape, and the worst performance workload shape

imum speedup is 1.650 × (α = 1/16, β = 8, γ = 2) and the minimum speedup is
0.131 × (α = 16, β = 1/16, γ = 1) for the predicted performance; in Table 3b, the
maximum speedup is 1.383 × (α = 1/16, β = 8, γ = 2) and the minimum speedup
is 0.181 × (α = 2, β = 1/16, γ = 8) for the test performance.

According to the above results, generally we prefer bigger nk and smaller ni for
optimal performance using TL-Pipeline with a fixed workload. The conclusion has
another implication beneficial to structured CFD: the stripe of the LHS matrix A
equals to the product of the middle and inner dimension sizes (i.e., ni × n j in our
case) and primitive flow variable number for 3D problems. Since TL-Pipeline tends
to perform better with large nk and small ni , this will result in a small stripe and
consequently, a relatively higher memory access efficiency and a better convergence
rate for iterative methods.

6.3 The configuration of dp1 and dp2

As we can see from the performance model and realistic test results, the configuration
of dp1 and dp2 in TL-Pipeline also has a complicated impact on the performance. In
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practical CFD simulations with varying number of threads and grid sizes, choosing
appropriatedp1 anddp2 is definitely a non-trivial problem. It is not possible to provide a
universal optimal configuration of dp1 and dp2 for all cases. According to previous test
results and our performance model, we suggest the following guidelines to configure
dp1 and dp2:

– dp1 × dp2 should be equal to or at least as close as possible to nc (the number of
cores/threads), utilizing as more available cores/threads as possible;

– dp1 should be much smaller than the K dimension size nk ;
– dp1 should be a factor of the J dimension size n j , and dp2 should be much smaller
than n j/dp1;

– dp2 should be a factor of the I dimension size ni , and ni/dp2 should be rationally
large enough for better cache efficiency;

– Generally dp1 should be larger than dp2, unless the K dimension size nk is
extremely small.

Besides, since CFD simulation often involves numerous time steps of running, we
can also profile simulations in the first several time steps with all possible dp1 × dp2
combinations, and use an optimal one in the following time steps.

7 Conclusion and future work

In this paper, we first discuss the strong data-dependent feature of LU-SGS algorithm
and its tough challenges for parallel computing. After that, we introduce two existing
parallel LU-SGS algorithms (hyper-plane and pipeline) on shared-memory platforms,
and compare the merits and drawbacks of them. Then, we analyze the performance
factors of pipeline LU-SGS algorithm, which usually has better performance than
hyper-plane, extract two performance metrics RPFO and RULL to reflect the perfor-
mance problems, and build a performance model of naïve parallel LU-SGS algorithm.
Through these analyses, we discover that on latest multi-/many-core processors the
pipeline depth (number of cores/threads) is commensurate with the sizes of realistic
workload dimensions. This would cause worse performance metrics of the original
pipeline parallel algorithm and become the main performance bottleneck.

In order to alleviate the performance problems of pipeline LU-SGS algorithm on
latest multi-core especially many-core processors, we propose a novel Two-Level
Pipeline LU-SGS (TL-Pipeline LU-SGS) algorithm. The TL-Pipeline LU-SGS algo-
rithm further exploits the fine-grained parallelism of 3-dimensional workloads and
organizes the cores/threads hierarchically in nested two pipeline layers. We further
evaluate the performance metrics of TL-Pipeline LU-SGS algorithm on Xeon CPU
node and Xeon Phi with the given workload (256× 256× 256), and build the perfor-
mance model of TL-Pipeline LU-SGS algorithm as well. Emphatically, the basic idea
of TL-Pipeline LU-SGS algorithm is not limited to the specific LU-SGS algorithm,
and it can be easily extended to other strong data-dependent algorithms in various
3-dimensional applications, including the whole Gauss–Seidel algorithm family.

We implement the TL-Pipeline LU-SGS algorithm in a domestic in-house high-
order accuracy CFD program, and we evaluate and contrast the performances of TL-
Pipeline LU-SGS versus naïve pipeline LU-SGS algorithm on both Xeon CPU node
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and Xeon Phi. Theoretically, for the given workload (256 × 256 × 256), the TL-
Pipeline LU-SGS algorithm has 2 and 70% performance increases on Xeon CPU
node and Xeon Phi, respectively. Our program test results draw a similar conclusion
as model predicted, our TL-Pipeline LU-SGS algorithm has a performance gain of
moderately 20% on Xeon Phi. Afterwards, we analyze the effects of workload sizes
on algorithm performance, and discover that the k dimension size nk has the most
significant effect on algorithm performance, and the performance gain of TL-Pipeline
LU-SGS algorithm on Xeon Phi is more promising than that on Xeon CPU node.
We also discuss the algorithm feedback effects on domain decomposition to generate
performance-friendly workloads. And finally we offer two useful strategies for the
optimal or nearly optimal (dp1, dp2) pair determination.

Both Xeon CPU node and Xeon Phi have powerful wide vector processing abil-
ity, but the strong data-dependent feature causes complicated vector dependency and
makes it difficult to exploit the performance potential of vectorization (SIMD). If
this problem can be settled, the performance benefits would be impressive on these
processors. Memory access and cache efficiency are two constant key points to
performance optimization, especially for high memory bandwidth bounded stencil
computing applications. Our TL-Pipeline LU-SGS algorithm can greatly enlarge the
potential performance increases space of memory and cache optimizations.
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