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Abstract The ability to deliver acceptable levels of quality of service is crucial for
cloud systems, and this requires performance as well as availability analysis. Existing
modeling attempts mainly focus on pure performance analysis; however, the soft-
ware and hardware components of cloud infrastructures may have limited reliability.
In this study, analytical models are presented for performability evaluation of cloud
centers. A novel approximate solution approach is introduced which allows consid-
eration of large numbers of servers. The challenges for analytical modeling of cloud
systems mentioned in the literature are considered. The analytical models and solu-
tions, therefore, are capable of considering large numbers of facility nodes typically
up to orders of hundreds or thousands, and able to incorporate various traffic loads
while evaluating quality of service for cloud centers together with server availabilities.
The results obtained from the analytical models are presented comparatively with the
results obtained from discrete event simulations for validation.

Keywords Cloud computing · Fault-tolerant systems · Performability ·
Queuing theory

1 Introduction

Cloud computing arises as a new paradigm that aims to provide computing environ-
ments which are flexible, reliable, and with good quality of service (QoS). Its ability
of transforming the way information is going to be processed, exchanged, stored,
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and at the same time the highly available and inexpensive computing power it offers,
makes the cloud interesting for researchers, engineers, service providers, developers,
and users. In recent studies, cloud computing is envisioned as a promising technology
which can change the way computing and resources will be accessed in the near future
[3,13].

Cloud computing is considered as a new service model, where a service level agree-
ment specifies the service usage and obligations both for clients and service providers.
The services provided can be summarized in three main categories as: Platform as
a service (PaaS), where computing platforms such as virtualized servers and oper-
ating systems are provided and the clients can deploy onto the cloud various client
created and/or managed applications which are usually established using various pro-
gramming languages, libraries, services and some tools; Software as a service (SaaS),
where providers’ applications are used by the clients and are accessible from various
devices and interfaces; and Infrastructure as a service (IaaS), where provision process-
ing, storage, networks, and other fundamental computing resources are provided and
the clients are able to deploy and run operating systems as well as applications [3,10].

It is often assumed that cloud computing systems offer computing resources on
demand and service level agreement specifies the QoS which includes availability,
security and most importantly performance-related measures [3,21,40]. Performance
evaluation is particularly important since the effects of different resource management
strategies and the choice of best system configuration can be essential for the correct
deployment, maintenance, and operation of the cloud systems. The characteristics of
cloud systems introduce the following differences compared to the modeling studies
of traditional distributed systems [3,21]:

• The cloud centers are usually large-scale systems where the number of servers can
goup to orders of hundreds or thousands. Traditional queuing theory analysis rarely
considers systems of this size since well-known state space explosion problem is
an important difficulty associated with the numerical procedures for steady-state
solution of queuing systems [16,39].

• Since the cloud systems provide various services in a dynamic fashion, the cloud
center should be able to cope with various loads and provide the expected quality
of service.

• Different cloud systems can join together for a common purpose; however, cloud
federations are beyond the scope of this study.

Use of simulation for the performance evaluation and comprehensive analysis of
large-scale systems such as clouds may not be desirable [5,12], because the simulation
runs required for steady state analysis last long and this limits severely the space of
parameters that can be explored. Similarly, benchmarking or on the field experiments
such as [30,41,44] suffer from the limitations introduced by the time and experimen-
tation cost. Also, it is difficult to extrapolate the results of experiments for alternative
scenarios. since a small change in configuration may cause significantly different
measures. It is possible to use queuing theory with some approximations to study the
performance of cloud systems analytically. Although analytical models are promising
candidates, the characteristics mentioned above introduce some limitations for solu-
tion approaches and exact modeling of cloud systems become infeasible. In order to
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sufficiently present an analytical model for cloud systems, the analytical approach
should be able to cope with large systems, and allow us to evaluate the systems under
study for various parameters (especially various traffic loads).

Similar to many other multi-server systems, the availability of the cloud can be
affected by server failures caused by various reasons. Since cloud-based applications
aim to provide specific QoS and be accessible anywhere and anytime, the depend-
ability becomes an important issue [11]. In the presence of server failures, the cloud
can continue working with degraded performance, and in that sense the cloud systems
should be considered as fault-tolerant systems with large numbers of servers. When
fault-tolerant systems are considered, pure performance evaluation would cause over-
estimation of systems ability to serve and the resulting measures would be optimistic
since they ignore the failure repair behavior of the servers. When the numbers of
servers considered are significantly large, assuming that none of the servers will expe-
rience failures and focusing purely on performance would cause even more significant
overestimations. Pure availability analysis, on the other hand, would be conservative
and restrictive since different levels of performance are not taken into account [15,36].
Therefore, for realistic evaluation and analysis of cloud systems, a composite measure
of performance and availability which is performability should be employed.

In this paper, performability analysis of cloud systems is considered in two dimen-
sions where one state variable represents the number of operative servers and the
second state variable represents the number of requests in the system. To cope with
large-scale nature of cloud computing which introduces numerical difficulties since
the size of the state space of the underlyingMarkov process becomes too large for exact
solution approaches, a novel approximate solution approach is introduced. Unlike the
existing approaches, the new approach allows us to consider the performance and
availability together for the cloud systems even when the numbers of facility nodes
are of the order of hundreds or thousands. The results obtained from the new approach
are presented in comparison to the discrete event simulation results. Findings show
that the analytical modeling approach presented works for large state spaces provid-
ing high degree of accuracy, and it is computationally significantly more efficient than
the simulation approach. The paper is organized as follows: the next section presents
the related studies on analytical modeling for performance and availability evaluation
of cloud systems. Section 3 is about the model considered in this study. Section 4
introduces the solution approach, while Sect. 5 provides the details of the simula-
tion process. Section 6 presents numerical results for the performability measures to
address the accuracy and the efficacy of the new approach. Relevant conclusions are
drawn in the final section.

2 Related work

Cloud computing systems have attracted considerable research interest for per-
formance and availability evaluation and some studies have considered analytical
modeling of cloud for pure performance or pure availability-based evaluation. How-
ever, because of the limitations mainly caused by the scale of the cloud systems, the
performance-related issues have not been sufficiently considered together with server
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availabilities for large-scale systems in generic level. In other words, existing solution
approaches are not able to handlemonolithic two-dimensionalMarkov representations
with servers in orders of hundreds to thousands.

The tendency of software to fail or cause a system failure after running continuously
for a specific time period is referred to as software aging. In other words as the software
gets older, it becomes more fragile and may require rebooting or reinstallation. A
well-known approach to cope with this phenomenon is to follow a proactive fault
management method and useMonitor, Analyse, Plan, Execute (MAPE) control cycles
to look for performance degradation of software components. The process of restarting
these components is an important part of software rejuvenation [28]. For the availability
of cloud systems, a technique is proposed in [4] to model the aging process of a virtual
machine manager of data centers under variable workload conditions. A time-based
policy that adapts the rejuvenation timer to the workload condition is also presented.

The availability modeling and analysis of mobile clouds are considered in [25],
and with the use of a hierarchical analytical modeling approach a sensitivity analy-
sis study is performed which identifies the bottlenecks for system improvements in
terms of availability. The average time between failures and repairs is considered to
be exponentially distributed for hardware, update, and application dependent events,
and continuous time Markov Chain analysis is employed successfully. The results
presented show that for mobile clouds there is room for improvement on system avail-
ability by focusing on a reduced set of factors such as cloud infrastructure components.

In [11], availabilitymodels are presented for cloud systems based on the Eucalyptus
architecture which is a popular open source software framework for IaaS systems
[29]. Reliability block diagrams and Markov reward models are employed together
to compute average available capacity in the presence of software- and hardware-
related failures where the average failure and repair times considered are exponentially
distributed.

Analytical models are presented in [40] for pure performance analysis. Cloud plat-
forms are modeled as open Jackson networks to analyze the response time. Open
Jackson queuing network-based models are used in [20] as well to characterize
the service components in content-delivery-as-a-service (CoDaaS) platform. Using
a stochastic reward nets-based analytical approach, in [3] similar interactions are con-
sidered for pure performance analysis of systems composed of thousands of resources.
The term availability used in [3] is related to the rejection of a request when the queue
is full rather than the availability of the servers. The general approach presented is
useful to configure the data center parameters for large-scale systems from a pure per-
formance point of view. AnalyticalMarkovianmodels composed of distinct functional
submodels are employed in [22] for pure performance analysis. Effects of various para-
meters such as the rate of user requests are analyzed in detail. Multi-stage systems
with exponentially distributed service and inter-arrival times are considered in [10]
as well; however, the main focus is on power efficiency of cloud computing systems
while the cost in terms of response time is minimized.

The cloud computing systems are represented as M/M/m queuing models in [6].
The system is analyzed from a pure performance point of view; however, with the
help of server speed and power consumption models, the expected service charge to a
request is also provided. Numerical results are provided for up to eight server systems.
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Similar to [6], stand-alone multi-server systems are employed in [21] as well to model
cloud systems. Amazon Elastic Compute Cloud (EC2) is considered as case study and
general probability distribution is preferred instead of exponential one. Stand alone
M/G/m/m+r queuing system is employed to model cloud centers. Numerical results
are presented in [21] for systems with up to 100 servers.

Composite measure of performance and availability provides more realistic evalua-
tion of fault-tolerant systems. The effects of server failures are usuallymore evident for
large-scale systems under heavy loads. In [43], cloud service response time is analyzed
considering service and task failures. Probability distribution of service response time
is derived; however, the framework presented does not consider steady-state analy-
sis of large-scale cloud systems in detail. A hierarchical model is presented in [17]
for systems with exponentially distributed inter-arrival, service, failure, and repair
times. Specific models are considered where virtual machines are deployed in phys-
ical machines and this allows the successful use of hierarchical modeling approach
proposed. The main contribution of this study is the reduction in number of states
using hierarchical approach instead of a monolithic model. As the scale of the cloud
increases, the monolithic model used to check the accuracy of the hierarchical one in
[17] becomes intractable and does not produce results. For the hierarchical approaches,
the accuracy and the efficacy of the approach are highly dependent on interactions
among sub-models, and as the scale of the system increases to the orders of thou-
sands, this may cause degradations in terms of accuracy. Instead, in our approach, a
monolithic modeling approach is considered in generic level even for the cases where
the system considered is large scale.

In this study, we assumed that the time between failures and repair times is expo-
nentially distributed which means that the next break down is the result of some
suddenly appearing failure, rather than gradual deterioration of servers which is the
case mostly for the software-based failures [38]. The availability models considered
in [4,11,17,25,43] as well assume exponentially distributed time between failures,
which means software-based independent failures dominate the availability model;
however, it should be noted that alternative distributions (e.g., weibull and gamma
distributions for breakdowns and lognormal distribution for repairs) have also been
reported [34].

Service times are also assumed to be exponentially distributed in this study. There
are some applications in cloud systems where service times should be modeled using
general distributions as suggested in [21]. However, analysis of some real traces
on cloud systems such as Amazon S3 suggests that service time can also be mod-
eled using exponentially distributed random variables [9,37]. The same assumption
is employed to focus on various factors while mathematical tractability is provided
with the assumption of exponential distribution for service times in studies such as
[3,6,10,17,20,40,43]. In this study, aswell themain focus is on analytical performance
modeling of cloud systems in the presence of failures for more realistic evaluation
while the number of serving nodes can go from few hundreds to thousands. Numeri-
cal results presented clearly show the accuracy and efficacy of the presented approach
to model and solve such large-scale systems.
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3 The system model

This study explores resourcemanagement in cloud computing,which is very important
for efficient cloud systemplanning [22,32,40]. Similar to the studies such as [6,21,40],
the model presented is a high level abstraction where the service facilities of cloud are
considered in generic level. The service behavior of the model can be configured to
represent IaaS Clouds where the service requests for various physical and/or logical
resources are handled by systems which are large scale.

In [21], the cloud center is modeled as a queuing system with single task arrivals
and a task buffer of finite capacity which is quite similar to our approach. It is assumed
that the tasks sent to the cloud center are serviced within a suitable server and when the
service is completed the task leaves the center. The servers are referred to as facility
nodes, and with the assumption of specifying the service usage and obligations with
service level agreements (SLA), the main focus is given to the resource management
rather than the details of the stages of service procedure. The stages prior to the
processing servers are abstracted using an incoming traffic flow to represent those
stages. One of the gaps [21] tries to fill is the presentation of an analytical model for
large-scale cloud centers. Systems with up to hundreds of servers are considered.

In [40], a queuing theory-based model is used to study computing service QoS in
cloud computing, where the cloud architecture is modeled using well-known open
Jackson networks ofM/M/m servers. A number of systems are represented using feed
forward, open queuing systems. Themost critical stage of presented network of queues
is the processing server (PS) which is modeled as a single queue multiple identical
servers queuing system with exponentially distributed inter-arrival and service times
just like the model presented in our study. The arrival process of the multi-server
model is the throughput of the single server one. The model presented in [40] is used
to scale the cloud system optimally to guarantee the QoS, and even though simulated
predictions based on the model are not in real scale, they are defined as reliable and
useful for generating an accurate approximation of the task response times to avoid
exceeding the SLA.

M/M/m queuingmodel is employed in [6] as well to study optimal multi-server con-
figuration for profit maximization in a cloud computing environment. The cost/profit
optimization is modeled based on the performance in terms of average response time.
In case the response time is less than the time agreed by SLA, the customers are fully
charged. Otherwise, there is a penalty for late completion. Cloud computing service
provider is defined as a collection of blades/processors/cores and referred in generic
level as servers. The application environment is considered with specific workloads
which include the task arrival rate and the average task execution requirement. The
main focus is on optimization through use of a generic model with a common queue
and multiple identical servers which consider resource contention and numbers of
servers to maximise the profit.

In [26], actual cloud computing platforms such as Amazon EC2, IBM blue cloud,
and private clouds, which come with large numbers of work nodes and cloud man-
agers such as Eucalyptus, Open Nebula and Nimbus, are considered. The abstraction
provided to represent these systems is anM/M/m+D queuing model. Commonly used
job queuing systems such as Sun Grid Engine (SGE), Portable Batch System (PBS),
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or Condor are assumed to be used for a single common queue, and the jobs are pro-
vided resources in the form of virtual machines. Since the behavior of the queuing
systems is modeled from a resource allocation and contention control point of view,
themulti-server model with a service request queue, which is widely adopted for cloud
computing in existing literature, is considered as a reasonable abstraction. The waiting
time is investigated to satisfy the SLA in terms of response time. Systems with up to
25 servers are considered.

The queuing system considered in [43] for incoming subtasks with a common
queue and a number of identical virtual nodes (referred to as servers) is quite similar
to the one considered in this study. Furthermore in [31], a server site is modeled as
M/M/m/K system, where m is the number of virtual machines assigned to the service
provider. An analytical performance model consisting of stochastic sub-models which
are composed of single queue multiple server systems is proposed for mobile cloud
computing in [32]. Up to 40 physical machines are considered.

A generic multi-server system model is presented in this study for performability
evaluationof cloud computing systems.Unlike the existing studies, themodel and solu-
tion approach presented can handle large numbers of servers together with potential
server failures. Themulti-server queuingmodel abstracts away architectural/platform/
hardware/implementation details; however, it preserves the process level and server
availability contents adequate for performance and availability analysis in a context
of queueing networks similar to studies in [3,6,10,17,20,21,26,40,43].

As identified in [14], interactive services are implemented requiring multiple
components, and a single client request flows through a sequence of components,
generating multiple sub-requests. However, when the cloud systems are considered
in generic level, it is possible to provide an abstraction where these requests compete
for the available resources. This study is the first one to model this contention with
servers up to orders of thousands together with server availabilities.

When practical implementations are considered, embarrassingly parallel or pleas-
ingly parallel applications are quite commonly used in various high performance,
tightly or loosely coupled facilities. These applications require little or no effort to
separate the main problem into a number of parallel tasks. Therefore, the computation
can be easily separated into a number of parallel tasks that are executed on separate
machines [42]. Cloud computing is one of the computing environments which are
flexible, and cost effective with popular embarrassingly parallel applications such as
Monte Carlo simulations, Basic Local Alignment Search Tool (BLAST) searches for
bioinformatics, parametric studies, and image processing applications [18,33]. Simi-
larly, when the heterogeneity of the servers is considered, one big advantage of using
homogeneous servers is the ease of management. For example, OrionVM, which is
an Australian IaaS provider, builds their cloud infrastructure utilizing a homogeneous
node architecture, where each node has computing, memory and storage assets. They
mention the ability of delivering greater performance at a reduced cost by utilizing
homogeneous servers [1]. Homogeneous virtual machines are considered for analyt-
ical modeling in [8] as well, and in [24] a new algorithm is proposed for routing in
systems with identical nodes such as data servers.

It is assumed that the requests from the users arrive to the available facility nodes
referred to as servers in this study. The resources can be employed for various appli-
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Fig. 1 Queuing model of the proposed system

cations such as web servers, database servers and others. The requests arrive to the
servers from different users independently and consecutively. As explained above, the
requests follow Poisson distribution whichmeans that the inter-arrival time of requests
is exponentially distributed with arrival rate of λ. In addition, the service times for
each request are independent and identically distributed with exponential distribution
with the service rate μ. There are K number of servers in the system as shown in
Fig. 1. The capacity of the system is L which means that the buffer size for incoming
requests is equal to L − K . The queuing discipline is assumed to be First Come First
Serve (FCFS).

When a user has a request from the cloud system, in case at least one of the servers
are idle, the request will be handled by one of the idle servers. Instead, if all the servers
are busy with other requests and the queue is sufficient to accommodate the incoming
request, it will join the queue. If the queue is full, the incoming request will be rejected.
The servers considered are prone to failures where operative periods are exponentially
distributed with a mean failure time of 1/ξ . At the end of an operative period, when
server k(k = 1, . . . , K ) fails, it requires an exponentially distributed repair time with
mean 1/η. It is also assumed that the operative servers cannot be idle if there are
requests waiting, and repair facility cannot be idle if there are failed servers waiting
for repair. Services that are interrupted by failures are eventually resumed from the
point of interruption or repeated with re-sampling (perhaps on a different server). All
inter-arrival, service and repair times are independent of each other.

Figure 2 shows the state diagram of the proposed system. The states of the system
are described by i and j, specifying the server configuration and number of requests in
the system, respectively. Thus, Pi, j s are steady-state probabilities of having i number
of operative servers and j number of requests in the system. In Fig. 2, there are K + 1
server configurations (i = 0, 1, . . . , K ). These K + 1 configurations are used to
represent the operative states of the available servers in the system. L represents the
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Fig. 2 State diagram of the proposed model

maximum number of requests in the system (the requests being served as well as the
requests in the queue). The downward transitions indicate that the requests are being
served with service rate μ which depends on the number of operative servers as well
as the number of requests in the system. On the other hand, upward transitions take
place because of new arrivals with rate λ to the system. The lateral transitions indicate
failures and repairs of the servers. The lateral transition to left hand side shows failures
with rate ξ and transitions to the right represent repair of failed servers with rate η.
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4 The analytical solution approach

The analytical solution approach introduced is able to handle large-scale systems in
the presence of failures and repairs. The efficacy of the approximation is significantly
superior to simulation while the accuracy is within the desired levels.

There are various analytical approaches that can be employed for the solution of
two-dimensional models, where one of the state variables is used to represent the
number of requests in the system and the other one is used to represent the number of
available servers.Matrix-geometric andSpectral-expansionmethods are two examples
for exact solution of these systems [19,27]. However, when the number of servers
is large, exact solutions cannot handle the resulting state space models. For cloud
computing systems, two main steps are considered to deal with numbers of servers
in orders of hundreds to thousands. First, an approximation is provided for handling
the availability of the servers and the obtained probabilities of server configurations
are employed to compute the approximate state probabilities of the two-dimensional
model considered. Following this, the balance equations are employed together with
the approximate state probabilities computed in the first step and an iterative procedure
is chosen for obtaining high accuracy.

4.1 Approximate decomposition

The initial decomposition of the state variables will consider the state probabilities
of server configurations. In other words, system in Fig. 2 is first considered for pure
availability modeling. Since the failure and repair-related transitions are lateral transi-
tions, by considering the continuous time Markov chain (CTMC) for pure availability
as shown in Fig. 3, we can compute the probability for each operative state, which
would give us the approximate sum of probabilities in each column of Fig. 2.

Considering the CTMC for pure availability modeling, the sum of probabilities in
each column (P ′

i s) can be given as:

P ′
i =

(
η

ξ

)i

i !
∑K

k=0

(
η

ξ

)k

k!

(1)

where P ′
i = ∑L

j=0 Pi, j , i = 0, 1, . . . , K .

Fig. 3 CTMC for computing sum of probabilities in each column
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The normalizing equation for the state probabilities of the two dimensional system
is used in the decomposition process and can be given as:

K∑
i=0

L∑
j=0

Pi, j = 1 (2)

Once approximate sum of probabilities in each column is computed, it is also
possible to consider the transitions in each column individually only with one step
upward and one step downward transitions. In this case, the transitions for failure, and
repairs are not considered. The Pi, j s can then be expressed in terms of Pi,0.

Pi, j =
⎧⎨
⎩

ρ j

j ! · Pi,0 0 ≤ j ≤ i
ρ j

j !i j−i · Pi,0 i + 1 ≤ j ≤ L
(3)

where ρ = λ
μ
and 1 ≤ i ≤ K . Then, using the P ′

i s as the sum of all probabilities in a
columnwhere the columns are numbered as i = 0, 1, . . . , K , the following expression
can be derived:

P ′
i =

⎡
⎣ ρ0

0! + ρ1

1! + ρ2

2! + · · · + ρi

i ! +
ρi+1

i !i1 + ρi+2

i !i2 + ρi+3

i !i3 + · · · + ρL

i !i L−i

⎤
⎦ Pi,0 (4)

Equation 4 can be generalized as:

P ′
i =

⎡
⎣ i∑

j=0

ρ j

j ! +
L∑

j=i+1

ρ j

i !i j−i

⎤
⎦ Pi,0 (5)

for i = 1, 2 . . . , K .
From Eqs. 1 and 5, with some simplifications, Pi,0 can be computed as:

Pi,0 =

(
η

ξ

)i

i !
∑K

k=0

(
η

ξ

)k

k!

⎡
⎣ i∑

j=0

ρ j

j ! + (i L−iρi+1) − ρL+1

i !i L−i (i − ρ)

⎤
⎦

−1

(6)

for i = 1, 2 . . . , K .
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The general expression for the approximate state probabilities where i =
1, 2 . . . , K can then be obtained using Eqs. 5 and 6 as follows:

Pi, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
η

ξ

)i

i !
∑K

k=0

(
η

ξ

)k

k!

⎡
⎣ i∑

j=0

ρ j

j ! + (i L−iρi+1) − ρL+1

i !i L−i (i − ρ)

⎤
⎦

−1

ρ j

j !

j = 0, 1, 2, . . . , i(
η

ξ

)i

i !
∑K

k=0

(
η

ξ

)k

k!

⎡
⎣ i∑

j=0

ρ j

j ! + (i L−iρi+1) − ρL+1

i !i L−i (i − ρ)

⎤
⎦

−1

ρ j

j !i j−i

j = i + 1, i + 2, . . . , L

(7)

The initial approximate state probabilities for the system considered can be com-
puted using Eq. 7. In this equation, the state probabilities are expressed in terms of
arrival, service, failure, and repair characteristics of the system. These initial approx-
imations are in turn fed into an iterative procedure to provide higher accuracy for the
performance measures of interest. The initial approximations are quite important for
fast convergence of the iterative method similar to the studies in [7,35].

The left most column in Fig. 2 is a special one since downward transitions are not
present in case there are no operative servers. An approximation is employed for the
probabilities in this column using P ′

0 which assumes that λ/η requests join the queue
while the server is being repaired.

4.2 Balance equations and iterative solution

Considering lateral transitions for computation of P ′
i s, using them as sums for each

column, and then focusing on the distribution of this sum for computation of Pi, j s is
an approximation, since lateral and horizontal transitions are not considered together.
There are well-known analytical solution approaches which can consider the lattice
in Fig. 2 for exact solution, and the major ones such as the Matrix-geometric and
Spectral-expansion methods have been reviewed in [19,27]. However, these methods
cannot be employed for exact solution of models representing cloud systems, since
they are not capable of handling hundreds to thousands of servers.

In this study, the approximate state probabilities computed using Eqs. 1–7 are
employed together with the balance equations of the lattice strip presented in Fig. 2
for an iterative solution approach, in order to incorporate the effects of lateral and
horizontal transitions together. The transitions in Fig. 2 lead to the following balance
equations:
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i = 0;

P0,0 = ξ

ξ + λ
P1,0 (8)

P0, j = ξ P1, j + λP0, j−1

ξ + λ
, j = 1, 2, . . . , L − 1 (9)

P0,L = ξ P1,L + λP0,L−1

η
(10)

1 ≤ i < K ;

Pi,0 = (i + 1)ξ Pi+1,0 + ηPi−1,0 + μPi,1
iξ + η + λ

(11)

Pi, j = (i + 1)ξ Pi+1, j + λPi, j−1 + ηPi−1, j + ( j + 1)μPi, j+1

jμ + iξ + η + λ
, 1 ≤ j < i

(12)

Pi, j = (i + 1)ξ Pi+1, j + λPi, j−1 + ηPi−1, j + iμPi, j+1

iμ + iξ + η + λ
, i ≤ j < L (13)

Pi,L = (i + 1)ξ Pi+1,L + λPi,L−1 + ηPi−1,L

iμ + iξ + η
(14)

i = K ;

PK ,0 = ηPK−1,0 + μPK ,1

K ξ + λ
(15)

PK , j = λPi, j−1 + ηPi−1, j + ( j + 1)μPi, j+1

jμ + iξ + λ
, 1 ≤ j < i (16)

PK , j = λPi, j−1 + ηPi−1, j + iμPi, j+1

iμ + iξ + λ
, i ≤ j < L (17)

PK ,L = λPK ,L−1 + ηPK−1,L

Kμ + K ξ
(18)

The iterative procedure is employed to accurately calculate the Pi, j s, and then
compute various performance measures in the presence of failures and repairs such as
mean queue length (MQL), throughput (γ ) and response time (RT). These measures
are very important for realistic evaluation of cloud systems. The iterative procedure
can be given as follows:
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Iterative Procedure Steps to follow for accurate Pi, j s

1: Approximate steady state probabilities are computed using Eqs. 1–7. These computations may not give
accurate approximations, however they are particularly useful to have faster convergence.

2: The approximate Pi, j s are used for the calculations of performancemeasures such asmean queue length,
throughput, and response time as

MQL =
K∑
i=0

L∑
j=0

i Pi, j

γ =
K∑
i=1

L∑
j=0

μPi, j

RT = MQL

γ

Let’s refer to the performance measures computed in this step as MQLold, γold, and RTold.

3: The balance equations (Eqs. 8–18) are used to calculate the correct steady state probabilities.

4: Performance measures MQLnew, γnew, and RTnew are calculated using the new state probabilities
obtained in step 3.

5: One of the performance measures are chosen to check the accuracy. In case MQL is chosen, lets define
ε = |MQLnew − MQLold|.

6: In case the ε value is less than a prespecified, and acceptable threshold value, the iterationwill be finalized
and the most recent steady state probabilities will be used to compute all the required performance
measures. Otherwise the procedure will assign new values of performance measures to old ones (e.g.,
MQLold = MQLnew) and continue from step 3.

This iterationmethod stops when convergence criterion is satisfied, (i.e., the change
in the average queue sizes is less than ε) as explained in the procedure. The approach
used to stop the iteration is commonly used in the literature and two examples can be
found in [7,35]. In this study, ε = 0.001 is used. Since the minimum values of the
quantities dealt with such as MQL and γ are around 50 requests in the computations,
a deviation of 0.002 % is a good approximation for high accuracy. The accuracy and
the efficacy of the analytical solution approach are discussed in Sect. 6.

5 Simulation

Simulation modeling is used for the validation of the analytical model and the iterative
solution approach in terms of accuracy aswell as efficacy in this study. For this purpose,
the results obtained from the analytical model and the iterative solution approach
are presented comparatively with the results from a simulation software written in
C++ language and validated to simulate the actual system. The simulation program
developed is validated using well-known queuing theory models such as M/M/1, and
M/M/c as well as results from the literature [2,23].

The program employed is a discrete event simulation program. An event-based
scheduling approach is taken into account which depends on the events and their
effects to the system state. Relative precision which is one of the most commonly
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used stopping criterion is employed for the simulation. In this method, the simulation
is stopped at the first checkpoint when the condition δ ≤ δmax is met. Where δmax
is the maximum acceptable value of the relative precision of confidence intervals at
the 100 (1 − α)% significance level, 0 < δmax < 1. The results obtained from the
simulations are within the confidence interval of 5 % with a confidence level of 95 %;
therefore in the simulation, both default values for α and δ are set to 0.05.

6 The accuracy and efficacy of the analytical approach

In this section, results are presented for the performability analysis of cloud centers.
The numbers of servers considered for numerical results are of the orders of hundreds
to thousands for typical cloud centers [3,21]. Results are presented for systemswith up
to 5000 servers (K = 5000, L = 6000). In addition, numerical results are presented
comparativelywith the results obtained fromdiscrete event simulation. To demonstrate
the effectiveness and the accuracy of the proposed analytical model, numerical results
are presented forMQL, throughput, and response time. The CPU times for the compu-
tations using the analytical approach are also presented comparatively with the CPU
times of discrete event simulation in an attempt to show the efficacy of the proposed
approach. It is well known that analytical methods are in general faster than simula-
tions tools; however, since the proposed analytical solution is iterative, it is important
to show that the proposed approach is significantly more efficient than the simulation
and computation times are not even comparable. The studies similar to the ones pre-
sented in [21,40] use product-form solutions and non-iterative approximations. They
assume failure-free systems and avoid fault tolerant nature of cloud. Non-iterative
solutions with much smaller state spaces deal with simpler computations; therefore,
their computation times are expected to be shorter. However, avoiding the potential
failures especially for systems with large numbers of servers may cause overestima-
tions of system capacity as mentioned in [15,36]. All the numerical results presented
are obtained using workstations with Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz,
16GB RAM, and 64-bit operating system.

In Fig. 4, MQL, throughput, and response time results are presented as a function of
mean arrival rate (λ) for both proposed analytical model and simulation. A systemwith
K = 500, and L = 1000 is considered where μ = 1/s, and η = 0.5/h. The parameters
for inter-arrival and service times may vary according to the application area the
cloud system is being used for. In this study, fine grained applications such as web
services are chosen similar to the studies in [9,10,40]; however, the approach presented
is flexible and can be used for various applications. Similarly, the average failure
times of the servers considered are chosen from studies considering the availability
of cloud computing systems such as [11,25]. Time between failures considered is,
therefore, taken as 250, 500, and 1000 h for each server (ξ is 0.004, 0.002, and 0.001,
respectively).

The effects of failures on the QoS of the system can be quite significant. When
lower values of ξ are considered, unless the system is heavily loaded with high arrival
rates, an arriving request is likely to receive service from such a system with high
numbers of serving nodes. In other words, decreasing the time between failures of the
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Fig. 4 The performability results as a function of λ for K = 500 and L = 1000 with different ξ

servers increases both MQL and response time of the systems. In case of high failure
rates, or loaded systems, the incoming requests start to accumulate in the queue, and the
throughput value saturates according to the average value of operative servers which is
highly dependent on the failure, and repair rates. For example, in Fig. 4 when relatively
lighter traffic loads are considered such as λ = 100 tasks/s, the MQL of systems with
ξ = 0.001, ξ = 0.002, ξ = 0.004 is 100, 100, 109.204, respectively. When heavier
loads are considered such as λ = 250 tasks/s, the MQL values become 250, 621.582,
998.983 for systems with ξ = 0.001, ξ = 0.002, ξ = 0.004, respectively. Let us
define u as the utilization of a system without failures, where u = λ/(μK ). Similarly,
in Fig. 4, the MQL value is around 300 when ξ = 0.001 and utilization u = 0.6 is
considered. On the other hand, increasing failure rate to ξ = 0.002 and ξ = 0.004
when u = 0.6, the MQL values increases to 993.37 and 999.27, respectively. With the
increased failure rates, the average number of requests in the system becomes same
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as the maximum capacity of the system L . The throughput of the system increases as
λ increases; however, the throughput saturates depending on the number of available
servers. As expected, Fig. 4b shows that because of the average number of operative
servers, the saturation values are lower for the systemswith higher failure rates. Similar
behavior is observed for response times.

To further emphasize the accuracy of the proposedmodel and the solution approach,
Table 1 presents MQL, throughput and response time results comparatively with the
simulation results. The discrepancies between the new approach and simulation are
presented in Table 1 as well. The maximum discrepancies for MQL, throughput and
response times are less than 4.98, 0.6, and 0.38 %, respectively, which is less than the
confidence interval of the simulation specified as 5 %.

A system with greater number of servers K = 1000 and larger capacity L = 2000
is considered for Fig. 5. The rest of the parameters are considered same as the ones
used in Fig. 4 for a fair comparison.

The results presented in Fig. 5 have similar trends with results in Fig. 4. For the
systems considered, in order to satisfy the explicit ergodicity condition, which requires
that the offered load is less than the average number of operative processors, the
parameters should satisfy the condition given as λ/μ < Kη/(η + ξ ) [19]. In cases
where this condition is not satisfied, the systembecomes highly saturated.WhenMQL,
throughput and response time results are compared for Figs. 4 and 5, the numerical
results are not significantly different. The system with larger number of servers does
not perform significantly better mainly because of the effects of failures and limited
repair facilities which are chosen specifically to show that considering large-scale
multi-server systems such as cloud purely from performance point of view can cause
significant overestimations. In other words, because of the failures in the system, the
effective number of operative servers does not vary greatly when systems with large
numbers of servers such as cloud are considered and the repair facilities are not in
desirable levels.

The response time eventually increases when systems with larger overall capacities
are considered. For instance, the maximum response time is 7.998 s when the ξ =
0.004 for K = 500 and L = 1000 as shown in Fig. 4c. On the other hand, Fig. 5c
clearly shows that the maximum response time for K = 1000 and L = 2000 is
15.889 s when the ξ = 0.004 for the proposed model. This is mainly because of the
larger queuing capacity of the latter system which causes longer waiting times. The
results shown in Figs. 4 and 5 indicate that the proposed model makes it possible to
handle larger state spaces accurately; however, for the system with K = 1000, and
L = 2000 as well numerical results and discrepancies are presented in Table 2. In
Table 2, the maximum discrepancies for MQL, throughput and response times are
less than 4.75, 1.9, and 2.5 %, respectively. These results clearly show that even when
systems with one thousand servers are considered in the presence of failures, the
maximum discrepancy between the analytical approach and the simulation is less than
5 % which is the confidence interval of the simulation.

The proposed analytical model is based on an approximation of initial conditions
by considering certain behavior of system in terms of performance and availability
individually, and then using an iterative approach which is heavily based on (K +1)×
(L + 1) + 1 number of equations and same number of unknowns. For example, for
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Fig. 5 The performability results as a function of λ for K = 1000 and L = 2000 with different ξ

the results presented in Table 2 the number of states to be considered is two million.
Since the system to be solved is large and an iterative approach is employed, the
processing times are also presented numerically in comparison with the processing
times of the simulation. The CPU times for systems with K = 500, L = 1000 and
K = 1000, L = 2000 are presented in Tables 3 and 4, respectively.

The results presented for CPU times clearly show the computational efficiency of
the proposed approach compared to the simulation in both Tables 3 and 4. For instance,
in Table 3 the maximum CPU time for simulation is 138.80 h for K = 500, L = 1000
whereas themaximumCPU time of the analytical approach is less than 2.1 s.When the
number of states is increased, the CPU time of the analytical approach also increases
as expected. However, the same behavior is observed for the simulation, since the
scale of the system to be considered increases. When the system with K = 1000 and
L = 2000 is considered, the CPU time of the analytical approach is still not very
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Fig. 6 The performability results of the proposed system as a function of η for different K

extensive with maximum less than 16 s. However, to perform the same computations
using simulation took up to 350 h. In this sense, our approach is efficient in evaluation
of large-scale fault tolerant systems such as clouds.

To show the importance of repair facilities, in Fig. 6MQL, throughput and response
time of various systems are presented as a function of repair rate. Systems with K =
1000, 2000, and 5000 are considered where L = 6000, μ = 1/s, and 1/ξ = 500 h.
Figure 6a shows that the mean number of jobs in the system is around the system
capacity for low values of the η (e.g., η = 2). However, MQL results start to decrease
after η = 4. This is mainly because of the quick recovery of the servers in the system
which causes increased numbers of servers to be available. For instance, when η = 10,
the MQL results are 5999, 4854.6 and 2000 for K = 1000, K = 2000, K = 5000,
respectively. Similar trends are observed for the response time and throughput as well.
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(b) Response Time, K=2

Fig. 7 Analytical model results to be compared with the experimental results presented in [40]

The throughput increases where the response time decreases dramatically as the repair
rate increases. Both throughput and response time in turn saturate to a value depending
on the number of servers in each system. The results in Fig. 6 show that the shorter
the recovery time 1/η, the lower MQL, response time and higher the throughput for
each case. More importantly, the results clearly show that when the repair facilities
are sufficient, using large numbers of servers will increase the QoS significantly.

To validate the model further, the experiments and the approach used to validate the
usefulness of the model presented in [40] are adopted. In [40], the model to represent
the cloud systems is implemented using the open-source cloud platform OpenStack,
which can be used for adding virtual machines as computational resources. Openstack
is used to create virtual servers with an entering server, four servicing nodes, aMySQL
database with a database server as well as output and client servers. Each of the virtual
machines has 4 GB RAM and two cores of an AMD processor, which runs at 2.1 GHz.
In [40], the plots which show the results of the open queuing network simulation
and the empirical results of the experiments have very similar shapes. It is clearly
explained that although it is quite difficult to have absolute similarities for the values
of the response times in simulation and test bed, the similarities in shapes of the plots
representing the simulation results and empirical results prove the “good behavior”
of the model. In this study, the following figures are provided for the same purpose.
Similar to the test-bed and the simulation setup presented in [40], systems with one
and two servers are chosen. The other parameters are μ = 100/h, 1/ξ = 1000 h,
1/η = 2 h, and L = 1000.

The results presented in Fig. 7a, b are computed in the presence of failures.However,
it is still possible to clearly see the similarities explained in [40] when the Fig. 7a, b
are compared with the figures presented for results obtained through the test-bed, as
well as simulation in [40].

Overall, the numerical results presented in this section show the importance of
considering the performance together with factors affecting availability of the servers,
such as failure and repair behavior for cloud systems. The results also show the effi-
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ciency of the proposed analytical model while the discrepancy of the numerical results
is less than the confidence interval of the discrete event simulation employed.

7 Conclusions

The analytical model considered is similar to the ones presented in [6,21]; however
unlike these studies, the monolithic system model presented can consider availability
of the serving nodes as well. The numerical results presented show that the numerical
solution approach can handle 5000 servers where the queue capacity is 6000 tasks as
opposed to the existing studies which present numeric results for systems up to 100
serving nodes. This shows that the solution approach can handle up to 30,000,000 states
of the monolithic model presented. The comparative results presented for up to 1000
servers and 2000 overall queue capacity (2,000,000 states) show that the discrepancy
between the simulation and the analytical model presented is less than 5 %, while
in terms of efficacy, the analytical model outperforms the simulation significantly.
Especially for loaded and large-scale cases, the simulation times are quite extensive
(up to 350 h) as expected.

The key contributions of this study are:

1. A generic approach is presented for large-scale homogeneousmulti-server systems
which is useful for end-to-end performability analysis and can be easily adopted to
variety of cloud services. The model and solution approach can be used in capacity
planning, optimizationof cloud configuration, forecasting, andbottleneck analysis.

2. Since the cloud systems are considered as fault-tolerant systems, the effects of fail-
ures on the overall performance can be analyzed effectively. That means capacity
planning can also involve possibility of using redundant servers, and optimization
of repair facilities.

3. To the best of our knowledge, this study is the first one to consider hundreds to
thousands of servers in the presence of failures with one level monolithic mod-
els where the accuracy and the efficacy of the approach are validated through
comparison with results obtained by simulation runs.

The models developed, and solution approach are flexible and they can be used for
performability evaluation of similar large-scale systems with various characteristics.
The parameters used in this study can easily be altered and analysis of systems with
various loads, service times, and availability-related characteristics can be considered.
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