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Abstract Significant savings in the energy consumption, without sacrificing service
level agreement (SLA), are an excellent economic incentive for cloud providers. By
applying efficient virtual Machine placement and consolidation algorithms, they are
able to achieve these goals. In this paper, we propose a comprehensive technique for
optimum energy consumption and SLA violation reduction. In the proposed approach,
the issues of allocation and management of virtual machines are divided into smaller
parts. In each part, new algorithms are proposed or existing algorithms have been
improved. The proposed method performs all steps in distributed mode and acts in
centralizedmode only in the placement of virtualmachines that require a global vision.
For this purpose, the population-based or parallel simulated annealing (SA) algorithm
is used in the Markov chain model for virtual machines placement policy. Simulation
of algorithms in different scenarios in the CloudSim confirms better performance of
the proposed comprehensive algorithm.

Keywords Energy consumption · SLA violation · Virtual machine placement ·
Parallel simulated annealing · Markov chain

1 Introduction

In the past few years, the use of Cloud Computing infrastructure to run business and
consumer-based IT applications has increased rapidly [1].
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The ever-increasing cloud computing has been resulting in ever-increasing
energy consumption and, therefore, overwhelming electricity bills for data cen-
ters [2,3]. Energy consumption in Cloud data centers will continue to grow rapidly
unless advanced energy-efficient resource management solutions are developed and
applied [3,4].

By applying efficient VMplacement and consolidation algorithms, Cloud providers
are able to enhance energy efficiency [5]. Dynamic VM consolidation approaches
leverage dynamic nature of Cloud model, both servers and their VMs are periodically
monitored. To minimize the number of active servers and maximize the quality of
delivered services, whenever a server goes in under or overload state, its VMs are
reallocated using live VM migration [6,7].

In addition, the problem of low server utilization is exacerbated by narrow dynamic
power ranges of servers: even completely idle servers still consume up to 70% of their
peak power [8,9]. Therefore, keeping servers underutilized is highly inefficient from
the energy consumption perspective. This problem increases the rate of cost to the
efficiency. Therefore, we should take servers to low-power mode to the extent possible
with the help of virtualization andmigration of virtual machines from low-load servers
and integration of them into other servers [10].

In this paper, to improve the process of management of resources and to reduce
energy consumption, we propose an energy-aware framework. In the proposed frame-
work, the main problem has been divided into smaller sections. In each section, a
new algorithm has been presented, or the available algorithms were developed. One
of the points that differentiate our approach from the other methods is that in the
previous methods, overloaded servers have been considered as the basis for virtual
machine migration decisions. From our perspective, however, overload per se is not
regarded as an acute problem, and it should not be addressed unless SLA violation is
likely. Therefore, we base migration on criticality of the conditions by defining critical
conditions1 for servers.

The rest of the paper is organized as follows: in Sect. 2, we discuss about related
works. Section 3 gives the details of the proposed Comprehensive algorithm, step
by step. In Sect. 4, we perform experiments and compare our work with some other
popular algorithms. At the end of the paper, besides general conclusion of the paper,
solutions have been presented for continuation of the work in future.

2 Related works

VM consolidation techniques have been very attractive to reduce energy consump-
tion and increase resource utilization in virtualized data centers. Therefore, a lot of
work has been done in this area and depending on the modeling techniques used,
different problem solving techniques are proposed. The goal has been to improve the
energy efficiency of system, while avoiding VM performance degradation [4,5]. This

1 In this paper, critical conditions are conditions defined based on the system status from the aspect of
processing power and available memory value. On that basis, an overloaded system with poor processing
power or low memory is in critical conditions.
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problem has usually been considered as a multi-dimensional Bin-Packing problem. In
this regard, several algorithms have been proposed with different objectives such as
minimizing the number of active servers [10–13].

When two applications cannot be assigned to the same target server, item–item
incompatibility constraints occur. Bin–item incompatibility constraints arise when a
given application cannot bemoved to a particular server. For consolidating serverswith
these constraint types, authors [14], propose a placement solution with a two-stage
heuristic algorithm.

Chen et al. [7] build up a two-objective optimization model and propose a virtual
machine placement algorithm based on matrix transformation. Two-objective opti-
mization model takes the balance of different dimensions in minimizing number of
physical machines and resource utilization into consideration. The two-objective opti-
mization model first sets up corresponding virtual machine requests queue matrix,
cluster matrix, and the corresponding initialization placement matrix by considering
virtual machine placement algorithm based on matrix transformation and then looks
for the best result meeting the two goals by the corresponding matrix transformation.

In [3], Lee et al. first attempted to solve the VM placement problem using the sim-
ulated annealing to achieve energy saving. On this basis, Dhingra and Paul [15] use
optimized simulated annealing for VM placement process, looking for energy con-
sumption by random iteration better physical host servers. It ensures virtual machines
SLA server degree, increases the resources utilization, and reduces the energy con-
sumption.

Tang and Pan [16] propose a virtual machine placement algorithm based on genetic
algorithm. Such algorithms consider the energy consumption of data centers physical
host and the energy consumption of network communication by generating a random
initial population and then use multiple gene mutations to look for minimum energy
consumption of physical hosts and network communication. However, the algorithm
just considers one network structure and has high computational complexity and low
allocating efficiency.

In [10], Beloglazov et al. proposed a novel approach that for any known stationary
workload and a given state configuration optimally solves the problem of host overload
detection by maximizing the mean inter-migration time under the specified QoS goal
based on a Markov chain model. They heuristically adapt the algorithm to handle
unknown non-stationary workloads using the Multisize Sliding Window workload
estimation technique. In this work, they focused only on the problem of host overload
detection.

Asyabi et al. [6] proposed an energy-aware heterogeneousVMscheduling algorithm
along with performance. They used a set of objective functions in terms of fitness
metric and placed a set of VMs on a set of servers aiming to minimize the total energy
consumption in the entire data center.

Chen et al. [7] proposed three algorithms to solve the virtual machine placement
problem in large scale. First, they propose a physical machine (PM) classification
algorithm by analyzing pseudotime complexity and find out an important factor (the
number of physical hosts) that affects the efficiency,which improves running efficiency
through reduction number of physical hosts; second, they present a VM placement
optimization model using multi-target heuristic algorithm and figure out the positive
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and negative vectors of three goals using matrix transformation so as to provide the
mapping of VMs to hosts by comparing distance with positive and negative vectors
such that the energy consumption is saved, resources wastage of occupied PM is
lowered, multi-dimensional resource utilization is optimized, and the running time is
shortened. Finally, they consider the poor placement efficiency problem of large-scale
virtual serial requests and design a concurrent VM classification algorithm using the
K-means method.

In [8], an adaptive fuzzy threshold-based algorithm has been proposed to detect
overloaded and underloaded hosts. The proposed algorithm generates rules dynami-
cally and updates membership functions to adapt to changes in workload.

Our work is different from the previous works, since we propose a redesigned
energy-aware framework with comprehensive algorithm for VM management to
achieve a better energy–performance tradeoff. In this work, we will respond to four
questions posed in the Sect. 3, step by step.

3 Proposed algorithm

Extremely high energy costs are not only due to the large number of computing
resources and the lack of hardware performance. Data obtained from 5000 servers
during 6months indicate that the servers have not been usually vacant; however, their
productivity has been rarely high and often work with 10–50% of their capacity.
This problem increases the rate of cost to the efficiency. Therefore, we should take
servers to low-power mode to the extent possible with the help of virtualization and
migration of virtual machines from low-load servers and integration of them in other
servers. In all methods of resource management, according to the objectives that are
considered, virtual machines are transferred from a source machine to a destination
machine. Bymigration of a virtual machine, which is stationed in a low- or overloaded
host, to another host, the possibilities of improving energy consumption and utilizing
resources to provide the quality of desired service are created [17].

In this paper, to improve the process of management of resources and to reduce
energy consumption, we provide some answers to the following questions by breaking
the main problem into four sections.

1. Detecting the host in a critical conditionwhat is time of amigration fromamachine
with a critical condition?

2. Virtual machine selection which virtual machines must migrate from the hosts?
3. Virtual machine placement where would be destination of the migrated virtual

machines?
4. Low-load host detectionWhich of the low-load hosts are the best selections to be

shutdown to save energy?

The proposed comprehensive algorithm performs all the steps in distributed form
and functions in centralized form only in the virtual machine placement that should
have a global vision.

A high-level view of the proposed framework can be seen in Fig. 1. Local manage-
ment section has been implemented on the hosts and global information management
section holds all the hosts.
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Fig. 1 An overview of the
proposed framework

Splitting the problems improves the scalability of the system, as the host underload
or overload detection and VM placement algorithms are executed locally by each
compute host. It follows that the software layer of the system is tiered comprising
local and global managers. The local managers objective is the continuous monitoring
of the nodes condition, and detecting host underload, overload or critical conditions.
Based on the decisions made by the local managers, the global manager issues VM
migration commands to optimize the VM placement.
In what follows, the algorithms used in each section are explained.

3.1 Detection of a server with critical condition

We know that each live migration has additional overhead costs and according to con-
ducted studies, could take up to 10% of the processing efficiency. In addition, it wastes
the bandwidth. Thus, in the cloud data centers with thousands of hosts, performing
unnecessary migrations disrupt the balance of the entire system and will have a neg-
ative impact on the efficiency of running applications [10]. In other words, in cloud
environments, a proper dynamic management approach, based on the performance
of hosts, should have the best decision for migration of virtual machines to be able
to prevent unnecessary migrations. Due to the heterogeneity of systems in the data
center, considering a fixed value as the overload threshold cannot be much appropri-
ate [10]. As an example, a host with less number of CPU cores is more likely to go to
the overloaded mode by adding a virtual machine; however, at the same conditions, a
host with greater number of cores is less likely to go to the overloaded mode by the
addition of the virtual machine. That is why each machine should be considered as
overloaded with regard to its specific conditions.

In this paper, the LR2 algorithm is used to detect whether the CPU is overloaded.
Moreover, the extent to which the main memory is occupied is investigated as another
important factor alongside the CPU usage level. It is possible that an overloaded
machine, regarding the high number of cores, is less likely to be in trouble in terms

2 Local Regression.
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Fig. 2 The pseudo-code for detection of a server with critical state

of the percentage of CPU efficiency; however, a large amount of its main memory
is occupied in which case there is the possibility of SLA violation and it should be
considered as a critical state.

Therefore, we consider being overloaded a necessary condition but not a sufficient
condition for migration. This means that if a host with the mentioned definitions is
detected to be overloaded, in case it has the possibility of SLA violation, one must
take action to migrate a virtual machine or machines from it. The modes in which the
possibility of SLA violation is likely can be stated as pseudo-code as shown in Fig. 2.

3.2 Selection of a virtual machine for migration

The following points should be noted in selecting a virtual machine for migration:

– The higher its rate of usage is from the processor (CPU Usage), with migration, a
greater percentage of the processor is released.

– The lower the rate of usage is from the main memory (Allocated Memory), the
less it is dependent on the source machine for migration, and the migration is done
at a lower cost. At the same time, migration time3 is reduced, according to the
Eq. 1, and the declining efficiency is more tolerable, according to the Eq. 2.

Tmi = Mi

Bi
(1)

Udi = 0.1
∫ t0+Tmi

0
Ui (t)dt (2)

Mi is the amount of memory used byVMi ,Udi is the total performance degradation by
VMi , t0 is the initial time of migration, Tmi is the time taken to complete themigration,
Ui (t) is the CPU utilization by VMi , and Bi is the available network bandwidth. To
implement this idea, it is acted as follows:

1. A list of critical servers is created which is shown with CS.4

3 This has been consideredwith the assumption that theVM images and data are stored in a shared storage in
the network. In fact, there is no need for copying the storage space concerning the VMwith this assumption.
This has been considered for further simplification of the job. On the other hand, half of the bandwidth has
been considered in the simulations made for migration and the other half for VM communication.
4 Critical server.
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2. A list of virtual machines of each host is formed and sorted out in descending
order according to CU.5 If this parameter is equal for some virtual machines, they
are sorted out based on less use of the main memory.

3. The first virtual machine is removed from the list and if it leads the server to get
out of the critical state, it is selected for migration and placed on the migration
list. This makes the server to get out of the critical state, but it still keeps it at the
upper threshold. However, if the server is still in critical state, we have to select
the next virtual machine form the list and transfer it to the migration list. In fact,
this process is repeated until the server is not in the critical state any longer.

3.3 Placement policy of virtual machines

The placement problems of VMs on servers have always been a huge challenge at the
cloud data center.

VM placement problems in cloud data center are a physical resources mapping
process of VMs to servers according to the reasonable allocation rules. This stage is
similar to finding a solution for the Bin-Packing problem. In fact, the placement is
intended to be performed in a way that the number of active servers is minimal.

In this section, we used Markov chain model with population-based or parallel
simulated annealing meta-heuristic algorithm for optimization. In fact, we have turned
the PABFD policy presented by Beloglazov to MCSA-PABFD [10]. SA algorithm is
an unbound algorithm that is used for difficult designs.

A combination of SA and parallelism is used to help increase the SA power and
faster resolution of problems. For this purpose, the population-based SA algorithm is
used in the virtual machines placement policy.

In this policy, it has been taken into consideration that migration should not lead to
overloading to replace the virtualmachines selected formigration since suchmigration
bears two major drawbacks: first, it increases the likelihood of SLA violations at
the destination and, second, it increases the probability of another migration at the
destination, for which it consumes energy. Thus, interquartile range which is one
of the measures of dispersion and covers the distance between the first quarter and
the third one is employed to solve the problem (as shown in Fig. 3). The way it is
implemented will be described in the algorithm stages.

Proposed algorithmuses the followingmechanisms for virtualmachines placement:

Step 1 Generating an initial population and evaluation of it: a list of servers should be
established for the primary population to be formed. This list should not contain the
overloaded, low-loaded and turned-off servers. Interquartile range is used to prepare
the lists. Interquartile range of a sample represents a distance containing observations
interval. In this way, too large or too small are deleted. The interquartile range, as a
measure of dispersion, is preferred over the variance.

To form the list, all turned-on servers will be ascending ordered in terms of over-
loading states and those servers located within the interquartile range are added to the
list. In this way, overloaded and low-loaded servers are out of the selection area.

5 CPU Usage.
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Fig. 3 Interquartile range of a sample

Then, a list of the virtual machines selected to migrate will be formed. (The number
of server list members and the list of virtual machines must be equal; otherwise,
interquartile primary servers will be repeated due to being low loaded.)

A few random arrangements are selected from the list of servers and considered as
the primary population. Then, this population (lists) will be evaluated. The normalized
evaluation criterion is total increase in energy expenditure of servers. The less it is,
the better the other would be.

F =
∑n

i=1 Éi − ∑n
i=1 Ei∑n

i=1 Éi
(3)

In the Eq. 3, E is the energy before the attribution of virtual machines and É is the
energy after their attribution.

Step 2 Determining the best found answer: the best answer from the set of lists is
selected and recorded.

Step 3 Setting the initial temperature T = T0. One of themost important parameters
rarely discussed in the simulated annealing method is the initial value of the temper-
ature parameter. Many researchers have used a large value as the initial value of the
temperature-like parameter. But, if the initial value of the parameter temperature is too
large, the algorithm is faced with a large number of relative minimums which result in
a great number of upward motions (bad answer) to be accepted at the time of leaving
them due to the random nature of the algorithm. On the other hand, if the initial value
of the temperature parameter is too small, the algorithm will quickly converge to a
local minimum and will not have the power to leave it. Therefore, an optimum value
must be selected for the initial value of the temperature-like parameter. In this study,
we will provide a model for estimating the initial value of the temperature parameter
based on the previous conducted studies.

Before presenting the model, we should introduce a parameter called acceptance
ratio. The acceptance ratio, which is defined as the ratio of the number of accepted
changes to the total number of changes proposed in each Markov chain, can be esti-
mated using the Eq. 4:
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�k =
m1 + m2 × exp

(−� fm2
Tk

)

m1 + m2
(4)

In this equation,m1 is the number of changes that Δ f ≤ 0 and m2 is the number of
changes that Δ f > 0.

The average changes in the objective function are shown with Δ f m2 along the
m2. Moreover, TK is the current value of the temperature parameter. By taking into
account a relatively large value for the acceptance coefficient like �K = 0.99 of the
initial value of temperature parameter, T0 is determined using the Eq. 5 [19,20]:

T0 = −� fm2

ln
(
�1 + m1

m2
(�1 − 1)

) (5)

Step 4 Perfuming the steps 5–8 to the specified number (inner algorithm loop)
Step 5 For each of the members of the population, a certain number of neighbors

are generated and evaluated. Here, mutation, insertion and reversion are used with the
specified probability based on the roulette wheel.

Step 6 Lists neighbors are descending ordered based on evaluation criteria being
the normalized energy consumption and their best members will win and be added to
the primary population.

Step 7According to theSAcomparison rule, eachmember of the primary population
is compared with a member of the winning neighborhood population. (If it was better,
it would be accepted; otherwise, it may be accepted with a probability6).

Step 8 The best response so far has been updated.
Step 9 If the termination conditions are not met, the temperature will be reduced

and it will be started from step 4. In the simulated annealing method, the temperature
parameter value remains constant in each Markov chain until equilibrium is obtained.
When equilibrium is established, theMarkov chain varies and thus the value of temper-
ature parameter should be reduced using a proper function. There exist many reduction
functions of the temperature parameter value that are used in the simulated annealing
method. These functions can be classified into two general categories of static and
dynamic.

Static function parameters are determined prior to the start of the calculations and
keep constant during the calculations.

Dynamic or adaptive functions often contain parameters that will change by com-
puting the development and obtaining new information.

Static functions are easy to use, but the problem is that they are slow to use. It is
more difficult to use adaptive functions. However, several studies have shown that the
convergence rate of adaptive functions is much more than static functions, and if the
calculation speed is concerned, adaptive functions must be utilized.

6 In our implementation, it is accepted in case it is better and it is accepted conditionally and with the

probability of p = −� f
T in case it is worse. However, some other functions can be provided for p and it

only needs some certain conditions.
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The simplest andmost widely used reduction function of the temperature parameter
is a geometric function that can be expressed as Eq. 6:

TK+1 = λ × TK (6)

where TK and TK+1 are the values of temperature parameter in Kth and (K+1)th
Markov chains, respectively. The parameter λ is a constant parameter the value of
which is desirably chosen from a range of 0.8–0.99.

Asmentioned before, constant λ causes the calculations to become slow. Therefore,
in this section, a model is presented for making λ adaptive and increasing the speed
of calculations.

The conducted studies show that when the value of temperature parameter is high,
λ can be small so that computing can speed up, however, with advances in computing
and reduction in the temperature parameter value, λ value should be large so that the
convergence of the method can be guaranteed. Thus, we use the Eq. 7 for updating λ

in each Markov chain:

λK = λ

NT1
NTK
1 (7)

where λK and λ1 are the values of λ in the Kth Markov chain and the value of λ in the
first Markov chain, respectively. Moreover, NTK and NT1 are the lengths of the kth
and first Markov chains, respectively.

λ1 and NT1, although depend on the type of the target problem, must be selected
in such a way that the quality of the final answer as well as the computation time is
appropriate. The values of 0.94 and 100, respectively, are used for λ1 and NT1 [21,22].

Step 10 The end.

3.4 Selection of low-loaded machines

At this stage, a list of all machines that are not overloaded or turned off (for all active
non-overloaded machines) is prepared in an ascending order based on the CPU usage.
Here, the total load and number of CPU cores are considered.

At this stage, the machines available in the first quarter of the list will be selected
and it is attempted to reduce the number of active machines and to take them to low
power consumption mode to the extent possible.

4 Performance evaluation

It is extremely difficult to conduct repeatable large-scale experiments on a real
infrastructure, which is required to evaluate and compare the proposed algorithms.
To ensure the repeatability of the experiments, we choose simulations as a suitable
way to evaluate the algorithms.

CloudSim has been chosen in our experiments, which has been developed by the
CloudComputing andDistributed Systems (CLOUDS)Laboratory,University ofMel-
bourne. For experiments, the data provided as a part of theCoMonproject, amonitoring
infrastructure for PlanetLab [18], were used.
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Table 1 The three VM types used in our experiments

VM types Cores Capacity (MIPs) RAM (MB) Storage (GB) BW (Mbit/s)

Large 1 2500 1740 2.5 100

Medium 1 2000 870 2.5 100

Small 1 1000 613 2.5 100

4.1 Experiments setup

The simulated environment consisted of 800 heterogeneous servers, half of which
were HP ProLiant ML110 G4, and the other half were HP ProLiant ML110 G5. Each
server has a bandwidth of 1Gbps, and half of the bandwidth has been considered in
the simulations made for migration and the other half for VM communication.

The simulation period has been considered to be 86,400s.
To guarantee better performance evaluation of VM consolidation, 600 servers are

dual core and the rest are single core.
The CPU frequency of each core of G4 is 1,860 MIPS with a memory of 4096MB,

and the CPU frequency of each core of G5 is 2660MIPS with a memory of 4096MB.
As for the power model, we used real data on power consumption provided by the

result of the SPECpower7 benchmark in our work. In simulations, we used the three
types of Virtual Machines as shown in Table 1.

4.2 Performance metrics

For performance evaluation of the algorithms, somemetrics were used. In this section,
we define them briefly.

– OTF The fraction of time during which active hosts have experienced the CPU
utilization of 100%.

– PDM The overall performance degradation by VMs due to migrations.
– SLAVTwometrics formeasuring the level of SLAviolations in an IaaS environment
are OTF and PDM.

OTF = 1

N

N∑
i=1

Tsi
Tai

(8)

PDM = 1

M

M∑
j=1

Cdj

Cr j
(9)

In Eqs. 8 and 9, N is the number of servers; Tsi is the total time during which the
server i has experienced the utilization of 100% leading to an SLA violation; Tai is the
total of the server i being in the active state (serving VMs);M is the number of VMs;

7 http://www.spec.org.
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Cd j is the estimate of the performance degradation of the VM j caused by migrations;
Cr j is the total CPU capacity requested by the VM j during its lifetime.

In our work, Cdj is estimated to be 10% of the CPU utilization in MIPS during all
migrations of theVM j . Both theOTF andPDMmetrics independently characterize the
level of SLA violations in the system; therefore, a combined metric that encompasses
both performance degradation due to host overloading andVMmigrations is proposed,
denoted SLA Violation (SLAV). The metric is calculated as shown in Eq. 10.

SLAV = OTF × PDM (10)

Energy The total energy consumption in cloud data center.
Migrations The total number migrations happened in the N servers in cloud data
center.
ESV This metric is proposed to combine the two parameters: Energy and SLAV,
which can be calculated using Eq. 11.

ESV = Energy × SLAV (11)

4.3 Workload data

To make the results more convincing, the real workload provided by CloudSim is
adopted in our experiments.

The only characteristic recorded in the workload is the CPU utilization of VMs.
It is a part of CoMon project [18], which is collected from more than a thousand
VMs from the servers located at more than 500 places around the world. It has 10-
day records from March to April in 2011 and a time interval of 5 min between two
consecutive records. These values are also available in the CloudSim simulator at the
path examples/workload/planetlab, where we used item 20110303.

In addition, Table 2 of [17] gives a brief analysis of the workload.

4.4 Simulation results and analysis

Since the proposed comprehensive algorithm uses the LR algorithm for overloading
assessment, the combination of LR-MC8 and LR-MMT9 has been compared with the
proposed comprehensive algorithm [17].

The comparison has been performed in three modes of low load, medium load, and
high load, and according to the metrics referred to in Sect. 4.2.

In this comparison, the proposed comprehensive algorithm, which is referred to as
CA in the Figures, had a better performance compared to other algorithms. Simulation
results are presented in Figs. 4, 5, 6, 7, 8, 9 for a better assessment.

According to Fig. 4, the proposed algorithm has had lower energy use than the other
compared algorithms due to the proper solutions considered in it. Based on the results

8 Local regression-maximum correlation.
9 Local regression-minimum migration time.
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of the experiments, energy use has decreased significantly in all the three scenarios.
Our algorithm has performedmore properly than the best algorithm, i.e., LR-MMT, by
10% in low load, by 6.9% in moderate load, and by 12.8% in high load. As we know,
to reduce energy use, we should power off as many servers as possible, and avoid
unnecessary migrations as far as possible, since reduction of the number of migrations
can play a major role in reducing energy use based on the advantages suggested in the
beginning paragraph in Sect. 3.1. We have considered both of these in presenting the
proposed solution. In fact, one of the important purposes of introducing the concept
of critical states in the proposed solution has been to reduce unnecessary migrations.
Furthermore, powering low-load servers off has been taken into account at the end of
Sect. 3. It should bementioned that based on the results obtained from our experiments
in high load, the average number of times the servers have moved to the powered-off
state has been 4085 times in the proposed algorithm and 3996 and 3958 times in the
other two algorithms.

One of the positive points about ourwork is reduction of SLAviolation.Many of the
studies previously conducted in the area of energy use reduction in cloud data centers
have paid little attention to SLA violation or have not regarded it as very important,
in such a way that it would be regarded as acceptable even if SLA violation increased
a bit in case of energy use reduction. However, the set of arrangements made in the
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proposed algorithm, avoidance of unnecessary migrations in particular, has resulted
in energy use reduction along with reduction of SLA violation. As shown in Fig. 5,
SLA violation has decreased as compared to the best algorithm, i.e., LR-MMT, by
5% in low load, by 10% in moderate load, and by 12.7% in high load. Based on
the simulation results in Fig. 6, the number of migrations has decreased as compared
to the other algorithms; the decrease has been more remarkable, by about 13.6%, in
high load. This is due to making the right decisions and using proper algorithms in the
proposed framework. In the other algorithms, migration of virtual machines is taken
into account as soon as overload is detected, whereas in our algorithm, blind migration
is not performed, and virtual machine migration is done in conditions where the server
status is critically based on its processing power and memory value. Clearly, increase
in the number of virtualmachinemigrations leads to a greater fall in performance based
on Relation 2. Therefore, the decrease in the number of migrations in the proposed
algorithm has resulted in better performance reduction caused bymigration than in the
other algorithms. Based on the results in Fig. 7, better performance by 17% in average
is observed also in this area. Based on Fig. 8, even though the percentage of occasions
where the CPU is in overloaded state has become higher than the other two states,
the results are close together. This results from the fact that the proposed algorithm
does not consider overload as denoting criticality, and will not reduce load unless
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the conditions are detected as critical. Thus, the percentage of occasions where the
processor is in overloaded state will be higher. On the other hand, it is SLA violation
reduction that matters, which is concerned with the product of parameters PDM and
OTF based on Relation 10. The results displayed in Fig. 5, discussed previously,
confirm this. Based on Eq. 7, parameter ESV is directly related to SLA violation and
energy use values. By reducing SLA violation and saving more energy, the proposed
algorithm has performed better than the other two algorithms also in this regard. As
observed in Fig. 9, our algorithm has performed better than the best algorithm, i.e.,
LR-MMT, by 14.3% in low load, by 16.7% in moderate load, and by 23.8% in high
load.

5 Conclusions and future works

In this paper, we proposed an energy-aware framework for VM consolidation to make
better energy-performance tradeoff.

First, we determine the hosts with critical state. To do this, we classify the host
status overload into two types, i.e., with the possibility of SLA violation and without
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it. Second, using the virtual machine selection algorithm, virtual machines are selected
to migrate from critical hosts.

After forming a list of virtual machines selected for migration, using the host
selection algorithm, new hosts are selected as the destination for the migrating VMs.

The population-based or parallel SA algorithm is used in the Markov chain model
in this stage.

Finally, the low-load hosts are selected using the low-load host selection algorithm,
and go to the off or sleep state by migration of all VMs stationed in them. Turning off
the largest number of active machines along with reducing the number of unnecessary
migrations are two key objectives in our work.

We have evaluated our comprehensive algorithm and some other popular algo-
rithms, and the simulation results show that our work gets a better energy-performance
trade-off (the ESV metric). More work is still underway for the proposed work.

It will be evaluated in real environment. We also want to improve proposed algo-
rithm by applying some of these issues as future works: deeper analysis of operation of
the proposed algorithms in different simulated scenarios, consideration of data centers
with geographical expansion and consideration of the energy consumed in switching
equipment.
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