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Abstract Image segmentation is an important process that facilitates image analysis
such as in object detection. Because of its importance, many different algorithms were
proposed in the last decade to enhance image segmentation techniques. Clustering
algorithms are among the most popular in image segmentation. The proposed algo-
rithms differ in their accuracy and computational efficiency. This paper studies the
most famous and new clustering algorithms and provides an analysis on their feasi-
bility for parallel implementation. We have studied four algorithms which are: fuzzy
C-mean, type-2 fuzzy C-mean, interval type-2 fuzzy C-mean, and modified interval
type-2 fuzzy C-mean. We have implemented them in a sequential (CPU only) and
a parallel hybrid CPU–GPU version. Speedup gains of 6× to 20× were achieved
in the parallel implementation over the sequential implementation. We detail in this
paper our discoveries on the portions of the algorithms that are highly parallel so as
to help the image processing community, especially if these algorithms are to be used
in real-time processing where efficient computation is critical.
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1 Introduction

Medical image technologies are being used to help doctors and experts in the med-
ical field. There exist many technologies such as magnetic resonance imaging (MRI),
computed tomography (CT), and digital mammography. These technologies produce
a huge number of data that can be used to analyze and diagnose tissues abnormali-
ties. Researchers in information technology domain facilitate the analysis process by
developing image processing techniques that are accurate, efficient, and fast [22,31].

Image denoising, image recognition, image rotation and image segmentation are
some research areas that apply information technology tomedical images [8,9,11,12].
Image segmentation is a method that is used to extract objects from image. It is also
used to extract or determine an important region from medical images which is called
the region of interest (ROI) [13,33]. Different techniques are used to segment an ROI
such as threshold-based methods, compression-based methods, and histogram-based
methods.

Also, there are other methods for determining the ROI which are based on data
mining and machine learning. These include clustering methods and region-growing
methods [23,40,43,44]. ROI helps medical experts to diagnose the disease and mon-
itor the progress level of cancerous diseases. Doctors can automatically determine
the type of a tumor using a classification technique where image segmentation is
a key operation [18,47]. Because of image segmentation’s importance in the field,
for instance, computer vision [27–29], many different algorithms were proposed in
the last decade to enhance image segmentation techniques. Clustering algorithms are
among the most popular in image segmentation. The proposed algorithms differ in
their accuracy and computational efficiency. This paper studies the most famous and
new clustering algorithms and provides an analysis on their feasibility for parallel
implementation. We have studied four algorithms which are: fuzzy C-mean, type-2
fuzzy C-mean, interval type-2 fuzzy C-mean, and modified interval type-2 fuzzy C-
mean. We have implemented them in a sequential (CPU only) and a parallel hybrid
CPU–GPU version.

In the past, parallel programming has been used widely in clusters and distributed
systems. Heavy tasks are divided into smaller tasks that are executed by different
machines that are connected through a network [15,16]. Optimization solutions were
proposed in the literature to enhance the performance based on the network topology
[10,17]. On the other hand, parallel programming using graphic processing units
(GPUs) has emerged which improves the computational efficiency of the algorithms
without loosing accuracy. In GPU and CUDA programming, the application can run
simultaneously more than 512 threads, while modern CPUs can run up to 32 threads
at the same time [6,7].

In this work, speedup gains of 6× to 16×were achieved in the parallel implementa-
tion over the sequential implementation. Experiments were conducted using medical
MRI and digital mammography images [36]. A hybrid CPU–GPU parallel program-
ming was used to achieve high speedup [22]. We detail in this paper our discoveries on
the portions of the algorithms that are highly parallel so as to help the image processing
community, especially if these algorithms are to be used in real-time processing where
efficient computation is critical.
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This paper is organized as follows. Section 2 provides a background and related
work in the area of image segmentation and parallel programming. Section 3 details
the four fuzzy C-mean (FCM)-based algorithms that we considered in this paper. In
Sect. 3.2, our parallel implementation of the four algorithms is described. Section 4
shows the results and presents a discussion. Finally, we conclude our work in Sect. 5.

2 Background and related work

This section covers two topics. First is the segmentation in medical images and the
different methods in extracting ROI from images. The second topic is the parallel pro-
gramming using GPUs and and its use to enhance the computation of the segmentation
process [21,41].

2.1 Image segmentation techniques

Many algorithms were proposed in the literature to improve image segmentation oper-
ation. Tan and Isa [42] proposed an algorithm to mix histogram-based with fuzzy
C-mean technique (HTFCM). The authors compared their algorithm with the ant
colony algorithm and showed better results. Also, Tang proposed a segmentation
algorithm that uses region-growing methods [43]. The method is based on seed region
growing algorithm which was proposed earlier by Adams and Bischof [3]. It selects a
seed pixel using the watershed segmentation method that was proposed by Shih and
Cheng [40].

Other researchers used clustering methods algorithms due to their high efficiency
such as in [42]. Ji et al. proposed in [30] a new segmentation algorithm using Gaussian
mixture model (GMM), exception maximization (EM) algorithm and FCM. A local
minimum is the main drawback of the GMM which was solved using FCM. The
dimension of an image that was used in the authors’ experimental results was 176 ×
218. They used a 3 % noise and 60 % intensity. The results produced a 39 % accuracy.

Icer [26] proposed another GMM and FCM method to increase the accuracy of
image segmentation. Corpus callosum (CC) was used as the dataset in this research.
MR brain and midsagittal section of CC were the focus of the effort. Semra Icer used
these two methods in two main steps. The first step extracts the GMM to segment
the image by a probability density function. The second step applies the FCM. The
accuracy of this process was 97 %.

Wang et al. proposed a new modified algorithm for fuzzy C-mean (MFCM) using
a filtering method [46]. The accuracy of the classification process is improved due
to the filtering method to reduce the effect of the noise. The authors used a diffusion
filter with multi-scale fuzzy C-means technique. MRI images for brain were used as
the dataset. This effort produces an accuracy of 87 % for images of 12 % noise and
84% for images of 15% noise. The FCM andMFCMwithout filtering produced 77%
accuracy for images of 12 % noise and 70 % accuracy for images of 15 % noise. The
multi-scale technique and filtering method improved the classification and robustness.

Ahmed et al. presented a new modified fuzzy C-mean algorithm named bias-
corrected fuzzy C-mean (BCFCM) [4]. The inhomogeneity of neighborhood pixels is

123



1932 M. Shehab et al.

the main attribute that was used in this paper. They modified the objective function
to include the measurement of inhomogeneity of neighborhood pixels. They made a
comparison between BCFCM, FCM, and expectation maximization algorithms (EM)
for MR brain images. [4,5] used the FCM version that was used in [46]. BCFCM
achieved about 94 % accuracy. The images used in the experiment have a Gaussian
noise of σ = 6. FCM achieved 78 % and EM achieved 85 % accuracy for the same
MR images of the same Gaussian noise.

Earlier research in clustering technique used the classical FCM algorithm with
some modifications or new added steps to improve its accuracy. Some other research
suggests to improve the segmentation process by adding new mathematical methods
such as the work done by Rhee et al., where the authors developed the FCM using
a new equation to measure the membership function of data points with centroids of
clusters [23]. After that, Hwang et al. developed an algorithm using hypothesizing
upper and lower memberships for each data point [25]. Later, Qiu et al. modified on
the algorithm in [25] resulting in a new algorithm that reduces the noise effect of older
versions [36].

2.2 Segmentation using parallel programming

After the big improvement of accuracy in image segmentation algorithms, researchers
used a new hardware technology to improve the computation time as well. One of
the hardware technologies is the graphic processing unit (GPU). GPU is used in
high-performance computing (HPC) to reduce the execution time through parallel
implementation of algorithms [22,38].

Rowiska et al. implemented the FCMclustering algorithm in a parallel version [37].
CUDA was used as the programming language. The authors compared the sequential
code of the FCM with the parallel version. They tested the two algorithm versions
using different colored images with different size. The membership and centroids
functions were executed on the GPU side, while the objective function and the ter-
mination condition were executed on the CPU side. The sequential implementation
was implemented in C++ andMATLAB. The GPU parallel implementation was faster
than the CPU implementation by 7× (7 times).

Walters et al. proposed a parallel technique for two segmentation algorithms which
are: the Markov random fields (MRF) and HMMERs Viterbi [45]. The used dataset
was medical images for liver. The hardware that was used in this paper is NVIDIA
GPU 8800 GTX. In this research, the speedup of the parallel version was enhanced by
130× for MRF algorithm and 38.6× for the HMMER algorithm over the sequential
CPU implementation.

Pan et al. in [34] parallelized the region-growingmethod (RGM) and themulti-level
watershed method (MLWM) algorithms using GPU hardware. They used abdomen
images and brain images as datasets. The hardware that was used in their work was the
Geforce 8500 GT. The speedup was enhanced by 8× for the region-growing method
and 2.3× for the multi-level watershed method.

Many researchers such as in [22,34,37,45] utilize the GPU capabilities to increase
the computational performance of image processing algorithms. GPUs uses single
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instructionmultiple data (SIMD) technique as the parallel paradigm.While both CPUs
and GPUs can run and manage thousands of threads simultaneously via time-slicing,
modern CPUs can run 4–12 threads simultaneously whereas GPUs can run a thousand
of threads [20,22].

3 FCM-based algorithms for image segmentation

3.1 Serial version of four FCM algorithms versions

In this section, we present the sequential CPU implementations of the FCM and the
type-2 fuzzy C-mean (T2FCM) algorithms. The programming language that was used
in this study is C-sharp programming language [24].

3.1.1 Fuzzy C-mean algorithm

FCMalgorithm is one of themost famous clustering algorithms that is used to segment
data into N clusters [14]. The segmentation process is performed in three main steps.
The first step calculates the centroid for each cluster (initially, these centroids are
generated randomly). This operation uses Eq. 1.

Vj =
∑n

i=1 u
m
i j · xi

∑n
i=1 u

m
i j

(1)

wherem is the fuzziness factor, n is the number of points, v j is the center of cluster
j

The second step calculates the membership of each data point to all clusters’ cen-
troids. This step is carried out using Eq. 2

ui j = 1

∑c
k=1

(‖xi−c j‖
‖xi−ck‖

) 2
m−1

(2)

where C is the number of clusters, xi is the object point.
The third step calculates the distance between data points and clusters’ centers.

The three steps are repeated until the difference of the total distance between points
and centers is less than or equal to some error threshold [37]. This step is called the
objective function and is calculated using Eq. 3. Algorithm 1 shows the sequential
FCM algorithm.

Jm =
n∑

i=1

c∑

j=1

umi j
∥
∥xi − c j

∥
∥2 , 1 ≤ m < ∞ (3)

wherem is the fuzziness factor, n is the number of points, c is the number of clusters.
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Algorithm 1 FCM Algorithm
1: procedure FCM(c, m, ε)
2: Set the number of clusters C , the fuzziness parameter m and the termination criterion ε, set k = 0
3: Initialize random cluster centers
4: Initialize the membership matrix Ui j according to Equation 2
5: repeat
6: Calculate the objective function Jk according to Equation 3
7: Set the loop counter k = k + 1
8: Calculate the cluster center vectors Ck = [Ci ] according to Equation 1
9: Calculate the membership matrix Ui j according to Equation 2

10: Calculate the objective function J (k + 1) according to Equation 3
11: until
12:

∥
∥
∥J (k+1) − Jk

∥
∥
∥ < ε

13: Do segmentation (Alg. 5)
14: end procedure

Algorithm 2 T2FCM Algorithm
1: procedure T2FCM(c, m, ε)
2: Set the number of clusters C , the fuzziness parameter m and the termination criterion ε, set k = 0
3: Initialize random cluster centers
4: Initialize the membership matrix Ui j according to Equation 2
5: Calculate the membership matrix ai j according to Equation 4
6: repeat
7: Calculate the objective function Jk according to Equation 3 and replace Ui j with ai j
8: Set the loop counter k = k + 1
9: Calculate the cluster center vectors Ck according to Equation 1
10: Calculate the membership matrix Ui j according to Equation 2
11: Calculate the membership matrix ai j according to Equation 4

12: Calculate the objective function Jk+1 according to Equation 3 and replace Ui j with ai j
13: until
14:

∥
∥
∥J (k+1) − Jk

∥
∥
∥ < ε

15: Do Segmentation (Alg. 5)
16: end procedure

3.1.2 Type-2 fuzzy C-mean algorithm

Rhee et al. in [23] presented the type-2 fuzzy C-mean algorithm (T2FCM) for data
classification. It uses the same FCM steps and equations except for the membership
function. T2FCM uses Eq. 4 which increases the accuracy of the membership value.
Algorithm 2 shows the sequential T2FCM algorithm.

ai j = ui j − 1 − ui j
2

(4)

3.1.3 Interval type 2 fuzzy C-mean

Hwang et al. in [25] proposed the algorithm interval type-2 fuzzy C-mean (IT2FCM).
This algorithm is based on the traditional FCM but with improvements that produced
more accurate results. The algorithm uses two values of fuzziness to calculate the
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Algorithm 3 IT2FCM Algorithm
1: procedure IT2FCM(c, m1,m2, ε)
2: Set the number of clusters C , the fuzziness parameter m and the termination criterion ε, set k = 0
3: Initialize random cluster’ centers
4: Sort data in an ascending order (Xi − 1 < Xi < Xi+1)

5: Set the loop counter k = k + 1
6: repeat
7: Calculate the upper and lower memberships according to Equations 5 and 6
8: Calculate the objective function Jk according to Equation 7
9: Get indexC = index of a cluster center from the sorted list
10: Calculate the cluster centers’ vectors C(k) = [Ci ] according to Equation 10
11: Defuzzification membership for a hard partition using Equation 11
12: until
13:

∥
∥
∥J (k+1) − Jk

∥
∥
∥ < ε

14: Do Segmentation (Alg. 5)
15: end procedure

membership of data points. Two membership values are computed which are: the
upper and lower membership for each cluster’s center. These two membership values
are calculated using Eq. 5 after sorting data points in an ascending order. The centroid
values of clusters are then updated using these twomemberships. The authors used two
values for each center (Vleft andVRight). The average of the left and right centroid values
is the value of the new cluster’s center. The values (Vleft and VRight) are calculated
as follows. First, find the index value of the old cluster’s center K after sorting all
data points in an ascending order. Then calculate the center using the same equation
of FCM, which is Eq. 1. If index of a point K , then ui j = ui j , otherwise ui j = ui j .
Equation 6 is used in the algorithm as shown in Algorithm 3.

ui j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

∑c
k=1

(‖Xi−C j‖
‖Xi−Ck‖

) 2
m1−1

, i f
∑c

k=1

(‖Xi−C j‖
‖Xi−Ck‖

)
≤ P

1

∑c
k=1

(‖Xi−C j‖
‖Xi−Ck‖

) 2
m2−1

Otherwise
(5)

ui j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

∑c
k=1

(‖Xi−C j‖
‖Xi−Ck‖

) 2
m1−1

, i f
∑c

k=1

(‖Xi−C j‖
‖Xi−Ck‖

)
≥ P

1

∑c
k=1

(‖Xi−C j‖
‖Xi−Ck‖

) 2
m2−1

Otherwise
(6)

where P = j
255 , j is the index of a cluster, and i is the index of point

The objective function is calculated using Eq. 7. Clusters’ centers are updated using
Eqs. 8 and 9.

Jm =
C∑

k=1

N∑

i=1

xi
uik

+ xi
uik

(7)
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VLeft =
∑N

i=1 u
m
i j × xi

∑N
i=1 u

m
i j

(8)

where ui j = ui j if the value of i ≤ K , and K is the index of center value after sorting
the data points. Otherwise, ui j = ui j .

VRight =
∑N

i=1 u
m
i j × xi

∑N
i=1 u

m
i j

, (9)

where ui j = ui j if the value of i ≤ K , and K is the index of center value after sorting
the data points. Otherwise, ui j = ui j . Finally, the new center values are calculated
using Eq. 10:

C(k) = VLeft + VRight
2

(10)

ui j =
ui j + ui j

2
(11)

3.1.4 Modified interval type-2 fuzzy C-mean

Pixels feathers in FCM and IT2FCM algorithms are supposed to be independent of
each other. However, in medical images, pixels feathers are dependent, especially the
neighboring pixels. Qiu et al. in [36]modified the IT2FCMalgorithm in [25] by adding
a feature of dependency for neighboring pixels, which produced better accuracy. The
authors used a local spatial interaction between adjacent pixels. They used 3 × 3
local window to simplify the computation of dependency and named their algorithm
modified interval type-2 fuzzy C-mean (MIT2FCM).

In MIT2FCM, the upper and lower memberships were used similar to [25]. The
new step that was introduced is a local spatial of adjacent pixels. It is calculated using

Eq. 12, where ui j = ui j+ui j
2 . Equations 13 and 14 are used in MIT2FCM as shown in

Algorithm 4.

uispatial =
⎛

⎝
Nk∑

l=1

1

d2(dl , dk)
1

m−1

⎞

⎠

−1

×
(

N∑

a=1

ui j

d2(xa, xk)
1

m−1

)

(12)

ui j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

∑c
k=1

( ∥
∥
∥d∗

i j

∥
∥
∥

‖d∗
ik‖

) 2
m1−1

, if
∑c

k=1

( ∥
∥
∥d∗

i j

∥
∥
∥

‖d∗
ik‖

)

≤ C

1

∑c
k=1

( ∥
∥
∥d∗

i j

∥
∥
∥

‖d∗
ik‖

) 2
m2−1

Otherwise
(13)
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Algorithm 4MIT2FCM Algorithm
1: procedure MIT2FCM(c, m1,m2 , ε)
2: Set the number of clusters C , the fuzziness parameter m and the termination criterion ε, set k = 0
3: Initialize random cluster centers
4: Sort data in an ascending order (Xi − 1 < Xi < Xi+1)

5: Set the loop counter k = k + 1
6: repeat
7: Calculate the upper and lower memberships according to Equations 5 and 6
8: Calculate the spatial membership according to Equation 12
9: Update the upper and lower memberships according to Equations 13 and 14
10: Calculate the objective function Jk according to Equation 7
11: Get indexC = index of cluster center from the sorted list
12: Calculate the cluster centers’ vectors C(k) = [Ci ] according to Equation 10
13: Defuzzification membership for hard partition using Equation 11
14: until
15:

∥
∥
∥J (k+1) − Jk

∥
∥
∥ < ε

16: Do Segmentation (Alg. 5)
17: end procedure

Algorithm 5 CPU version of the Do Segmentation Function
1: procedure Do Segmentation(Points, Clusters)
2: Create images same as the number of clusters
3: for <All points> do
4: for <All clusters> do
5: if Points.Clusters I ndex == Clusters.I D then
6: Put pixel value on image.ID
7: end if
8: end for
9: end for
10: end procedure

ui j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

∑c
k=1

( ∥
∥
∥d∗

i j

∥
∥
∥

‖d∗
ik‖

) 2
m1−1

, if
∑c

k=1

( ∥
∥
∥d∗

i j

∥
∥
∥

‖d∗
ik‖

)

≥ C

1

∑c
k=1

( ∥
∥
∥d∗

i j

∥
∥
∥

‖d∗
ik‖

) 2
m2−1

Otherwise
(14)

where d∗
ik = d2ik

uiSpatial
.

3.2 Parallel version of the FCM algorithms

This section presents the hybrid CPU–GPU implementation of the four segmentation
algorithms: FCM, T2FCM, IT2FCM, and MIT2FCM. The hybrid strategy of using
the CPU and GPU together provides a powerful tool for programmers to achieve
efficient computation [35]. In the four cases, our parallel implementations improve
the execution time over the sequential implementations.
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The membership function is implemented in a parallel fashion to execute on the
GPU card. Also, the Do Segmentation Function was parallelized to run on the GPU
side as shown in Algorithm 6. This function is used to update and segment the image
pixels based on the strength of the membership value compared to the center of a
cluster.

The calculations of the centroids and the objective functions are executed on the
CPU side, because they need to calculate the summation as shown in Eqs. 1 and 3.
The summation operation needs to run a number of iterations equal to the number
of points multiplied by the number of clusters. If we parallelize this using threads,
synchronization of all threads is needed. However, thread synchronization produces
high delay on the GPU. Hence, performing this operation on the CPU is faster. Also,
transferring data back and forth between theGPUand theCPUmemories is avoided. In
our previous work in [39], a parallel version without this CPU optimization achieved a
speedup of 6×. However, in this work, we improved it by 9× after using optimization
techniques as follows. In this work, we performed some mathematical operation in a
different way of implementation. For example, the square function can be represented
as a multiplication operation. Another optimization is to store the objective value
using another variable. When the the operation needs the new value, we used the XOR

Algorithm 6 GPU version of the Do Segmentation Function
1: procedure Do Segmentation(Points, Clusters)
2: Create images as the number of clusters (Shared Memory)
3: Pixel ID = Thread.ID
4: for <All clusters> do
5: if Points.Clusters I ndex == Clusters.I D then
6: Put pixel value on image.ID
7: end if
8: end for
9: end procedure

Algorithm 7 Hybrid CPU–GPU FCM Algorithm
1: procedure FCM(c, m, ε)
2: Set the number of clusters C , the fuzziness parameter m and the termination criterion ε, set k = 0
3: Initialize random cluster centers
4: Initialize cluster centroids, data points and memberships matrix on GPU
5: Initialize the membership matrix Ui j according to Equation 2 (GPU)
6: Transfer memberships from GPU
7: repeat
8: Calculate the objective function Jk according to Equation 3
9: Set the loop counter k = k + 1
10: Calculate the cluster centers’ vectors Ck = [Ci ] according to Equation 1
11: Transfer centroids to GPU
12: Initialize the membership matrix Ui j according to Equation 2 (GPU)
13: Transfer memberships from GPU
14: Calculate the objective function J (k + 1) according to Equation 3
15: until
16:

∥
∥
∥J (k+1) − Jk

∥
∥
∥ < ε

17: Do Segmentation on GPU (Alg. 6)
18: end procedure
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operation to swap between the two values of the objective function. XOR operation
increased the improvement by 1×.Multiplication operation increased the performance
by 2×. Hence, the newversion of parallel FCM is 9× faster than the sequential version.
Those two optimization techniques were used for the four parallel versions presented
in this paper.

As shown in Eq. 2, themembership function has a summation operation that iterates
same as the number of clusters. Also, each pixel needs to calculate the Euclidean
distance between itself and clusters’ centroids. This can be done separately. Hence,
we improved the T2FCM algorithm performance by calculating the membership U
in Eq. 2, the new membership A in Eq. 4, and do segmentation function on the GPU
side. The new parallel version of T2FCM is shown in Algorithm 8.

Algorithm 8 Hybrid CPU–GPU T2FCM Algorithm
1: procedure T2FCM(c, m, ε)
2: Set the number of clusters C , the fuzziness parameter m and the termination criterion ε, set k = 0
3: Initialize random cluster centers
4: Initialize the membership matrix Ui j according to Equation 2 (GPU)
5: Calculate the membership matrix Ai j according to Equation 4 (GPU)
6: Transfer memberships Ai j from GPU
7: Calculate the objective function Jk according to Equation 3
8: repeat
9: Set the loop counter k = k + 1
10: Calculate the cluster centers vectors Ck according to Equation 1
11: Transfer centroids to GPU
12: Initialize the membership matrix Ui j according to Equation 2 (GPU)
13: Calculate the membership matrix Ai j according to Equation 4 (GPU)
14: Transfer memberships Ai j from GPU
15: Calculate the objective function Jk+1 according to Equation 3 and replace Ui j with ai j
16: until
17:

∥
∥
∥J (k+1) − Jk

∥
∥
∥ < ε

18: Do Segmentation on GPU (Alg. 6)
19: end procedure

For the hybrid CPU–GPU implementation of the IT2FCM algorithm, all functions
that calculate the membership values were converted to a parallel implementation.
This algorithm needs to perform data sorting at the beginning of the code. We used a
build-in sorting algorithm on the CPU side for two reasons: first, it runs only once at
the beginning of the code. Second, the sorting is performed on a data structure type that
contains many attributes such as: X-axis, Y -axis, Red, Green, Blue, and alpha values
for each pixel point. Hence, if we are to creatememory allocation on theGPUmemory,
it would have required to transfer more than one memory allocation which produced
a high delay in time. For the aforementioned two reasons, the sorting algorithm is
performed on the CPU side.

Also, at each iteration of the IT2FCM and MIT2FCM algorithms, a search for the
index value of a cluster’s center is needed. Thus, we used binary search algorithm
which is fast for sorted data.

The MIT2FCM algorithm is similar to the IT2FCM algorithm except for the fil-
tration operation. Hence, we used the same hybrid CPU–GPU implementation of
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Algorithm 9 Hybrid CPU–GPU IT2FCM Algorithm
1: procedure IT2FCM(c, m1,m2, ε)
2: Set the number of clusters C , the fuzziness parameter m and the termination criterion ε, set k = 0
3: Initialize random cluster centers
4: Sort data in ascending order (Xi − 1 < Xi < Xi+1).
5: Set the loop counter k = k + 1
6: repeat
7: Calculate the Euclidean distance di j (GPU)
8: Calculate the upper and lower memberships according to Equations 5 and 6(GPU)
9: Transfer the upper and lower memberships from GPU
10: Calculate the objective function Jk according to Equation 7
11: Get indexC = index of cluster center from the sorted list.
12: Calculate the cluster centers vectors C(k) = [Ci ] according to Equation 10(Binary Search)
13: Defuzzification membership for hard partition using Equation 11(GPU)
14: until
15:

∥
∥
∥J (k+1) − Jk

∥
∥
∥ < ε

16: Do Segmentation on GPU (Alg. 6)
17: end procedure

Table 1 Hybrid CPU–GPU functions

Algorithm CPU-functions GPU-functions

FCM Calculate centroid Calculate membership

Calculate objective function Do segmentation

T2FCM Calculate centroid Calculate membership

Calculate objective function Do Segmentation

Calculate ai j membership

IT2FCM Calculate centroid Calculate membership

Calculate objective function Do segmentation

Build-in sort algorithm Calculate upper and lower membership

IT2MFCM Calculate centroid Calculate membership

Calculate objective function Do segmentation

Build-in sort algorithm Calculate upper and lower membership

Calculate spatial membership

Filtering operation (mean filter)

IT2FCM with a parallel modified membership function of IT2FCM. This step is a
filtering operation and the GPU can execute it faster than the CPU because it is paral-
lelizable. The mean filter is used which updates the value of a pixel using the average
of neighborhood pixels. Table 1 shows the list of functions of MIT2FCM and their
locations whether on the GPU side or the CPU side.

In calculating the objective value for FCM, T2FCM, IT2FCM, and MIT2FCM, we
compute the exponential function on the CPU side by performing multiplication if the
power is two. Also, for IT2FCM and MIT2FCM, we calculate the value

∑C
k=1

di j
dik

in
Eq. 5 only one time and then saved it in a memory array for later use when calculating
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Table 2 Percentage of GPU utilization

Number of threads 1.0 1.1 1.2 1.3 2.0 2.1 3.0

64 67 67 50 50 33 33 50

96 100 100 75 75 50 50 75

128 100 100 100 100 67 67 100

192 100 100 94 94 100 100 94

256 100 100 100 100 100 100 100

384 100 100 75 75 100 100 94

512 67 67 100 100 100 100 100

768 N/A N/A N/A N/A 100 100 75

1024 N/A N/A N/A N/A 67 67 100

the upper and lower values in:
∑C

k=1

(
di j
dik

) 2
m1−1

. This optimization saved a large

amount of time on the CPU side.
Memory optimization is another challenge that we faced in our parallel implemen-

tation. As mentioned in [20], the usage of memory is critical in GPU programming
and can result in slow execution time. Hence, we calculate the memory size to be
used using Eq. 15. This equation optimizes memory size usage and speeds up GPU
computations. Also, large number of threads can slow down GPU computations when
many threads try to read and/or write to the memory [19]. Also, since many models
of NVIDIA GPU hardwares cannot support 1024 threads, we used a fixed number of
threads of 256. We have used different numbers of threads as shown in Table 2. 256
threads produced the best GPU utilization as shown in the table.

Number of blocks = ceil

(
size of data

number of threads

)

(15)

4 Results and discussion

This section presents the execution time comparison between the hybrid CPU–GPU
implementation and the sequential implementation. We calculate the speedup using
Eq. 16.

Speedup = Sequential CPUTIME

Hybrid CPUGPUTIME
(16)

1. Dataset
We have used one MR image and one mammography image for both FCM and

T2FCM algorithms as in [32] and [1]. The MR is a brain image with size of 512
× 512. The Mammography images is also of size 512 × 512 and both images are
gray-scale type.
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2. Results
The GPU card that was used in this experiment is NVIDIA GT 740M with 2GB

memory. The CPU is Intel core I7 with 6GB RAM. The platform is Windows 8.1
with C# and CUDA libraries installed. An integration library with Visual Studio 2013
was used to run C# on GPU [2]. Our implementations did not reduce the image
segmentation accuracy in all cases. However, the speedup is improved. The number
of clusters that was used is five.

(a) Results of MR and mammography images dataset:
Table 3 shows the experiments of sequential FCM and our hybrid FCM. We ran

our experiments for ten times and the average CPU time is 167.4988 s (sequential
version). However, the average execution time for our hybrid CPU–GPU is 16.8915
s for MR images. The results of the two FCM versions are the same with respect to
the segmented image and accuracy. Table 4 shows the results for T2FCM algorithm
versions using the same image that was used in the FCM experiment. The average
CPU time is 134.5872 s and the average for hybrid CPU–GPU time is 21.993 s.

As shown in Tables 5 and 6, IT2FCM algorithm, using MR images, produced an
average CPU time of 428.1371 s for the sequential version and 51.4126 s in the case of
the hybrid CPU–GPU. The MIT2FCM results show 316.8554 s for the CPU average
execution time and 24.0313 s for the hybrid CPU–GPU with a speedup of more than
13×. This is because of the filtering operation in MIT2FCM which improves the
classification operation [46]. Figure 1 summarizes these results.

For the mammography images case, Tables 7, 8, 9, and 10 show the results for
the four algorithms. The average FCM CPU time and average hybrid CPU–GPU
time are 172.8874 and 20.3478 s, respectively. The average T2FCM CPU time and
average hybrid CPU–GPU time are 166.3168 and 24.5534 s, respectively. The average
IT2FCM CPU time and average hybrid CPU–GPU time are 461.6416 and 49.6946 s,
respectively. The average MIT2FCM CPU time and average hybrid CPU–GPU time
are 2427.1017 and 117.778 s, respectively with a speedup of more than 20×. Figure 2
summarizes these results.

Table 3 10 runs of FCM versions for the MR image

CPU iterations CPU time GPU time CPU precision GPU precision GPU iterations

25 533.017 24.765 0 0 25

17 154.603 13.323 0 0 17

26 152.734 20.159 0 0 26

16 94.303 12.589 0 0 16

15 88.463 11.801 0 0 15

15 88.137 11.734 0 0 15

18 105.179 14.1 0 0 18

20 117.364 15.651 0 0 20

26 151.85 20.24 0 0 26

32 189.338 24.553 0 0 32
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Table 4 10 runs of T2FCM versions for the MR image

CPU iterations CPU time GPU time CPU precision GPU precision GPU iterations

29 169.557 27.946 0 0 29

31 182.443 29.802 0 0 31

31 181.731 29.706 0 0 31

18 106.219 17.494 0 0 18

32 188.842 30.379 0 0 32

28 165.616 26.938 0 0 28

20 119.872 19.359 0 0 20

18 106.349 17.522 0 0 18

4 25.185 4.263 0 0 4

17 100.058 16.521 0 0 17

Table 5 10 runs of IT2FCM versions for the MR image

CPU iterations CPU time GPU time CPU precision GPU precision GPU iterations

19 104.682 13.139 0 0 19

100 546.691 65.520 224.3910 224.391 100

100 551.144 65.459 224.391 224.391 100

100 552.454 65.829 104.003 104.003 100

100 543.722 65.967 175.404 175.404 100

100 548.036 65.310 220.402 220.402 100

100 542.912 66.152 316.695 316.695 100

100 554.082 65.423 257.285 257.285 100

27 151.697 18.208 4.197 4.197 27

34 185.951 23.119 4.197 4.197 34

Table 6 10 runs of MIT2FCM versions for the MR image

CPU iterations CPU time GPU time CPU precision GPU precision GPU iterations

10 212.611 16.416 0 0 10

14 292.634 21.797 0 0 14

7 154.956 11.639 0 0 7

25 502.081 37.78 3070.485 3070.485 25

20 404.757 31.21 3070.485 3070.485 20

21 425.397 31.965 3070.485 3070.485 21

20 406.137 31.243 3071.822 3071.822 20

16 327.118 24.825 0 0 16

12 249.774 18.934 0 0 12

9 193.089 14.504 0 0 9
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Fig. 1 Execution time of CPU and hybrid CPU–GPU for MR

Table 7 10 runs of FCM for the mammography image

CPU iterations CPU time GPU time CPU precision GPU precision GPU iterations

23 183.691 21.625 0 0 23

18 108.668 16.901 0 0 18

33 266.265 29.717 0 0 33

19 154.588 17.931 0 0 19

27 216.489 25.184 0 0 27

27 218.112 25.175 0 0 27

20 161.713 18.127 0 0 20

14 112.856 13.272 0 0 14

11 90.096 10.525 0 0 11

27 216.396 25.021 0 0 27

Table 8 10 runs of T2FCM for the mammography image

CPU iterations CPU time GPU time CPU precision GPU precision GPU iterations

18 146.017 20.962 0 0 18

29 210.226 33.526 0 0 29

17 139.108 20.343 0 0 17

24 193.153 28.261 0 0 24

13 105.753 15.841 0 0 13

25 201.85 29.632 0 0 25

25 202.837 29.711 0 0 25

16 130.534 19.146 0 0 16

30 243.734 34.574 0 0 30

11 89.956 13.538 0 0 11
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Table 9 10 runs of IT2FCM for the mammography image

CPU iterations CPU time GPU time CPU precision GPU precision GPU iterations

15 121.762 13.375 0 0 15

67 519.677 57.952 0 0 67

49 383.201 42.231 0 0 49

100 755.311 85.037 266.288 266.288 100

42 290.659 36.326 75.804 75.804 42

34 264.648 29.455 0 0 34

56 427.841 43.428 0.788 0.788 56

100 767.241 75.542 0.730 0.730 100

48 335.846 36.719 413.882 413.882 48

100 750.23 76.881 41.761 41.761 100

Table 10 10 runs of MIT2FCM for the mammography image

CPU iterations CPU time GPU time CPU precision GPU precision GPU iterations

100 2791.866 137.136 467.726 467.726 100

100 2769.488 122.189 74.329 74.329 100

100 2787.901 140.427 314.631 314.631 100

100 2802.546 135.223 75.424 75.424 100

100 2804.152 136.328 74.078 74.078 100

24 692.593 34.527 75.583 75.583 24

100 2805.223 138.944 74.673 74.673 100

100 2799.686 135.742 0.500 0.500 100

43 1218.326 60.627 75.583 75.583 43

100 2799.236 136.637 73.407 73.407 100

(b) Speedup discussion
From the execution time shown previously, we can see that the speedup improve-

ment for the parallel FCM is almost 10× for the MR image and more than 8× for the
mammogram image compared to the sequential algorithm.We have used optimization
techniques to speed up the execution time by reducing the data transfer rate from and
to the GPU memory. For example, we transfer cluster index values to the GPU one
way, and we copy it when the code terminates to visualize the results in our appli-
cation GUI. Also, T2FCM speedup is more than 6× by moving special functions to
the GPU and keeping others on the CPU side where they execute faster. The IT2FCM
algorithm achieved a speedup of more than 8× for the MR image and more than 9× in
the case of mammogram image. Finally, MIT2FCM achieved more than 13× for the
MR image and more than 20× for the mammogram image. Figure 3 summarizes these
results.

The filter step increases the image segmentation accuracy. However, it incurs a
high execution-time overhead of about 53.5 s. Since the filtering operation can be
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Fig. 2 Execution time of CPU and hybrid CPU–GPU for mamogram

Fig. 3 Speedup gain of FCM algorithms

parallelized perfectly, we can move it to the GPU side which results in an overhead of
only 0.38 s for the hybrid CPU–GPU versions.

Also, IT2FCM algorithm achieved higher speedup than the T2FCM because it uses
two membership matrices (upper and lower memberships). Using one membership
matrix in T2FCM results in more dependency for the data points. Consequently, cal-
culating the memberships on the GPU side is better than the CPU side because of the
low dependency between the elements of the matrices. The GPU can run the upper
and lower matrices in parallel, so that each matrix is calculated separately.

In the last segmentation algorithm which is the MIT2FCM, the authors of the
algorithm improved the accuracy of the segmentation process by adding a filtering
step. However, this step increases the execution time.With the parallel implementation

123



Accelerating compute-intensive image segmentation. . . 1947

Table 11 Examples of the accuracy for each FCM algorithm

Algorithm MRI Mammography

Original image

FCM

T2FCM

IT2FCM

MIT2FCM

of the filtering operation on the GPU, we solved its problem of having high execution-
time overhead. Our aforementioned discoveries of optimization techniques help the
image processing community, especially if these algorithms are to be used in real-time
processing where efficient computation is critical.

Table 11 shows sample examples of the images that were used in our experiments
and the accuracy of each segmentation algorithm. Also, Tables 12 and 13 show sample
clusters that were used in the experiments.
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Table 12 5 clusters of MR images for FCM algorithms

Algorithm type FCM T2FCM IT2FCM MIT2FCM

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5
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Table 13 5 clusters of mammography images for FCM algorithms

Algorithm
type

FCM T2FCM IT2FCM MIT2FCM

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

5 Conclusion

Image segmentation process is used to extract objects from images. Because of its
importance, many methods were proposed in the literature to improve the segmenta-
tion process. In this paper, we studied four important clustering algorithms which are:
FCM, T2FCM, IT2FCM, and MIT2FCM. Parallel implementations of the algorithms
were developed and investigated to improve their execution time without penalizing
the accuracy. GPU hardware was used to execute the parallel implementations and
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compared with sequential CPU-only implementations. We used MR and mammog-
raphy images in conducting our experiments. Results show that speedup of 6× to
20× can be achieved with parallel hybrid CPU–GPU implementations. Also, we have
discussed optimization steps in the algorithms to enhance their execution time. This
is critical for real-time processing where efficient calculations are needed.

Acknowledgements This work is funded by Jordan University of Science and Technology (JO) (Grant
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