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Abstract Depth estimation is one of the essential components in many computer
vision applications such as 3D scene reconstruction and stereo-based object detection.
In such applications, the overall quality of the system highly depends on the qual-
ity of depth maps. Recently, several depth estimation methods based on semi-global
matching (SGM) have been proposed because SGMprovides a good trade-off between
runtime and accuracy in depth estimation. In addition, non-parametric matching costs
have drawn a lot of attention because they tolerate all radiometric distortions. In this
paper, a depth estimation method based on the Census transform with adaptive win-
dow patterns and stripe-based optimization has been proposed. For finding the most
accurate depth value, adaptive length optimization paths via multiple stripes are used.
A modified cross-based cost aggregation technique is proposed which adaptively cre-
ates the shape of the cross for each pixel distinctly. In addition, a depth refinement
algorithm is proposed which fills the holes of the estimated depth map using the sur-
rounding background depth pixels and sharpens the object boundaries by applying a
trilateral filter to the generated depth map. The trilateral filter uses the curvature of
pixels as well as texture and depth information to sharpen the edges. Simulation results
indicate that the proposed methods enhance the quality of depth maps while reducing
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the computational complexity compared to the existing SGM-based depth estimation
methods.

Keywords Depth estimation · Cross-based cost aggregation · Stripe-based
optimization · Advanced driver assistance system

1 Introduction

Depth is considered as one of the most important cues in perceiving the three-
dimensional characteristics of objects in the scene captured by cameras. In computer
vision, the value which represents the distance between each object in the scene to
the focal point of the camera is called depth and an image storing these values for
all the pixels is referred to as a depth map. Depth maps are essential in a variety of
applications such as view synthesis, robot vision, 3D scene reconstruction, interaction
between human and computer, and advanced driver assistance systems [1–3]. The
performance of the mentioned applications is highly dependent on the quality and
accuracy of the depth map. Thus, generating an accurate depth map is of substantial
importance. The main objective of depth estimation methods is to generate a per-pixel
depth map of the scene based on two or more reference images of the same scene from
different angles. The reference images are captured by a stereo calibrated camera sys-
tem in which the cameras are parallel to each other or are set with a slight angle. The
images are typically stereo rectified with the property that the corresponding points in
each image have identical vertical coordinates.

Most of stereo matching methods usually consist of the following four steps:

– Matching cost calculation The similarity of image locations is measured by defin-
ing a matching cost. Normally, a matching cost is calculated at each pixel for all
disparities under certain considerations. Commonmatching costs include absolute
differences (AD) and squared differences (SD). More complicated matching costs
have also been proposed such as mutual information (MI), Census transform, and
rank transform. An evaluation of different cost functions for stereo matching is
provided in [4].

– Cost aggregationThe calculatedmatching cost is aggregated over a support region.
Numerous cost aggregation methods have been proposed recently [33–35]. The
most common way is by using a square window. Cross-based cost aggregation is
an alternative solution to this matter.

– Disparity optimizationDisparity refers to the distance between two corresponding
points in the left and right images of a stereo pair. The disparity which minimizes
the cost function is chosen as the optimum value and the depth value is calculated
accordingly. Several optimization techniques have been proposed to estimate the
optimum depth value.

– Depth refinement Depending on the application, the requirement for depth map
accuracy varies. Some applications like human pose estimation in the gaming
industry are satisfied by low resolution depth maps. However, higher accuracy is
vital for applications like depth image-based rendering (DIBR) techniques and
stereo-based advanced driver assistant systems (ADAS).
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Fig. 1 Example of a Kinect dataset a color image, and b depth map (color figure online)

Depth maps can be estimated using either stereo matching techniques or depth
sensors. With the advent of depth sensors, novel camera systems have been developed
[5], which generate depthmaps in real-time. Themeasurement of depth in such sensors
is often performed by either using time-of-flight (TOF) systems or infrared pattern
deformation. Depth maps acquired by the depth sensors are usually noisy and suffer
from poorly generated depth boundaries. Figure 1 shows an example of a set of color
and depth map of a scene captured by Kinect device [5]. We can see that the depth
map has extremely poor quality.

Stereo matching techniques can be classified into two groups, namely local and
global techniques. Local methods [6,7] consider a finite-size window to estimate the
disparity. Thus, the window size plays an important role in such methods. The local
methods are fast and computationally simple but they are highly error-prone and the
estimated depth maps are usually inaccurate. On the other hand, in global techniques
an energy function is globally optimized to find the disparity. Global depth estimation
techniques can generate high-quality depth maps. Most popular techniques in this
category include belief propagation [8], graph cuts [9] and dynamic programming
[10]. However, due to the computational complexity of such algorithms, it is not
feasible to use them in real-time applications. Semi-global matching (SGM) [11]
which was first introduced by Hirschmuller, performs pixelwise matching based on
mutual information and approximation of a global smoothness constraint. Therefore, a
good trade-off between accuracy and runtime is obtained. However, it achieves limited
performance under illumination changes.Despite the presence of suchpromisingdepth
estimation techniques, there are still several problems in the generated depth maps.
The existence of holes and sensitivity to noise and illumination changes are the main
significant problems. These problems are partially solved by post-processing the depth
maps using depth refinement techniques [12,13].

In this paper, we propose a depth estimation algorithm based on the Census trans-
form and stripe-based optimization. The main contribution of the proposed method
is to improve the quality of estimated depth maps with low computational complex-
ity so that it can satisfy the requirements of real-time applications such as 3D scene
reconstruction and stereo-based pedestrian detection. We focus on applying the pro-
posed depth estimation method for stereo-based pedestrian detection in advanced
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driver assistance systems. The proposed method increases the performance of ADAS
systems by improving the pedestrian detection rate. Simulation results indicate a sig-
nificant increase in the depth map accuracy and quality. Performance evaluations are
performed using standard benchmarks and real-world scenarios to demonstrate the
efficiency of the proposed algorithm.

The rest of the paper is organized as follows. In Sect. 2, we review previous work
related to real-time depth estimation. The proposed method is presented in detail in
Sect. 3. The experimental results are provided in Sect. 4, and the paper is concluded
in Sect. 5.

2 Related work

Several approaches have been proposed in the past for estimating dense disparity
maps from stereo images captured by static cameras. Due to the development of vari-
ous applications that require real-time processing, such as advanced driver assistance
systems, real-time depth estimation has become a more attractive research area in
recent years. In this section, we will briefly review recently proposed real-time depth
estimation techniques.

During the past several years,many stereomatching techniques have been proposed.
A survey study of different stereo matching algorithms is available in [14]. A multi-
resolution stereo matching technique implemented in graphics hardware is presented
in [15]. The multi-resolution scheme reduces the noise and sum-of-squared-difference
(SSD) is used to aggregatematching cost. Theoptimumdisparity values are determined
based on the winner-take-all criterion. A depth estimation method for uncalibrated
stereo images is proposed in [16].

Due to high computational complexity of some of stereo matching techniques,
real-time performance is only achieved via specially designed hardware. In [17], a
graphics processing unit (GPU)-based depth estimation method is proposed which
exploits adaptive cost aggregation windows. The windows change shape according
to the local content of the image, such as edges and corners. A near-real-time stereo
matching technique based on dynamic programming is presented in [18]. Twodifferent
implementations are presented in the paper. The first one uses the GPU for matching
cost calculation and uses the CPU for disparity estimation, while the second one uses
GPU for both calculations. A real-time correlation-based stereo matching algorithm is
proposed in [19] which uses an image-gradient-guided cost aggregation scheme. The
scheme is designed to fit the architecture of GPUs and the whole algorithm is run on
the graphics board.

Depth estimation using SGM has been studied intensively for the past years. The
original SGM implementation on GPUwas first presented in [20]. An implementation
of SGM with 8 accumulation paths on field programmable gate array (FPGA) is
presented in [21].

Themethod proposed in [22] uses a 4 path cost aggregationmethod and an extended
work with fewer aggregation paths is presented in [23].

Eliminating the diagonal integration paths is an idea proposed in [24]. By only using
4 directions for cost accumulation, the method proposed in [24] achieves a run time
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of 19 ms for a 512 × 383 image resolution. iSGM is a technique introduced in [25]
as a new cost integration concept for semi-global matching by iteratively reducing the
search space. A GPU-based SGM depth estimation method is proposed in [26] which
can achieve real-time processing on high resolution reference images. Themethod runs
with the frame rate of 25 fps on images with 1024× 768 resolution and 128 disparity
levels. In [27], a two-dimensional parallelization scheme for SGM is proposed. The
FPGA implementation of the algorithm achieves real-time processing for VGA image
resolutions.

In the past years, a number of depth estimation methods based on the Census trans-
form have been proposed. In [28], a SGM-based technique is proposed which uses
a 5 × 5 Census transform for computing the similarity while conducting cost accu-
mulation over 8 paths. In [29], a disparity map is estimated by applying the Census
transform prior to the SGM-based optimization. The depthmap is refined by a segmen-
tation and plane fitting approach. The authors in [30] introduce an algorithm based on
semi-globalmatching and theCensus transform. Two sub-pixel interpolation functions
are implemented to increase the accuracy at the sub-pixel level. A modified Census
transform using semi-global matching is a method introduced in [31]. The authors in
[32] propose an algorithm using adaptive window patterns for Census transform.

Different cost aggregation methods have been studied for the past years. In [33],
a segmentation-based adaptive support region for cost aggregation is proposed. A
geodesic support weight for stereo matching is proposed in [34] where the pixels with
low geodesic distance are given high support weight. A cross-based cost aggregation
method is proposed in [35].

Apart from existence of holes in the estimated depth maps, other artifacts may limit
the efficiency of stereo matching techniques. A few limitations of the existing depth
estimation methods can be listed as:

1. Sensitivity to noise and illumination changes,
2. Inaccurate object boundaries, and
3. High computational complexity.

Taking all these artifacts into consideration, the main goal of the proposed depth
estimation method is to provide a high quality depth map which can be used in real-
time applications. Benefiting from multiple symmetric Census window patterns and
performing most of the tasks on the low-resolution images reduce the overall compu-
tational complexity and make the algorithm applicable for real-time advanced driver
assistance systems.

3 Proposed method

In our proposedmethod, we use a stereo image pair as the reference to generate a depth
map. The Census transform is chosen as the matching metric and the local characteris-
tics of depth maps are exploited using different window patterns in Census transform.
The proposed technique consists of four steps: down-sampling and mask generation,
cost calculation and aggregation, semi-global optimization, and depth refinement.
Figure 2 shows the block diagram of the proposed algorithm.
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Fig. 2 Block diagram of the
proposed technique

3.1 Down-sampling and mask generation

In an ideal case, pixels belonging to the same object which are positioned at the same
distance from the camera should have the same depth value. However, this does not
occur in real-world scenarios due to several reasons such as illumination changes
within an object and mismatches in stereo matching algorithms. We use the curvature
of the pixels in the given color images to distinguish between the smooth area and
sharp edges of the objects in the scene. To reduce the computational complexity of
the algorithm, the first step is to down sample the stereo color images by a factor of
4. Then, we obtain a mask which indicates the smoothness of different regions in the
reference image.

The curvature is calculated using the first- and second-order gradients of each pixel
given by Eq. (1).

k (x, y) = μxxμ
2
x − 2μxμxyμy + μyyμ

2
y(

μ2
x + μ2

y

)3/2 , (1)

where μx and μxx are the first- and second-order gradients, respectively. Subscripts
indicate the direction of gradient. The Prewitt kernel is used to find the gradient. After
computing the curvature, we aggregate the values over a 5×5 window and store it in a
curvature map. A binary mask is generated by Eq. (3) using the curvature map. When
the aggregated curvature of a pixel is less than a threshold, a zero value is assigned to
the mask. An example of mask generation is shown in Fig. 3.
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Fig. 3 Mask generation: a color image and b mask (color figure online)

aggc =
2∑

Δy=−2

2∑
Δx=−2

k (x + Δx, y + Δy) , (2)

M (x, y) =
{
0, if aggc < T1,
1, Otherwise.

(3)

3.2 Cost calculation and aggregation

The Census transform [17] maps the local neighborhood surrounding a pixel Ic (x, y)
to a bit-pattern. The transform relies on the relative ordering of local intensity values
and not the pixel values itself. Figure 4 shows an example of the Census transform of
a window image with respect to the center pixel.

The Census transform converts relative intensity difference to 0 or 1 in a bit-pattern.
In this paper, Census transform is used to calculate the cost function for both left

and right images. We use a simple Census window pattern for the smooth regions to
reduce the computational complexity and use a more complex pattern for the non-
uniform regions which usually contain edges and object boundaries. The adaptive
Census window patterns are shown in Fig. 5 where the selected positions are denoted
by black pixels.

Fig. 4 Census transform
example of a window image
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Fig. 5 Census window patterns: a P1 for uniform regions, and b P2 non-uniform regions

Fig. 6 Center-symmetric
Census window

The black pixels shown in Fig. 5 are used in a symmetric way to generate the
binary bit-pattern. Therefore, only half of the pixels are directly engaged in the com-
putation process. The other half of pixel values are symmetrically copied using the
pre-calculated data. Figure 6 shows the center-symmetric window pattern of P1. Sim-
ilarly, the binary bit-pattern of P2 pattern is symmetrically obtained. For the pixel
Ic (x, y) , the Census transform is calculated using Eq. (4)

RT (x, y) = ⊗(i, j)∈N ξ(Ic (x, y) , Ic (x + i, y + j) , (4)

where N is the neighborhood of the current pixel within the Census transform, ξ is the
step function and is bitwise concatenation. The step function is defined by the Eq. (5).

ξ(Ic (x, y) , Ic (x + i, y + j) =
{
0, if Ic (x, y) < Ic (x + i, y + j) ,

1, Otherwise.
(5)

The binary mask generated in the previous step is used to decide which pattern to
use. The decision criterion is made as follows:
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α =
∑

(i, j)∈N
M (x + i, y + j) , (6)

Pattern =
{
P1, if α < T2,
P2, Otherwise.

(7)

The cost function is calculated by finding the Hamming distance between the
obtained bit-patterns of the left and right reference images using Eq. (8).

C((x, y), d) =
∑

(i, j)∈N
dH(RT,l(x + i, y + j), RT,r (x + i − d, y + j)) (8)

In Eq. (8), RT is the calculated bit-pattern. d is the disparity and dH is the Hamming
distance function and the subscripts l and r refer to the left and right reference images,
respectively.

Since we have calculated the cost for each pixel, it is time to aggregate each pixel’s
cost over a support region. The main goal of cost aggregation is to reduce the match-
ing ambiguities and noise present in the initial cost. A modified cross-based cost
aggregation is proposed based on the following fact. An effective assumption is that
neighboring pixels with similar colors and spatial characteristics usually belong to
the same object and should have similar depth values. The proposed cost aggregation
method consists of two steps:

1. Creating the cross shape, and
2. Aggregating cost over the created cross.

In the first step, an adaptive crosswith varying arms is constructed for each pixel. Given
a pixel p, the endpoint of the arm is defined as p1 when one of the three following
rules is not met:

– The color difference between p and p1 should be less than a predefined threshold.
– The spatial distance between p and p1 should be less than a preset maximum
length.

– The curvature values of p and p1 in the curvature map should not exceed a thresh-
old.

The above-mentioned criteria are defined by Eq. (9).

|Ic (p) − Ic (p1)| ≤ τ1,

‖ p − p1 ‖ ≤ L ,

|curv (p) − curve (p1)| ≤ τ2, (9)

where L is the maximum length. τ1 and τ2 are predefined thresholds. Large thresholds
are usually set for textureless regions to include adequate intensity variation.

The second step is aggregating the cost values over the created cross. The inter-
mediate cost is obtained by summing the cost values horizontally and the final cost is
calculated by adding all the intermediate data vertically. The whole process is shown
in Fig. 7.
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Fig. 7 Cross-based aggregation

Fig. 8 Stripe-based
optimization path

3.3 Stripe-based optimization

The optimization path for finding the best match is formed within multiple-size hor-
izontal stripes. Figure 8 shows the corresponding adaptive stripe pattern. Depending
on the structure of the reference image, typically up to 10 stripes with adaptive widths
are used. For each pixel, we consider 4 directions of up, down, left and right and the
direction which has the least cost value is decided as the next path. The path accu-
mulation is performed in the decided directions. However, the paths which cross the
stripes are cut so that the information cannot propagate over them. The size of each
stripe is obtained based on the reference image structure.

At this stage of the algorithm, we obtain the best match for each pixel and calculate
the disparity. The optimal disparity is calculated by minimizing the energy function.
As shown in Eq. (10), the energy function consists of three terms. First term is the
matching cost from the previous step which is based on the Census transform. The
other two terms are the smoothness constraints. We add two penalty terms to the
matching cost function to take into account slight and abrupt changes in the disparity
of neighboring pixels.

E (p, D) =
∑

C
(
p, dp

) +
∑
q∈N

f1F
[|dq − dp | = 1

] +
∑
q∈N

f2F
[|dq − dp | > 1

]

(10)

where N is the neighborhood of the current pixel p. dp and dq are the depth values for
pixels p and q f1 is the penalty term when the disparity values of neighboring pixels
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differ by one. A larger penalty term f2 is added when the neighboring disparity values
differ by more than one.

The disparity image is estimated by finding the optimum value which minimizes
the cost function as stated in Eq. (11).

Disparity = Argmind E (p, d) (11)

The 4-direction optimization path is used to find the optimal value.

3.4 Depth refinement

The depth map obtained by the proposed modified Census transform and stripe-based
optimization is further refined using the proposed depth refinement algorithm. The
proposed algorithm consists of the following two steps:

1. Filling the holes in the estimated disparity image, and
2. Sharpening the edges and object boundaries.

Since we obtained the disparity image based on down-sampled reference images,
we bring it back to the original sizewhile performing refinement. The estimated dispar-
ity image from the previous steps has some holes due to the occlusion and mismatches
which need to be filled. The hole regions usually belong to the background which can-
not be seen from the other reference view.Hence, the algorithm fails to estimate a depth
value for those specific regions. To fill up the holes, we first select the pixels that belong
to the background among the neighboring non-zero pixels of the hole region. The holes
are then filled by a weighted average on the selected correct pixels using Eq. (12).

dhole =
∑N

i=1 wi d
bg
i∑N

i=1 wi
(12)

where dbgi is the background depth value and wi is the weighting factor based on the
distance from the background depth pixel to the current hole.

The weights are calculated using Gaussian distribution based on the distance to the
current pixel using Eq. (14). Therefore, the farther pixels would have less impact on the
calculateddepthvalue.Theoutput of the holefilling algorithm is a low-resolutiondense
disparity image which needs to be up-sampled to the original size. The up-sampling
is performed by applying a trilateral filter which makes the boundaries sharper and
corrects the misaligned regions using Eq. (13). The designed filter consists of three
terms: depth data, texture data and the curvature.

d (p) = 1

w

∑
d (q) . fdep

(‖ dp − dq ‖) . ftex
(‖ Cp − Cq ‖) . fcurv

(‖ kp − kq ‖)

(13)

where ‖ . ‖ is the Euclidean distance between two pixels and d is the disparity value.
C and k are the color and curvature values, respectively. f is the Gaussian distribution
with standard deviation σ defined by Eq. (14).
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f (x) = e−(‖x‖/σ)2 (14)

We also ensure that no new depth values are introduced during the up-sampling.
Therefore, when the disparity image is filtered using the trilateral filter, the new depth
values are adjusted by mapping them to the nearest depth value which already exists
in the disparity image.

4 Experimental results

In this section, we present simulation results to show the efficiency of the proposed
method compared with those of the state-of-the-art SGM-based stereomatchingmeth-
ods.

To evaluate the performance of our depth estimation and refinement algorithms, we
used the Middlebury [36], KITTI stereovision benchmark suite [37], and the Daimler
dataset [38]. The workstation runs the Windows 7 operating system with Intel Xeon
Quad-Core processor and 8 GB RAM.

To evaluate the performance of the proposed stereo matching method, we compute
the error statistics with respect to the ground truth depth map. The percentage of bad
matching pixels is a common quality measure used to compare the performance of
different depth estimation methods.

The performance of the proposed method is compared with the following refer-
ence systems. The method proposed in [20] is the original SGMwhich uses pixelwise
matching of mutual information and approximates a global smoothness constraint
by combining multiple 1D constraints. The stereo matching proposed in [39] uses a
sparse Census mask and the algorithm is implemented on embedded systems. Plane-
FitSGM [40] is based on a Census-based cost calculation and performs the disparity
optimization on horizontal stripes of the image. Gradient-based Census [41] performs
correlation-based stereo matching and is suitable for the deployment in embedded
real-time systems.

Four different image pairs from the Middlebury dataset [36] are chosen for the
evaluation. Figure 9 compares the quality of depth maps generated by the proposed
method and the references. The use of multiple Census window patterns and efficient
depth refinement technique by considering the edges of objects makes the proposed
method comparable to other methods of SGM family.

Table 1 indicates the error statistics of percentage of bad pixels with respect to
the provided ground truth depth map by Middlebury benchmark [36] for different
algorithm configurations. The percentage of bad pixels evaluation criterion is defined
by Eq. (15).

Pbp = 1

N

∑
(|dG (x, y) − dGT (x, y)| > σd) , (15)

where dG and dGT are the generated and ground truth depth values, respectively. σ is
the error tolerance and N is the total number of pixels of the image.

The percentage of correctly matched pixels for different Census-based matching
techniques is shown in Fig. 10. Avoiding any new depth value in the refinement step
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Fig. 9 Visual comparison of depth maps generated by different algorithms using Middlebury dataset [36]:
a the original test images, b ground truth depth maps, and depth maps obtained by c proposed method,
d PlaneFitSGM [40], e gradient-based Census [41]

of the proposed method significantly reduces the percentage of bad pixel compared
with the methods in [20,39,40].

In addition to this, applying Census transform as a matching metric helps us to find
the perfect match for each pixel and increases the percentage of correctly matched
pixels.

Table 2 compares the processing time of the proposed algorithm with other state-
of-the-art techniques. The experiments are done by running the algorithms on the
Middlebury dataset [36] using C programming on CPU.

Applying adaptive Census window patterns reduces the overall complexity of the
algorithm and leads to achieving higher frame rates.
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Table 1 Percentage of bad pixels for the Middlebury dataset [36]

Stereo image Proposed method (%) SGM [20] (%) Census [39] (%) PlaneFitSGM [40] (%)

Tsukuba 2.42 3.96 6.25 4.2

Cones 7.74 9.75 9.54 9.26

Cones 11.77 12.2 13.8 11.6

Venus 0.85 1.57 2.42 1.87

The result of the proposed method is written in bold for better visualization

Fig. 10 Percentage of correctly matched pixels: comparison between the proposed method and algorithms
in [20,39,40]

Table 2 Computational time complexity

Stereo image Tsukuba Cones Teddy Venus

Size (pixels) 384 × 288 450 × 375 450 × 375 434 × 383

Proposed method (ms) 50 57 61 51

SGM [20] (ms) 64 73 73 68

Census [39] (ms) 83 91 94 87

PlanFitSGM [40] (ms) 3561 6351 9561 3824

The result of the proposed method is written in bold for better visualization

The proposed algorithm has been tested on KITTI dataset [37] which consists of
194 training image pairs and 195 test image pairs. The images have 1224×370 pixels
resolution. Figure 11 shows the result of depth estimation and refinement for a sample
left side image of KITTI dataset [37]. The holes are filled in the refined depth map
and objects have much sharper boundaries.

As stated earlier, the proposed depth refinement algorithm uses neighboring back-
ground pixels solely to fill the holes and also incorporates a depth adjustment stage to
ensure that no new depth values are replaced a correct depth value in the depth map.
Figure 12 compares the result of hole filling where in Fig. 12b only the background
depth pixels are used. Considering only the background pixels for depth refinement
avoids several artifacts such as shrinking of depth values around object boundaries
(similar to the case around the pedestrian and the trash can in Fig. 12b). One should
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Fig. 11 Proposed method output: a color image and b estimated depth map, and c refined depth map using
KITTI dataset [37] (color figure online)

Fig. 12 Hole filling comparison using KITTI dataset [37]: a filling by all the surrounding correct pixels,
b only considering background depth pixels
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Fig. 13 ROC curve comparison between different algorithms using Diamler dataset [38]

keep in mind that Fig. 12 only shows the hole filling result without applying edge
sharpening.

For a more complex scenario where several number of pedestrians is present in the
scene, it becomes more challenging to derive a clear depth map for each pedestrian
individually. Figure 14 shows the result of the proposed depth estimation method on
four different images of KITTI dataset [37] under this challenging situation.

Since the main target application of the proposed method is pedestrian detection
systems, we provide additional results based on pedestrian detection rate.We apply our
proposed depth estimation method to the stereo-based pedestrian detection algorithm
presented in [2]. The proposed method in [2] uses an adaptive window for region of
interest (ROI) generation using depth maps. Also, Support Vector Machine (SVM)
is used to classify the ROIs into pedestrian and non-pedestrian classes. The Daimler
dataset [38] has been used for this part of experimental results. It consists of 21790
image pairswith size of 640×480 pixels captured froma stereo vision cameramounted
on a vehicle.

To calculate the ROC curve, we plot the detection rate versus the average of false-
positive per frame (FPPF) using Eq. 16.

Detection rate = TP

TP + FN
,

FPPF = TFPP

# frames
, (16)

where TP, FN and FP are true positive, false negative and false positive, respectively.
The calculated ROC curves are shown in Fig. 13. The detection rates are improved

using the proposed method. In other words, for a fixed false-positive probability, we
get higher detection rate.
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Fig. 14 Depth estimation by the proposed method on real-world stereo images. a Left color images.
b Estimated depth map (color figure online)

5 Conclusion

In this paper, a novel depth estimation algorithm has been proposed. The proposed
method is based on adaptivewindowpatterns ofCensus transformwhichmake it robust
against illumination changes and suitable for applications like advanced driver assis-
tance systems. By down sampling the reference images, the computational complexity
of the whole algorithm is reduced. A modified cross-based cost aggregation technique
is proposed that generated cross-shape support regions for each pixel individually. A
stripe-based optimization path is used in finding the best match by avoiding the error
propagation into unwanted regions. The proposed depth refinement technique aims at
filling the holes and sharpening the object boundaries. The background depth pixels
are used to fill the holes of the estimated depth map and the proposed trilateral filter
is used to enhance the quality of the depth map. Simulation results indicate that the
proposed methods fulfill the aims by improving the quality of the generated depth
maps and reducing the computational complexity (Fig. 14).
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