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Abstract Nowadays, the application of Evolutionary Multi-Objective Optimization
(EMO) algorithms in real-time systems receives considerable interest. In this context,
the energy efficiency of computational systems is of paramount relevance. Recently,
the use of embedded systems based on heterogeneous (CPU + GPU) platforms is
consistently increasing. For example, NVIDIA Jetson cards are low-power computers
designed for development of embedded applications. They incorporate Tegra proces-
sors which feature a CUDA-capable GPU. This way, Jetson cards can be considered
as a prototype of low-power computer of High-Performance Computing. In this work,
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our interest is focused on the NSGA-II algorithm, a well-known representative of
EMO algorithms. The strength of NSGA-II lies in its Non-Dominated Sorting (NDS)
procedure of a population of individuals. Our purpose on the low-power computers
is twofold: to define and evaluate the parallel NSGA-II versions with major focus on
NDS procedure on the Jetson platforms and to determinate the size of NSGA-II prob-
lems which can be solved. The results show that the parallel version which achieves
the best performance depends on the objectives functions and the frequencies of the
clocks of the cores and memory of the GPU. The analysis of the results shows the
capability of the Jetson as a low-consumption platform which allows to accelerate the
execution of instances of the state-of-the-art EMO algorithm—NSGA-II.

Keywords EvolutionaryMulti-Objective algorithms ·Energy efficiency ·Low-power
platform · Jetson · NSGA-II

1 Introduction

Currently, real-time monitoring and control systems based on Multi-Objective Opti-
mization (MOO) are actively developed and applied in different areas. Recently,
several real-time traffic signal control adaptive systems that are able to totally adapt
the signal timing to the traffic situation based on multi-objective optimization have
been developed [3,12,20,24]. An EvolutionaryMulti-Objective (EMO) algorithmwas
applied for operation optimization in a real-time water supply system [32]. In [2], a
controller based on a EMO algorithm was used in simulation optimization method-
ology to solve a real-time multi-objective dispatching decision problem. In [26], the
NSGA-II [6] algorithm was applied in microcontroller-based polarization control sys-
tem. In [10], a microcontroller-based on Artificial Neural Network and the NSGA-II
algorithmwas developed. It could be applied for different fast real-time intelligent con-
trol applications with a non-linear model predictive strategies. There are still many
more real-time systems in which optimization problems are solved by EMO algo-
rithms [5,25]. Summarizing, MOO real-time systems are of great interest and the
integration of EMO algorithms enables to provide fast enough good solutions. Deter-
mination of the Pareto front is the main goal of MOO. However, it is impossible for
some problems to identify the exact Pareto front due to reasons such as continuity of
the front, nonexistence of analytical expression or complexity of the problem being
solved. On the other hand, in real-world applications it is usually not necessary to find
the whole Pareto front, but rather its approximation.

Some well-known EMO algorithms to approximate the Pareto front are NSGA-
II [6], PAES [21], MOAE/D [39], IBEA [41], SPEA2 [42], etc. Several phases can
be identified in most of them: evaluation of an objective function, Pareto dominance
ranking (Non-Dominated Sorting) and genetic operations. The most computation-
ally expensive phase is the Pareto dominance ranking. Examples of EMO approaches
based on Pareto dominance ranking are PESA-II [4], NSGA-II [6], R-NSGA-II [7],
Synchronous R-NSGA-II [15], etc. In this work, NSGA-II is taken as an exam-
ple of EMO algorithm to be adapted to low-power platforms and evaluated on
them.
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Currently, embedded systems for real-time computing combine low-consumption
and heterogeneous systems (CPU and GPU). Representative examples of this kind
of platforms are the NVIDIA Jetson platforms, widely used in real-time systems.1

In the context of real time, the use of NVIDIA Jetson platforms can be useful to
solve MOO problems using EMO algorithms for two main reasons: (1) the low-
energy consumption because of the specific technology of this kind of platforms;
(2) the exploitation of the multicore and the GPU of the NVIDIA Jetson allows the
acceleration of programs. For this aim, OpenMP and CUDA can be used as interfaces
to develop parallel programs.

Some parallel versions of NSGA-II have been developed: in [9,11,13] parallel ver-
sions of NSGA-II algorithm based on master–slave paradigm are presented, where
population is distributed among the workers to speed up the process of functions eval-
uation; in [22] several parallel strategies where the Pareto ranking is parallelized in
NSGA-II are proposed, and are experimentally investigated when solving the com-
petitive facility location problem in [23]; in [40] a parallel version with individual
migration of NSGA-II is investigated; in [38] an EMO parallel algorithm for GPU
was developed and tested on several two- and three-objective benchmark problems in
[37]; a multi-objective version of Differential Evolution was parallelized on GPU in
[33]. Usually, the cost of the evaluation of the objective function in EMO approaches
is not very high in the sense of computation time. Hence, most of the computation
time is used by checking the Pareto dominance ranking, which is implemented in the
Fast Non-Dominated Sorting (FNDS) procedure [6]. The complexity of the FNDS
procedure is O(MN 2), where M is the number of objectives and N the total size of
population. As FNDS consumes most of the NSGA-II runtime, the acceleration of
the FNDS procedure is mandatory to speed up NSGA-II, it has been justified in [35].
The reduction of the complexity order of the FNDS has been a focus of interest for
researchers [14,19,27,34,36]. Some improvements were implemented by developing
more efficient sorting strategies, however, computational burden of the FNDS proce-
dure has a complexity O(MN 2) in the worst case for all the approaches. Thus, parallel
strategies should be considered to accelerate the computation of the procedure.

Recently, a novel NSGA-II parallel implementation on a GPU, focusing on the
FNDS procedure and achieving promising speedups has been proposed in [16].
The NDS version of complexity O(MN 3) is accelerated on GPU and every thread
computes the dominance of every individual without writing in auxiliary structures.
Therefore, it is a GPU parallel NDS version with redundant dominance comparisons
(hereinafter this version is referred to as Gupta-NDS). Moreover, an efficient parallel
version of the FNDS procedure has been formally presented in [35], but its exper-
imental analysis is very limited. Both works are very related to our proposal, since
our objective is the acceleration of the Pareto dominance ranking on the integrated
GPU of the embedded systems. However, our proposal, referred to as Efficient Fast
NDS (EFNDS), defines a new data structure to store the dominance information which
efficiently allows to compute the individuals that dominate the population by using
shuffled reductions on modern GPUs. Additionally, another GPU version of NDS

1 http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html.
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based on Gupta-NDS and similar to the proposal [16] has been also developed. The
performance of both implementations on Jetson has been evaluated. Comparative
results show that the performance on GPU of EFNDS overcomes Gupta-NDS when
the number of fronts and the memory bandwidth are high.

Bearing in mind the limited computational resources on the Jetson platform and our
proposal to efficiently compute the Pareto dominance ranking (EFNDS), it is relevant
to identify the scale of the problem that can be solved with NSGA-II algorithm on this
kind of platforms.

The main contributions of this work are: (1) a novel proposal (EFNDS) to com-
pute the Pareto dominance ranking on the GPU with a better performance than others
proposed in the literature. EFNDS is very appropriate for embedded systems because
it only consumes energy to compute useful computation with memory requirements
of medium size which are supplied by these kind of systems. Results show that this
proposal achieves better performance than Gupta-NDS when several fronts are com-
puted; (2) the estimation of the problem sizes that can be solved on a Jetson platform
as a prototype of modern embedded system. The rest of this paper is organized as
follows. In Sect. 2, the definition of the multi-objective problem is provided. Section 3
describes the Efficient Fast Non-Dominated Sorting procedure (EFNDS) as well as its
parallel implementations. An experimental evaluation of the parallel implementations
on a Jetson platform is discussed in Sect. 4. Finally, Sect. 5 shows the conclusions of
this work.

2 Description of the problem

A multi-objective minimization problem is formulated as follows [28]:

min
x∈S

f(x) = [ f1(x), f2(x), . . . , fM (x)]T (1)

where z = f(x) is an objective vector, defining the values for all objective functions
f1(x), f2(x), . . . , fM (x), fi : RV → R, i ∈ {1, 2, . . . , M}, where M ≥ 2 is the
number of objective functions; x = (x1, x2, . . . , xV ) is a vector of variables (decision
vector) and V is the number of variables S ⊂ R

V is search space, which defines all
feasible decision vectors.

A decision vector x′ ∈ S is aPareto optimal solution if fi (x′) � fi (x) i = 1, . . . , M
for all x ∈ S and f j (x′) < f j (x) for at least one j . Objective vectors are defined as
optimal if none of their elements can be improved without worsening at least one of
the other elements. An objective vector f(x′) is Pareto optimal if the corresponding
decision vector x′ is Pareto optimal. The set of all the Pareto optimal decision vectors
is called the Pareto set. The region defined by all the objective function values for the
Pareto set points is called the Pareto front.

For two objective vectors z and z′, z′ dominates z (or z′ � z) if z′i � zi for all
i = 1, . . . , M and there exists at most one j such that z′j < z j . In EMO algorithms,
the subset of solutions in a population whose objective vectors are not dominated by
any other objective vector is called the non-dominated set, and the objective vectors
are called the non-dominated objective vectors. The main aim of the EMO algorithms
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is to generate well-distributed non-dominated objective vectors as close as possible to
the Pareto front.

NSGA-II [6] is the most widely used and well-known EMO algorithm for approx-
imating the Pareto front that is based on NDS. It has been considered to analyse the
energy efficiency of EMO algorithms when different number of CPU cores and/or
GPU cards are exploited. The steps of NSGA-II are described in Algorithm 1.

Algorithm 1 NSGA-II
Step 1: Generate a random initial population P0 of size N .
Step 2: Sort the population to different non-domination levels (fronts) using, and assign each individual a
fitness equal to its non-domination level (1 is the best level).

Step 3: Create an offspring population of size N using binary tournament selection, recombination and
mutation operations (parents with larger crowding distance are preferred if their non-domination levels
are the same).

Step 4: Combine the parent and the offspring populations and create a population R.
Step 5: Reduce the population R to the population P of size N : sort the population R into different
non-dominated fronts; fill the population P with individuals from population R starting from the best
non-dominated front until the size of P is equal to N ; if all the individuals in a front cannot be picked
fully, calculate a crowding distance and add individuals with the largest distances into the population P .

Step 6: Check if the termination criterion is satisfied. If yes, go to Step 7, else return to Step 2.
Step 7: Stop.

Step 2 and Step 5 of the Algorithm 1 are devoted to computing the NDS procedure,
which is the most computationally expensive task in the NSGA-II.

3 Efficient Fast Non-Dominated Sort

The procedure referred to as ‘Fast Non-Dominated Sort’ was proposed by Deb et al.
in [6] to compute the Steps 2 and 5 of Algorithm 1. In such proposal, the dominance
information of every individual consists of: the number of dominator individuals, the
number and the list of dominated individuals. Then, the fronts are computed from
this dominance information. The complexity order of this process is O(MN 2) and
it requires a storage of O(N 2). Previous proposals of NDS have a high complexity
O(MN 3) and a high number of redundant comparisons between pairs of individuals,
but as a counterpart their storage requirements grows up as O(N ). As mentioned in
Sect. 1, there are several proposals to define efficient sorting strategies which reduce
the redundant comparisons, with a computational burden of complexity O(MN 2)

in the worst case. The redundancy level of NDS increases as the number of fronts
increases and can be an efficient approach if the population is classified in few fronts.
So, two kinds of approaches to compute NDS can be distinguished: FNDS with a pre-
vious dominance computation which has few redundant comparisons and an intensive
memory use; NDS with redundant comparisons to evaluate the dominance without
additional memory requirements.

In this work, a new approach to compute and store the dominance information
is proposed. The corresponding FNDS procedure is described in Algorithm 2 and
referred to as Efficient FNDS (EFNDS). It selects N individuals as ‘Elite population’
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from the initial population P0 with 2N individuals (step 5 of Algorithm 1). Algorithm
2 includes two phases. The Phase 1 computes the dominance matrix, D, of dimensions
2N × 2N , for the initial population and the Phase 2 selects the individuals of the first
fronts until half of them are selected in the ‘elite’ set. The structure of the Phase 2
is well known. Our proposal is based on the previous computation of a dominance
matrix D whose elements, Di, j , store if the individual Pi is dominated by Pj ; that is,
Di, j = 1 if Pj dominates Pi and Di, j = 0 in other case.

This way, the idea for checking if Pi is dominated by the population P (line 14 of
Algorithm 2) is based on the computation of the number of individuals of P which
dominate Pi as di = |{Di, j = 1; ∀Pj ∈ P}|, so if di = 0 then Pi is not dominated
by P and it belongs to the new front. Therefore, the computation of di can be carried
out reading the corresponding values Di, j on the i th row of D.

Algorithm 2 Efficient Fast Non-Dominated Sorting procedure (EFNDS) to compute
Step 2 of Algorithm 1
Require: P0: population M : number of objective functions

Phase 1: Compute the information of dominance
1: 2N ← |P0|
2: for i ← 1 to 2N do
3: for j ← 1 to 2N do
4: for l ← 1 to M do
5: Check dominance between individuals Pi and Pj for the objective l

6: Di, j = 0
7: if Pj dominates Pi then
8: Di, j = 1

Phase 2 Compute fronts from the dominance information of Phase 1
9: P = P0; Eli te ← ∅; rank = 0
10: while |Eli te| < N do
11: rank = rank + 1
12: FRank ← ∅
13: for each Pi ∈ P do (Check if Pi dominates P from the matrix D)
14: d = ∑

Pj∈P Di j

15: if d = 0 (i.e. Pi is a dominator of P) then
16: P ← P\{Pi }
17: FRank ← FRank ∪ {Pi }
18: if |Eli te| + |FRank | > N then
19: FRank ← N − |Eli te| individuals of FRank with higher crowding distance

20: Eli te ← Eli te ∪ FRank
21: return Eli te

3.1 EFNDS on GPU

Compute Unified Device Architecture (CUDA) is the parallel interface introduced by
NVIDIA to help develop parallel codes using C or C++ language. CUDA provides
some abstraction to the GPU hardware, and it provides the SIMT (Single Instruc-
tion, Multiple Threads) programming model to exploit the GPU [31]. However, the
programmer has to take into account several features of the architecture, such as the
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Algorithm 3 Host pseudocode to compute EFNDS on GPU based on the kernels
CuDominance and CuFronts
Require: P0: population M : number of objective functions

Phase 1: Compute the information of dominance
1: 2N ← |P0|
2: D = CuDominance() (Algorithm 4 is computed on GPU)

Phase 2 Compute fronts from the dominance information of Phase 1
3: P = P0; Eli te ← ∅; rank=0
4: while |Eli te| < N do
5: rank = rank + 1
6: FRank ← ∅
7: FRank = CuFronts() (Algorithm 5 is computed on GPU)
8: if |Eli te| + |FRank | > N then
9: FRank ← N − |Eli te| individuals of FRank with higher crowding distance

10: Eli te ← Eli te ∪ FRank
11: return Eli te

topology of the multiprocessors and themanagement of the memory hierarchy. For the
execution of the program, the CPU (called host in CUDA) performs a succession of
parallel routine (kernels) invocations to the device. The input/output data to/from the
GPU kernels are communicated between the CPU and the ‘global’ GPU memories.
Integrated GPUs (such as the GPUs in Tegra processors) share the low levels of cache
memory with the CPU and it is not necessarily the replication of the input–output data
of the GPU [30]. GPUs have hundreds of cores which can collectively run thousands
of computing threads. Each core, called Scalar Processor (SP), belongs to a set of
multiprocessor units called Streaming Multiprocessors (SM). The SMs are composed
of 192 (or 128) SPs on Kepler (or Maxwell) GPU architectures [17,29,31]. This way,
the GPU device consists of a set of SMs and each kernel is executed as a batch of
threads organized as a grid of thread blocks [1].

It is relevant to underline that the computation of dominance consumes most of the
runtime of FNDS procedures when it is executed in sequence [16,35]. Our approach
to compute D with a high level of parallelism, can efficiently compute the dominance
information on the GPU architecture. Moreover, the fronts computation can also be
accelerated on GPU by the use of the fast shuffled reductions of CUDA. This way,
our parallel EFNDS version efficiently computes D and the corresponding fronts on
GPU.

Algorithm 3 shows the host pseudocode to compute EFNDS on GPU. It is based
on two kernels:CuDominance (line 2) which computes the matrix D andCuFronts
(line 7) which computes one front from the dominance information stored in D.
CuDominance is executed once and CuFronts is iteratively computed until a Eli te
population of N individuals is classified. To fit the classified population to N indi-
viduals, a subset of last front is selected according to the crowding distance on
CPU.

Algorithm 4 shows the procedure to compute the dominance matrix on GPU,
CuDominance. The input is the population of 2N individuals. This way, 4N 2 threads
are activated to check concurrently the dominance between all pairs of individuals and
update the elements of D without any synchronization among them.
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Algorithm 4 CuDominance kernel to compute the dominance matrix of EFNDS on
GPU
Require: P0: population M : number of objective functions

CuDominance Kernel
1: 2N ← |P0|
2: if idx < 2N × 2N then
3: i = �idx/2N; j = idx%2N
4: for l ← 1 to M do
5: Check dominance between individuals Pi and Pj for the objective l

6: Di, j = 0
7: if Pj dominates Pi then
8: Di, j = 1

Algorithm 5 CuFronts kernel to compute the set of fronts of EFNDS on GPU
1: id B = block Idx .x ; Cuda block identification
2: idx = thread Idx .x ; Cuda thread identification
3: BlockSi ze = blockDim.x ; number of threads in every Cuda block
4: if idx < 2N × BlockSi ze AND PidB ∈ P then

Check if PidB dominates the population P from the matrix D
5: for i = 0; i < 2N ; i = i + BlockSi ze do
6: if Pi ∈ P then
7: d = d + DidB,i

8: didB = BlockReduceSum(d) (Fast Shuffled Reduction into Threads Blocks)

9: if didB = 0 (i.e. PidB is a dominator of P) then
10: if idx == id B × BlockSi ze (First Thread in every Cuda Block) then
11: P ← P\{Pi }
12: FRank ← FRank ∪ {Pi }
13: return FRank

When CuDominance finishes, the matrix D is on memory and the fronts can be
computed by successive executions of CuFronts. Algorithm 5 describes the proce-
dure to compute one front on GPU. One thread block is activated for every individual.
Therefore, the threads of every block compute the reduction of a particular row of
D and a fast reduction scheme based on shuffled functions is applied.2 The shuffled
functions enable a thread to directly read a register from another thread in the same
warp; therefore, threads can compute fast reductions avoiding memory accesses.

It is noteworthy that the output of CuFronts is written in a vector F of dimension
2N , where every element Fi stores the front number for the individual i . So, when
CuFronts is executed, a new selection of individuals is classified in the new front.
Additionally, F defines the set of individuals in the population P since if Fi = 0 then
the individual i has not classified and it is a potential individual of posterior fronts, i.e.
i ∈ P . Posterior fronts classifications will be computed only for the individuals with
Fi = 0. Therefore, F also defines the population P to compute a new front. Figure 1
illustrates the computation of the fourth front on the GPU. It shows the data structures
and their threads mapping involved in the computation of a front.

2 https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/.
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Fig. 1 Computation of the fourth front from D matrix when CuFronts kernel is executed on GPU

Next section evaluates the improvement in the performance of NSGA-II on a Jetson
platform when the EFNDS is computed on the GPU integrated in the Tegra processor.

4 Experimental evaluation

In this section, the performance of two parallel GPU versions of NSGA-II has been
evaluated on the Jetson platform. These parallel versions are based on: (1) the EFNDS
algorithmdescribed above; (2) theGupta-NDSversiondeveloped in [16].Additionally,
the sequential NSGA-II version 1.1.6 of K. Deb3 has also been evaluated.

DTLZ2 test problem has been considered in the evaluation because the number of
objective functions can be defined by the user [8,18]. DTLZ2 problem was specially
designed for evaluating multi-objective algorithms in this context. Moreover, it can
be configured to have high computational demands by establishing a large number of
objectives and variables. The formulation of the problem is as follows:

min f1(x) = (1 + g(x))
v−1∏

i=1

cos
( xiπ

2

)

3 http://www.iitk.ac.in/kangal/codes.shtml.
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min f2(x) = (1 + g(x))sin
( xv−1π

2

) v−2∏

i=1

cos
( xiπ

2

)

· · · (2)

min fl(x) = (1 + g(x))sin
( xv−l+1π

2

) v−l∏

i=1

cos
( xiπ

2

)

· · ·
min fv(x) = (1 + g(x))sin

( x1π

2

)

where g(x) = ∑n
i=v(xi − 0.5)2, xi ∈ [0, 1]. The number of variables n is selected

according to the equation n = v + k − 1, with a suggested value of k = 10.
Other test problems have been evaluated obtaining similar results (DTLZ5 and

DTLZ7). However, for the sake of clarity they have not been included in this study.
The Jetson platform has been selected as a prototype of a low-power platform

because: (1) its Tegra processor contains a multicore-CPU and a GPU and they can
support the parallel programming interfaces as extended as CUDA or OpenMP; (2)
the clock frequencies of cores and memory buses of the GPU and the CPU of the
Jetson can be modified to control the energy consumption.

The hardware setup we use is based on a NVIDIA Jetson TK1 development board,4

embedding a Tegra K1 SoC (System on a Chip) processor with 2 GB of DDR3LRAM.
On the one hand, the Tegra K1 includes an NVIDIA GPU with 192 CUDA

Kepler cores and an ARM quad-core Cortex-A15 variant of low-power architecture at
2.32 GHz. The board runs an extended version of Linux Ubuntu 14.04.4 LTS adapted
for the ARM architecture. The codes for the ARM are compiled using gcc v.4.8.4,
while the codes developed for the NVIDIA GPU are compiled with nvcc v.6.5.12.

The memory requirements of the EMO problems depend on three parameters: the
size of the population, the number of variables and the number of objective functions.
These parameters have to be defined bearing in mind that the Jetson board has only
2 GB of physical memory (shared by the ARMCPU and the CUDAGPU). Therefore,
we have considered instances of theNSGA-II problemwhich fit on the Jetson platform.

Asmentioned above , the Tegra processors allow us to control the clock frequencies
of theGPU, CPU andmemory controller, that is, the efficiency of cores and/ormemory
of the TK1 board can be configured. Therefore, NSGA-II based on EFNDS andGupta-
NDS can be evaluated with different frequency configurations. The analysis of these
results can determine the most used resources by every NSGA-II version.

As shown in Fig. 2, our implementation is dramatically influenced by the memory
controller clock, while the performance of the Gupta version does not differ much.
However, when we change the frequency of the GPU core clock, we can observe
that our implementation keeps its performance, while Gupta is strongly penalized.
This is consistent with our theoretical considerations, as Gupta’s implementation
does not store any dominant information in memory, while EFNDS heavily uses
memory to reduce the number of redundant comparisons needed to evaluate the dom-

4 http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.htm.
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Fig. 2 Runtimes of the three versions of NSGA-II studied for DTLZ2 with M = 5, N = 10,000 and
varying frequencies of the GPU core clock (GBUS) and the External Memory Controller clock (EMC)

inance between the individuals. Notice that the CPU performance is also affected
by the EMC frequency. It proves that the memory bus is shared by CPU and GPU
devices.

Table 1 shows the runtimes achieved by theNSGA-II versions based on sequence of
K:Deb, parallel EFNDS, parallel Gupta-NDS and the parallel versionwhich combines
both. The results also show that there is no optimal implementation for all problems.

To always choose the best NDS implementation, we have also developed a hybrid
version that switches between both implementations. As can be observed in the last
column of Table 1, this strategy has remarkable results. This behaviour is shown in
Fig. 3, where we plot the time spent on each generation for each strategy. As we can
observe, EFNDS with many objectives and many fronts is faster while Gupta is better
when there is only one front. We have concluded that this is a situation that commonly
appears on the last generations of each execution, sowepropose an adaptative approach
which chooses the best one in each case.

It is assumed that the starting number of fronts is high. So, in both cases, the
adaptative approach selects FNDS at the first generation. Then, it checks if the
Gupta version can improve the performance when the number of fronts decreases.
For DTLZ2 and M = 5, this happens in the last generations, so it switches from
EFNDS to Gupta. For M = 15, EFNDS is always faster than Gupta even though
most generations only compute one front, so the adaptative approach always selects
FNDS.

Finally, the performance of all parallel GPU versions are improved over the sequen-
tial CPU version, with respectable acceleration factors, as shown in the last column
of Table 1.
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Table 1 Runtimes of NSGA-II based on: sequential version of NDS (DebSeq), parallel EFNDS, parallel
Gupta-NDS and adaptative version (with its acceleration factor AF*)

Test N T (Deb-Sec) T (Gupta) T (EFNDS) T (adaptative*) AF*

dtlz2_5 1000 2.16 1.71 1.49 1.48 1.46

2000 7.92 3.66 3.33 3.30 2.40

5000 31.07 11.80 10.87 10.84 2.87

10,000 105.09 37.31 31.39 31.13 3.38

15,000 195.51 81.51 69.65 69.88 2.80

20,000 370.08 143.78 118.79 118.97 3.11

30,000 652.31 333.63 250.76 250.80 2.60

40,000 1386.06 588.17 443.00 441.71 3.14

dtlz2_10 1000 4.63 2.44 2.34 2.23 2.08

2000 15.73 5.06 5.60 5.00 3.14

5000 90.15 14.94 19.03 14.17 6.36

10,000 317.87 36.97 52.06 37.71 8.43

15,000 832.19 101.32 116.44 98.96 8.41

20,000 1679.62 127.78 179.96 123.95 13.55

30,000 4428.19 306.81 356.20 301.76 14.67

40,000 8358.40 530.24 631.68 525.52 15.91

dtlz2_15 1000 6.22 3.20 3.30 3.24 1.92

2000 25.89 7.44 8.15 7.44 3.48

5000 114.66 25.58 26.40 24.38 4.70

10,000 498.46 75.92 74.61 74.37 6.70

15,000 1304.82 171.61 156.57 156.81 8.32

20,000 2676.36 270.62 250.85 249.97 10.71

30,000 7083.76 593.78 535.67 535.59 13.23

40,000 13,043.91 1046.28 925.82 925.54 14.09

Fig. 3 Time evolution on each NSGA-2 iteration for the test problem DTLZ2 with M = 5, 15 and
N = 10,000, 20,000

5 Conclusions and future works

In this work, a new parallel proposal to accelerate the NSGA-II for solving multi-
objective problems has been proposed. It has been evaluated in comparison with the
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recent proposal [16] on a Jetson TK1 as a prototype of modern embedded system
of low power. The results have shown that EFNDS achieves better performance than
Gupta when several fronts are computed and/or there is a high number of objectives.
We also propose an adaptative version that switches between both of them, improving
the performance of NSGA-II in all test cases.

Furthermore, we show that the Jetson TK1 embedded platform is adequate to accel-
erate EMO algorithms for large numbers of objectives and populations, achieving
respectable performance and high acceleration factors.

As future works, we are planning to evaluate the energy efficiency of the adaptative
approach on this platform.We are also testing the performance of our implementations
on other GPU platforms.
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