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Abstract The inability to effectively construct data supply chain in distributed envi-
ronments is becoming one of the top concerns in big data area. Aiming at this problem,
anovel method of constructing data supply chain based on layered PROV is proposed.
First, to abstractly describe the data transfer processes from creation to distribution,
a data provenance specification presented by W3C is used to standardize the infor-
mation records of data activities within and across data platforms. Then, a distributed
PROV data generation algorithm for multi-platform is designed. Further, we propose a
tiered storage management of provenance based on summarization technology, which
reduces the provenance records by compressing mid versions so as to realize multi-

B Tin-Yu Wu
tyw @niu.edu.tw

Peng Li
13623351437@163.com
Xin-Ming Li
139117229321 @163.com

Hong Luo
luoh@bupt.edu.cn

Mohammad S. Obaidat

msobaidat@gmail.com; m.s.obaidat @ieee.org

Beijing Key Lab of Intelligent Telecommunication Software and Multimedia, Beijing University
of Posts and Telecommunications, Beijing 100876, China

2 Department of Computer Science and Information Engineering, National Ilan University,
Yilan, Taiwan, ROC

3 Science and Technology on Beijing Complex Electronic System Simulation Laboratory,
Academy of Equipment, Beijing 101416, China

4

Department of Computer and Information Science, Fordham University, New York 10458, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1838-0&domain=pdf

1510 P. Lietal.

level management of PROV. In specific, we propose a hierarchical visual technique
based on alayered query mechanism, which allows users to visualize data supply chain
from general to detail. The experimental results show that the proposed approach can
effectively improve the construction performance for data supply chain.

Keywords Data supply chain - Data platform - Provenance - PROV - Distributed
environment

1 Introduction

In the area of big data, trading platforms for big data transform data into a saleable
product which enables data exchange and data integration across different platforms
and drives the prosperity of big data industry. Data trading platforms can accelerate
data movement and usage among different enterprises. The supply chain begins when
data is created, imported, or combined with other data; the data then moves, flows, and
transforms through the supply chain [1]. Therefore, data supply chain can help break
down the data silos and enables data to flow freely. As a result, organizations have
the opportunity to ingest new sources of data; decision makers can gain the external
information before making a decision. Besides, data supply chain also demonstrates
the intact life cycle of data and identifies the publisher and subscriber accurately.
Through such a chain, data may move swiftly from its source to places where it is
needed. Although data supply chain can benefits all parts, existing tools can only
demonstrate individual actions of independent platform, but cannot provide end-to-
end vision of the entire chain across different platforms. This makes it impossible to
sort out the relationships between seekers and providers effectively and hence impacts
the integrality and efficiency on constructing data supply chain. Therefore, how to
construct an end-to-end data supply chain in the distributed environment becomes a
big challenge.

Provenance is the metadata that represents the history or lineage of a data object
[2]. It is widely used in various areas, such as data rebuilding [3], debugging [4], and
cloud security [5]. Provenance, which exactly describes the origin or lineage of a data
node, shows the details of the creation of a data node and reveals the upstream and
downstream between different data nodes. Therefore, provenance can play an impor-
tant role in constructing the data supply chain. We cannot, however, directly apply
existing provenance techniques to construct data supply chain, because data-at-rest
and data-in-transit cannot be tracked together as a flow crossing system boundaries.
Evidently, there needs to be an end-to-end tracking methodology for data provenance.
Developing an end-to-end data supply chain system across platforms entails substantial
issues. First, there is no uniform standard for data provenance in distributed environ-
ment. How to manage them effectively remains challenging. Second, as time goes by,
the newly generated data will increase many folds which makes the data flow difficult
to understand. There are seldom reported approaches that can achieve high effective
querying and the structure of data supply chain still overwhelmingly complex.

In this paper, we propose a set of algorithms for constructing data supply chain
based on layered PROV, and design the corresponding data supply chain construct-
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ing system which can provide a zoomable visualization of data supply chain, called
ACDSC-LP. Here, PROV is one widely used representation standard of provenance.
The proposed ACDSC-LP system, by classifying provenance records into multiple
levels, queries and consolidates the desired records according to users’ requests in
distributed environment, thus enables to replay data supply chain quickly. The main
contributions of this paper are threefold.

(1) We design a construction system of data supply chain based on layered PROV
to track data supply chain across different platforms. The proposed framework is able
to robustly deal with the problem of managing disparate provenance records in distrib-
uted environments which cannot be dealt with by traditional PROV data model. (2) We
propose a tiered storage management of provenance records based on summarization
technology to enhance the effectiveness of data management by leveraging multi-level
provenance records. (3) We propose a hierarchical visual technique based on a layered
query mechanism, which allows users to visualize data supply chain from general to
detail.

We conduct simulation experiments and the experimental results show that the
proposed approach can effectively constructs an end-to-end data supply chain. Fur-
thermore, the query performance outperforms the existing algorithms by at least 20 %.

The rest of the paper is organized as follows. We formally define the basic model of
data supply chain in Sect. 2. We elaborate the design and implementation of our system
framework in Sect. 3. In Sect. 4, We present the details of an algorithm for construct-
ing data supply chain based on distributed PROV and a tiered storage management of
provenance based on summarization technology, followed by the performance evalu-
ation in Sect. 5. We summarize background and related work in Sect. 6. In Sect. 7, we
conclude the paper.

2 Related work

In recent years, the usage of provenance [6] in different fields of computer science
has been widely appreciated. Previous researches on provenance have mainly focused
on workflow systems, operating systems, file systems and cloud computing. Xie et
al. [3] used provenance, the origin or history of objects, to rebuild damaged or lost
files. This method (PDRM) can exactly reconstruct the right file lost or damaged by
back tracking its generation process in the past. During rebuilding, the method reveals
the dependency between different nodes by replaying the generation process to dis-
play data supply chain. In our ACDSC-LP method, by merging and sorting provenance
records across different data platforms, client gets the data supply chain. While PDRM
method uses provenance reconstruct the ancestor node. Muniswamy-Reddy et al. [7]
analyzed the provenance collected from multiple workloads with a view towards effi-
cient storage. Based on the analysis, they characterize the properties of provenance
with respect to long term storage. Then they propose a hybrid scheme (HA-WCDE)
that explores the locality and similarity characteristics among the entity nodes to look
for frequently occurring strings, and then use integer codes to encode them. After that,
the method eliminates the duplicate strings that achieved the best compression ratio.
In our TSMP-ST method, the stored mid versions can be retrieved through querying
PROV database. We compressed these nodes and import them into Data Archive data-
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base. To allow provenance information to be exchanged between systems, Moreau et
al. [8] proposed a shared provenance model, the Open Provenance Model (OPM).
In OPM, provenance graphs consist of three types of nodes. Artifacts represent an
immutable piece of state, which may have a physical embodiment in a physical object,
or a digital representation in a computer system. Processes represent actions performed
on or caused by artifacts, and resulting in new artifacts. Agents represent contextual
entities acting as a catalyst of a process, enabling, facilitating, controlling, or affecting
its execution. PROV [9] is a conceptual data model that forms a basis for the W3C
provenance family of specifications. PROV distinguishes core structures, forming the
essence of provenance information, from extended structures catering for more spe-
cific uses of provenance. Ryan et al. [5] presented Progger (Provenance Logger), a
kernel-space logger which potentially empowered all cloud stakeholders to trace their
data. However, the technology does not collect the provenance of objects on multiple
granularities, users would be unable to detect intrusions or perform forensic analysis
on distributed systems. Jones et al. [10] detailed a provenance enabled file system that
automatically collected information flow provenance at the filesystem level with the
goal of aiding scientific users in better organizing their data. However, the approach
collected provenance by intercepting system commands at the kernel level, which
added additional overhead. Mattoso et al. [11] surveyed the early and current efforts
in dynamic workflows and user steering and proposes a taxonomy to identify the main
concepts related to addressing issues in dynamic steering of high performance com-
puting (HPC) in scientific workflows. However, those approaches did not provide an
interface for users to retrieve the recorded provenance information. Without such an
interface, even the most detailed provenance will be just a white elephant. Korolev et al.
[12] proposed a tool that aided researchers to improve reproducibility of their experi-
ments through automated keeping of provenance records. Imran et al. [13] proposed
an intuitive layer based architecture of data provenance and visualization. In addition,
they show a complete workflow of tracking provenance information of big data.

SPADE [14,15] is a developing file system support to transparently generate and
certify distributed data provenance, and a corresponding tool to validate it. However,
there is no uniform standard for data provenance record until now and SPADE cannot
establish such relationships between seemingly disparate events in the provenance
records. Suen et al. [16] introduced S2Logger, a data event logging mechanism which
captures, analyzes and visualizes data events in the cloud from the data point of view.
Jacobson et al. [17] have designed and implemented a sharing system that does
not require infrastructure yet supports robust, distributed, secure sharing by oppor-
tunistically using any and all connectivity, local or global, permanent or transient, to
communicate. Information sharing is a key element in any Supply Chain Management
(SCM) system and is critical for improving supply chain performance and enhancing
the competitive advantage of an organization. However, many organizations are reluc-
tant to share information with their supply chain partners because of lack of trust, the
fear of information leakage and security attacks from malicious individuals or groups.
Zhang et al. [18] examined the possible security threats/attacks in a SCM system.
Then the key technologies and techniques for securing the information shared in SCM
are identified with the goal of improving organizations’ capabilities in sharing secure
information.
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While the authors have identified several related pitfalls in their proposed approach,
there are still gaps with respect to providing complete data supply chain within and
across data platforms. To the best our knowledge, our work is the first successfully
constructed data supply in distributed environments using provenance technology.

3 Model and terms of data supply chain

Data supply chain depicts the actions performed on data and the entities being respon-
sible for those actions throughout its life cycle. Data’s life cycle can consist of creation,
usage, transform and distribution of the data. The conceptions of the model of data
supply chain are introduced in the following:

1. Entity node

Data supply chain enables data to flow freely. Entity nodes in data supply chain is a
set of data or file physically stored in a data platform. Generally, an entity node could
be recorded representing multiple sources, or just representing a single data source.
One entity node might be related to other entity nodes. For instance, if a document D
is derived from a data table T, then both D and T are entity nodes while T is the direct
ancestor node of D and D is the successor node of T.

2. Activity

Activities describe how entity nodes come into existence and how their attributes
change. For instance, the process of translating a data table into another language,
which creates a new data table, is called an activity.

3. Agent

An agent is a person or an organization who has responsibility for an activity. The
relationship between agent and its corresponding activity is called association. Several
agents can be associated with the same activity. An entity node involved in the activity
is attributed to the related agent. For instance, an activity tabulates the data into a table.
The person who has responsibility for the tabulation is the agent that is associated to
this activity. And the table is the entity node that attributed it to this agent.

4. Generation and usage

Generation is the production of a new entity node by an activity. For instance,
the activity of creating a data table generates a new entity node called data table.
Usage is the utilization of an entity node by an activity. For instance, correcting the
spelling mistakes uses the former edition. Provenance can exactly describes the origin
or lineage of an entity node, shows the details of the creation of an entity node and
reveals the dependency between different entity nodes. Therefore, Provenance can
be used as an important clue to construct data supply chain. Currently, the prevalent
standards of data provenance models are OPM [19] and PROV [9]. The PROV
specification presented by W3C gives a standard description of data provenance. It
has strong analyticity and semantic features and can be recorded in the forms like XML,
JSON, OWL2 and etc, which offers great convenience in operations. Meanwhile, the
PROV specification also presents the standardized and readable description format,
called PROV-N. What’s more, PROV defines inference rule to consolidate provenance
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information, which makes it possible to construct data supply chain and achieve data
provenance among distributed platforms. As a conclusion, we choose PROV-N as the
provenance standard in our data supply chain model.

Let us see a typical application usecase shown in Fig. 1 suppose that there are three
information platforms for companies: A, B and C. Platform-A extracts a part of Data
1 to generate Data 2. Data 2 are modified and converted to Data 3 using weighting.
Data 3 flows from Platform-A to Platform-B. Platform-B adds Data 3 and Data 4, and
assigns the result to Data 5. Data 5 flows from platform B to C. After being disposed
by C, Data 5 turned into Data 6 and then be revised for twice.

In this data supply chain, Data 1, Data 2, Data 3, Data 4, Data 5 and Data 6 are
entity nodes. We assign each entity node a unique number, called data ID. Data ID
consists of prefix and sequence number which is used to identify different entity node.
Referring to PROV-N, in which prefix serves as the organizations that entities belong
to, we define the above data (Datal to Data 6) as six entity nodes:

Entity(A-1), Entity(A-2), Entity(A-3),
Entity(B-1), Entity(B-2) and Entity(C-1)

In this data supply chain, the processes of disposing data, executed by the data
Platform-A, Platform-B and Platform-C are activities. For example, Process Sum is
activity executed by Platform-B at time 7. Referring to PROV-N, we define activity
Process Sum as follows.

Activity (Platform B: Process Sum, Tg)

Agents record the information of agents and its relationships with entity node and
activity. In this data supply chain, the activity Process Sum is executed by Platform-B.
Therefore, organization B is an agent. Referring to PROV-N, we define an agent as
follows.

Agent(Platform B, [prov:type=‘Organization’, foaf:givenName="B”])

The relationship between activity and entity node is described by generation and
usage. For instant, in this data supply chain, Platform-B adds Entity (A-3) and Entity
(B-1), and assigns the result to the Entity (B-2), Ty is the occurrence time. Referring
to PROV-N, we define them as follows:

Used (Platform B: Process Sum, A-3)
Used (Platform B: Process Sum, B-1)
wasGeneratedBy (B-2, Platform B: Process Sum, Ts)

From what was described above, in this data supply chain, we describe the entity node
B-2 completely as follows.
Entity(B-2)

Activity (Platform B: Process Sum, Tg)

Agent (Platform B,[prov:type=‘Organization’ foaf:givenName="B”])
Used (Platform B: Process Sum, A-3)

Used (Platform B: Process Sum, B-1)

wasGeneratedBy (B-2, Platform B: Process Sum, 7p)
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4 System framework

Figure 2 shows the framework of construction system of data supply chain based on
layered PROV. As depicted in Fig. 2, data exchange system, data processing system and
data supply chain management system are deployed in each data platform, where data
supply chain management system consists of three modules, namely, the PROV data
generator, PROV data reorganizing module and data supply chain extraction module.
Data platforms provide data intensive computation such as activity recognition and
sentiment analysis for integration of various multi-structure data and its processing.
Supercomputers use and generate large amounts of data and having its provenance
is valuable. Through the distributed deployed data supply chain management system
and related communications between upstream and downstream data platforms, the
visualization of data supply chain is provided according to user’s request.

1. PROV data generator It is responsible for getting attribute arguments which depicts
the actions performed on data and the entities being responsible for those actions. Each
PROV record, which contains identity information, activity, occurring time, agent and
related upstream and downstream, is stored in the PROV database as an entity node.
On this basis, we can construct dynamic data supply chain.

2. PROV data reorganizing module The amount of provenance information about
data products are rapidly growing throughout its life cycle. Relying on the numerous
and jumbled provenance records to build data supply chain, the data flow structure
is overwhelmingly complex. PROV Data Reorganizing Module moves mid versions
into the data archive database and stores the collected provenance in a hierarchical
structure so as to manage provenance data with high efficiency.

3. Data supply chain extraction module (DSCEM) DSCEM is responsible for receiv-
ing user’s query request, performing local processing and forwarding the query, etc.
Each DSCEM communicates with its related DSCEMs in upstream or downstream
data platforms, so as to obtain the related PROV records on the required chain for
visualization.

There are two stages in the procedure of constructing and visualizing the data sup-
ply chain, namely PROV data generation stage and data supply chain query stage. In
the first stage, for the data has been published by other data platforms, we download
and store them into a DataSource database. We assign each raw data a unique num-

Platform_A Platform_B Platform_C

Fig. 1 Example of data flow among data platforms
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ber (called data ID), then PROV records describing source of data and the mapping
relationship between data name and its data ID are written in the tables of PROV
database. For the data is derived from a raw data which has been used by users,
we also assign each derived data a unique number, for the PROV records describ-
ing the provenance of derived data, such as agent, activity and ancestor, we write
them in other tables of PROV database. In the second stage, first, user submits a data
chain query including the data ID. After DSCEM receives the query, it will visit local
PROV database to get local provenance records. Then DSCEM generates and for-
wards some new queries to its related upstream and downstream DSCEMs according
to the provenance records. Finally, DSCEM will merge and sorts all results from dif-
ferent data platforms, produces the final result, and shows user the desired data supply
chain.

We set a data coherency unit for maintaining data coherency across a num-
ber of data platform. The data coherency unit monitors data transition states
when the processing status of data being shared by two or more data plat-
forms. The data coherency unit ensures a status change in shared data in one
data platform, which is broadcast to other data platform having copies of the
data without having each data platform independently monitor to detect data state
changes. However, implement of data coherency unit is out of the scope of this

paper.
5 Construction and visualization of data supply chain

As illustrated in the system framework, each data platform collects and stores prove-
nance of data, respectively, when data flows across different data platforms. To solve
the problem that there is no uniform standard for data provenance record and achieve
cross-platform provenance query, we propose a PROV data generation algorithm
for multi-platform in subsection IV.A, which uses PROV specification to translate
provenance traces into the PROV records. Further, in subsection IV.B, we present an
algorithm of constructing data supply chain based on distributed PROV. In this algo-
rithm, by leveraging the uniform description of data provenance, a distributed query
mechanism is used to build data supply chain. In addition, to query data supply chain
with high efficiency, we propose a tiered storage management of provenance based
on summarization technology in subsection IV.C, which can support more elaborate
storage and provides more efficient processing on PROV records.

5.1 PROV data generation algorithm for multi-platform

To achieve cross-platform provenance trace and improve the performance of query-
ing, we design six tables in PROV database: DSInfo, PROVInfo, DirectAnc-Info,
SuccessorInfo, UPInfo and DPInfo.

Table 1 is responsible for storing the mapping relationship between the name of
an entity node and its data ID. As discussed above, we have assigned a unique ID to
each raw data or derived data when it is imported in or processed on the data platform.
So the structure of DSInfo with five fields is (ID, data ID, entity name, Is original,
Is succeed), where ID is the primary key of the table, Data ID is the identifier of an
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Table 1 DSInfo

D Data ID Table name Is original Is succeed
A-1 CPI 0 1
2 A-2 Product cost 1
3 A-3 Profits 1 0
Table 2 UPINFO D Data ID Source URL
1 A-1 Nation http://www.stats.gov.cn/
Table 3 PROVinfo ID Entity Activity Agent Used Time
A-2 Extract Agent A A-1 2015-5-15
2 A-3 Weighting Agent A A-2 2015-5-15
Table 4 DirectAnc-Info ID Data ID Direct ancestor
A-2 A-1
2 A-3 A-2

entity node, Entity Name is the name of entity node, IS Original denotes whether the
node has ancestor, IS Succeed denotes whether the node has successor. For example,
if Is succeed = 1, it will forwards the query to the related downstream PROV records
when receiving user’s query request. If Is succeed = 0, it will not forwards the query
because there is no successor.

Table 2 is responsible for storing all upstream platforms using the entity node. The
structure of UPInfo with four fields is (ID, data ID, source, URL), where ID is the
primary key, Data ID is the identifier of an entity node, Source is the identifier of
upstream platforms, URL is the Uniform Resource Locator of upstream platforms.

Table 3 is responsible for storing the basic provenance information of entity nodes.
Based on the PROV specification, the structure of PROVInfo with six fields is (ID,
entity, activity, agent, used, time), where ID is the primary key, Entity is the data ID of
entity nodes, Agent is the person or organization that has responsibility for an activity
on the data, activity is the action, used is the data ID of its direct ancestor, and Time
remarks when the activity occurs.

Table 4 is responsible for storing all direct ancestors of each entity node. The
structure of DirectAnc-Info with three fields is (ID, data ID, direct ancestor), where
ID is the primary key, data ID is the identifier of an entity node, direct ancestor is the
identifier of one direct ancestor.

Table 5 is responsible for storing all the successors of an entity node. The structure
of SuccessorInfo with three fields is (ID, data ID, successor), where ID is the primary
key, data ID is the identifier of an entity node, successor is the identifier of its successor.

Table 6 is responsible for storing all downstream platforms using the entity node.
The structure of DPInfo with four fields is (ID, Data ID, Next, URL), where ID is
the primary key, Data ID is the identifier of an entity node, Next is the agent identi-
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Table 5 Successorinfo

ID Data ID Successor
A-1 A-2
2 A-2 A-3
Table 6 DPInfo D Data ID Next URL
1 A-3 B http://www.datatang.com/

fier of downstream platforms, URL is the Uniform Resource Locator of downstream
platforms.

For instant, the initial value of all tables in PROV database is empty. Platform-A gets
Consumer Price Index (CPI) from National Statistic Bureau. Hence, we should store
CPI into a DataSource database and write the first record in the table of DSInfo. At
this time, only the first record with ID = 1 exists, the fields IS Original and IS Succeed
of A-1 are 0 and 0. Besides, we write the first record in the table of UPInfo as shown
in Table 2. Then, we extract a part of CPI to generate Product Cost. Now, we should
store product cost into a DataSource database and add the second record into the table
of DSInfo. Besides, the fields IS Original and IS Succeed of A-1 should change to 0
and 1, and the fields IS Original and IS Succeed of A-2 are 1 and 0. Next, We should
write all the first records in the table of PROVInfo, DirectAnc-Info and SuccessorInfo
as shown in Tables 3, 4 and 5 respectively. After weighting Product cost, we should
store derived data Profits into a DataSource database and add the third record into the
table of DSInfo. At the same time, the fields IS Original and IS Succeed of A-2 should
change to 1, and the fields IS Original and IS Succeed of A-3 are 1 and 0. Later, We
should add all the second records into the table of PROVInfo, DirectAnc-Info and
SuccessorInfo, respectively. If the data flows from Platform-A to Platform-B later,
we need to write a record in the table of DPInfo as shown in Table 6. In the PROV
data generator on each data platform, there runs a SPADE system [14] which can
collects the provenance traces depicting the actions performed on data flow and stores
the information (e.g., identity information, activity, occurring time, agent and related
upstream and downstream) in Tracelnfo which is a text file. Then, the PROV data gen-
eration algorithm translates them into the PROV records and stores them in respective
PROV database. Algorithm 1 gives the details of the PROV data generation algorithm.

The time complexity of the Algorithm 1 is O(P * Q), where P is the whole
number of node in XML file and Q is the amount of property of each node. The space
overhead of the algorithm is P * Q * K, where K is average size of each property-value.
Obviously, the runtime of the algorithm is directly affected by P and Q. The reason
is that along with the scaling-up number of node in XML file, the amount of property
displays a upward tendency, which increases the number of writes against the database
and accordingly improves the runtime.

5.2 Constructing data supply chain based on distributed PROV

Visualization of data supply chain shows the data flow across different platforms
in a graphical way, which significantly enhances the information transparency and
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improves the efficiency of data supply chain management. To achieve visualization of
data supply chain, we can get provenance records across different data platforms, then
merge and sort the results and import them into a PROV Toolkit [9]. Based on the
distributed PROV databases and records representing the links among entity nodes,
any platforms under request can communicate with its ancestor/successor platforms to
get the PROV records and construct the data supply chain. Further, data supply chain
can be built through a command line interface linking together the provenance records
from different data platforms. Let queryID denotes the unique query identifier, DSC
Results denotes the data supply chain. The algorithm of constructing data supply chain
based on distributed PROV is shown as Algorithm 2.

Algorithm 1 PROV data generation algorithm for multi-
platform

Input: Tracelnfo
Output: PROV Info, DirectAnc Info, SuccessorInfo,
DPInfo, UPInfo
1. XML < writeXML(Tracelnfo);
2: %orrelation attributes of node to each column of PROVIn-
0;
. for each node € XML do
Entity = node.InnerXml; Activity = node.InnerXml;
Agent = node.InnerXml; Time = node.InnerXml;
Used= node.InnerXml;
. end for
: Write attribute-value to PROVInfo();
. correlation attributes of node to each column  of
DirectAnc — Info;,
10: correlation attributes of node to each column of
Successorinfo;
11: for each node € XML do
12:  Direct Ancestor =node.InnerXml;
13:  Successor = node.InnerXml;
14: end for
15: Write attribute-value to DirectAnc-Info();
16: Write attribute-value to SuccessorInfo();
17: @Column(name="Next”);
18: @Column(name="Source”);
19: for each node € XML do
20:  Next =node.InnerXml;
21:  Source = node.InnerXml,;
22: end for
23: Write attribute-value to DPInfo(); Write attribute-
value to UPInfo();
24: return PROV Info, DirectAnc — Info,
Successorinfo, DPInfo, UPInfo;
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The time complexity of Algorithm 2 is O(M * N 4+ N), where M is the average
number of provenance records in database and N is the average number of nodes
belonging to the same data supply. Obviously, the construction time of data supply
chain is directly affected by M and N. To query the upstream and downstream of the
node, there is a need to iterate over all of the records in PROV database. Along with
the scaling-up number of M, query time displays a upward tendency, which increases
the construction time of data supply chain; otherwise reduces the construction time.
This indicates that maintaining a small provenance database can significantly benefit
the construction performance. The whole construction time scales linearly as the time
costs on querying database, while querying overhead shows improvement along with
the increasing number of N. We will evaluate how they impact the whole construction
performance in Sect. 5.

We load the final query results to the PROV Toolkit [19], the PROV Toolkit will
automatically associate the query results and visualize them. Figure 3 shows the visu-
alization result of the data supply chain.

Algorithm 2 Constructing data supply chain based on dis-
tributed PROV
Input: queryID, PROVInfo, Successorinfo,
DPInfo, UPInfo, DSInfo, DAInfo

Output: DSC Results

1: obtaining querylD;

2: repeat

3: using Data ID as the key, querythe corresponding
value from PROV Info;
repeat

using Data ID as the key, query the corresponding

value;

if IS Original=1 then

get provenance records representing ancestor;

end if
until IS Original= 0
10:  using Data ID as the key, query the corresponding

URL,

11:  creat querylD;
2: until URL = null
13: likewise, query the downstream node;
14: return DSC  Rsults;

AN

0 R

—_

5.3 Advanced scheme of constructing data supply chain based on layered PROV

In big data environment, there are a large number of provenance records representing
the corresponding entity nodes, which incurs huge space and searching overhead even
with distributed storage and searching scheme. By further study of the content of entity
nodes, we found that there are huge number of entity nodes describing the mid version
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or inner change of data, and those provenance information maybe not meaningful to
the end user. Hence, a complex chain with so much detailed information may confuse
the end user and difficult to traces. For example, to get the final result, researchers
sometimes use software tools to revise the same experimental data set repeatedly during
science experiments. This makes the experimental data sets having a lot of versions,
where there is plenty of redundancy between final versions and mid versions, and only
the final version of the data set will be used by other researchers. Hence, a zoomable
data supply chain is more benefit to users, which can not only include the flow of final
version but also reflect the subtle changing of data. To solve the problem flexibly, we
propose an advanced scheme of constructing and visualizing data supply chain based
on layered PROV, which may may extract the major contents from original entity nodes
to create an overview of the chain and store the records of mid versions in data achieve
database for further querying. In addition, we design a certain threshold F to control
how many detailed records should be hidden, so as to realize multi-level management
of PROV. In the next of this section, we first describe the method of layered PROV
management based on summarization technology, and then present the algorithm of
constructing a refined data supply chain through a layered query mechanism.

1. Layered storage management of PROV To compress the entity nodes with mid
version, we propose a layered storage management of PROV based on summarization
technology, which allows user to search the node with changing attributes while still
not affecting the integrality of data supply chain. The basic idea of this algorithm is
to compress PROV records with unimportant versions and thus significantly reduce
the storage overhead of first level PROV records. To make it more convenient when
querying detailed compressed PROV information, we build an index for storing the
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relationship between the identifier of a PROV record and its storage location in the
data archive database storing all the entity nodes with mid version. Let F' denotes the
upper threshold of the maximum number of mid version contained by a node. If a node
contains more number of mid version than the threshold F, the provenance records
representing current node will be compressed. Let D denotes the original provenance
sets, D target the denotes target provenance sets for compressing, Al Database denotes
data archive database. The procedure of compressing an original PROV database to a
layered one based on summarization technology is shown as Algorithm 3.

The time complexity of Algorithm 3 is O(M + n % (N 2 4+ N)), where M is the
overall number of records in provenance sets, N is the overall number of records in
target provenance sets and  is the average number of node. The space overhead of the
algorithm is n + N = §, where § is average size of each provenance record. Obviously,
the compression perform is directly affected by F. The reason is that N is determined
by F. Along with the scaling-up F, N displays a downward tendency, which reduces
the compression number and decreases the runtime; otherwise improves the runtime.
The provenance query perform is directly affected by n. This is because we impose
smaller n leads to larger target provenance sets for compressing when N is fixed.
Therefore, query perform shows improvement along with the decreasing n. We will
evaluate how they impact the query and compression performance in Sect. 5.

Algorithm 3 Tiered storage management of provenance based
on summarization technology
Input: D, F
Output: compressed D

1: //obtain the number of entity node ;
: j <— COUNT(DISTINCT Data ID) from D;
:fori=1tojdo
N [i] <= COUNT(Data ID);
: end for
. if N[i] > F then
insert correlative Data ID INTO D target;
: end if
. //compressing the target provenance sets;
: for each Data ID € D target do
sort the Data ID.allrecords based on time;
Data ID.head.prev.next = Data ID.tail,
Data ID.tail.prev = Data ID.head.prev;,
Al Database <— Data ID.leftrecord,
creat index table in AI Database;
delete the Data ID.leftrecord,

modifying Data ID.Activity;
: end for

— e e e e e
AN A A e

—
Nl

: D<= D target+ D remainder
. return D

[33
(=)

@ Springer



Constructing data supply chain based on layered PROV 1523

2. Visual process of multi-level data supply chain Based on the layered storage of
PROV records, to achieve multi-level visualization of data supply chain, we exploit
a layered query mechanism to get PROV records from related data platforms, then
merge and sort the results and import them into the PROV Toolkit. Since Algorithm 2
has achieved the goal of constructing the data supply chain according to users’ requests
in the distributed environments, we use Algorithm 2 as the core of the layered query
mechanism. When user wants a general overview of the data supply chain, DSCEM
runs Algorithm 2 to get the first level PROV records and load the results into the PROV
Toolkit for visualization; when user wants to replay the data supply chain containing
mid versions of special segment, DSCEM generates a new query with the Data ID
of special entity node, then it communicates with the corresponding DSCEM and
gets the PROV records in that local data archive database. Finally, DSCEM merges
and sorts the results and gets the second level data supply chain only containing the
mid versions of the special segment. Let querylD denotes first-query identifier, DSC
results denotes the data supply chain, DSC model denotes visualized data supply
chain, Arch-queryID denotes second-query identifier, MDSC results denotes data
supply chain only containing mid versions, MDSC model denotes visualized data
supply chain containing mid versions, CDSC-DP denotes the method of constructing
data supply chain based on distributed PROV. The Visual algorithm of multilevel data
supply chain is shown as Algorithm 4.

Algorithm 4 Visual algorithm of multi-level data supply chain

Input: querylD, Arch-queryID
Output: DSC Results, DSC Model, MDSC Results,
MDSC Model
: // send the first-query;
: obtaining querylID;
. Data ID<——analyzing(querylID);
: DSC Rsults<——CDSC-DP(Data ID);
: // visualization of data supply chain;
. List provRecords<——DSC Rsults;
: for i=0 to provRecords.size() do
Prov provRecord = provRecords.get(i);
: end for
: return DSC Model;
. Arch-queryID <—— analyzing(DSC Model);
: using Data ID as the key, query the storage location
from Index Table;
13: MDSC Rsults<——Query storage location from data
archive database;
14: for =0 to provRecords.size() do
15:  Prov provRecord = provRecords.get(j);
16: end for
17: return MDSC Model,

© N bk W=

—
(=N}

—_ =
N o—
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Fig. 3 Visualization of data supply chain

(b) Local Structure of Data Supply Chain

Fig. 4 Visual querying process of multi-level data supply chain

We use the same application usecase shown in Fig. 1 to verify the Algorithm
4. Figure 4 shows the layered data supply chain through Algorithm 4, where DRR
denotes a representative from a set of the actions performed on mid version of Data 6.
Compared with Fig. 3, the redundancy mid versions of Data 6 is not appeared in the
overview of data supply chain, which makes the structure concise and clear. And we
can see the detailed evolution of Data 6 in local chain.
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In Algorithm 2, the construction time of data supply chain is directly affected by
M and N. The construction time is composed of the time costing on provenance query
and on construction execution. The construction time of the Algorithm 4 decreases a
lot. The reason for the improvement on construction time is twofold. First, In Algo-
rithm 4, we compress the provenance records in PROV database, which decreases M.
Then the scaling-down queries leads to less query time. Second, the time costing on
provenance query decreases linearly as the number of querying database reduces. The
reason is that a layered query mechanism can make the node number of data supply
chain less.

6 Experiments and analysis
6.1 Experimental setup

We run our experiments on several data platform simulators. The configurations of
those simulator are Ubuntu15.04 operating system with Inter Core i5-3200M 2.5 GHz
processors, 2 GB memory and 500 GB hard drive. We use the java programming
language to implement the proposed algorithms. They are implemented in our own,
custom library but the test data is not available. We collect provenance traces and
translate them into the provenance records TraceDB. TraceDB depicts the actions per-
formed on data when data flows across different data platforms. The size of provenance
records in the experiments is up to 500 MB and we store them in a PROV database,
data supply chain nodes database, and data archive database.

To verify the compression performance of the proposed algorithm, we compare
our Tiered Storage Management of Provenance Based on Summarization Technology
(TSMP-ST) with a Hybrid Approach that Combines Web Compression and the Dictio-
nary Encoding (HA-WCDE) [7] from compression ratio. compression time and query
time. Compression ratio is a value that represents the ratio of the volume from the size
of the compressed file to uncompressed file size, the smaller the better. To verify the
construction performance of the proposed algorithm, we compare our advanced algo-
rithm of constructing data supply chain based on layered PROV (ACDSC-LP) with
a provenance-based data reconstruction method (PDRM) [3] from query time and
construction time.

6.2 Compression ratio and compression time

First, we compressed provenance records in a PROV database using our TSMP-ST
algorithm and HA-WCDE algorithm, respectively. In our TSMP-ST algorithm, we
compressed these nodes by moving mid versions into the data archive database. While
HA-WCDE method explores the locality and similarity characteristics among the
entity nodes to look for frequently occurring strings, and then use integer codes to
encode them. After that, the method eliminate the duplicate strings to achieve the
best compression ratio. ArtifactDB is responsible for storing entity node identifier.
DictionaryDB is responsible for storing the mapping relationship between integer
codes and frequently occurring strings.
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Fig. 5 Compression ratio for Frequency Factor = 3
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We set the frequency factor F to 3 and 5, where F is the upper threshold of the
maximum number of mid version contained by a node. Due to most of nodes in the
data database contained 3 or more numbers of mid version, so the value of F being set
between 3 and 5. If a node contains more number of mid version than the threshold F,
the provenance records representing current node will be compressed. For example,
when the threshold F is 3 and a node contains 6 mid versions, the provenance records
representing current node is 6. After compressing the provenance records, the numbers
will be 2. So the results are dependent on the parameter F. We set different filling factor
n (5,10, 20, 40, 60, 70 %), where n is the percent that final versions taking up a portion
of overall entity nodes. Figure 5 shows the compression ratio for various filling factor
using TSMP-ST and the HA-WCDE methods respectively. This is because n is the
percent that final versions (having no mid versions for compression) taking up the
whole nodes. Along with the scaling-up n, the number of mid versions displays a
downward tendency, which decrease provenance records for compressing so as to rise
compression ratio gradually. In fact, the higher compression ratio means that smaller
provenance sets for compressing. Therefore, increasing number of n will help improve
the compression ratio”.

From the results reported in Fig. 5, the compression ratios of TSMP-ST and HA-
WCDE increase with increasing of filling factor. The compression ratio of TSMP-ST
with F = 3 decreases by 6—12 % compared to compression ratio of HA-WCDE. The
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Fig. 6 Compression time for 500
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reason is that HA-WCDE scanning the entire database or text files to find the frequently
occurring strings, and then replacing them with integer codes so as to eliminate any
repeated separate strings. However, for the case using provenance to construct data
supply chain, we only collect basic provenance which include node identity, ancestor,
time and do not provide more detailed information of input parameters needed during
the process execution and environment variables, etc. Compared with the previous
results, HA-WCDE has been an obvious performance drop of eliminating the duplicate
strings.

As shown in Fig. 5, the compression ratio of HA-WCDE displays a downward
tendency. This is because HA-WCDE encodes the whole provenance sets using integer
codes and the compression ratio is not affected by F. But we can decrease compression
ratio by setting a reasonable F.

Figure 6 shows the compression time with data size varied from 100MB to 250
MB and the optimal setting of F = 3 and n = 20 % using TSMP-ST and HA-WCDE
methods respectively.

From the results reported in Fig. 6, the time overhead of TSMP-ST reduced by 62—
67 % compared to the time overhead of HA-WCDE. The reason for the improvement is
two-fold. First, HA-WCDE uses integer codes to encode frequently occurring strings
among the entity node and the mapping relationship in DictionaryDB, which increases
compression time. Subsequently, the identifier of each node is encoded using coded
value of ancestor, which can incur big time overhead during the ancestor queries.
Second, for the TSMP-ST case, provenance records of PROV database in different
data platforms are compressed concurrently in distributed environment. Hence the
compression time in the TSMP-ST is much smaller than in the HA-WCDE case.

6.3 Query time

We ran two types of queries on the compressed provenance sets.

1. Query 1 looking up the direct ancestor of a specific entity node.
2. Query 2 looking up all the successors of a specific entity node.

From the results reported in Fig. 7, the query time of ACDSC-LP is less than
that of HA-WCDE. Compared to HA-WCDE, ACDSC-LP saves at least 10 % time
overhead. The reason for the improvement is two-fold. First, for the ACDSC-LP
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Fig. 7 Query time comparison 5000
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case, getting each node need to query ArtifactDB to find the integer number of node
using the file name of node, and then query DictionaryDB to find the string of node
using the integer number of node. Decompression can incur time overhead during the
querying database. Along with the scaling-up number of recursive querying ancestor
and successor, the number of decompression displays a upwardtendency, which adds
more time overhead. Second, ACDSC-LP algorithm further reduces the size of each
provenance record by only collecting basic provenance information, making the size
of the records to be read much smaller than in the HA-WCDE case. This incurs a more
efficient query. As we have stated above, we can see that the query performance of
ACDSC-LP outperforming HA-WCDE.

6.4 Construction time of data supply chain

Based on provenance sets, we construct data supply chain using ACDSC-LP algo-
rithm and PDRM algorithm, respectively. In our ACDSC-LP algorithm, by merging
and sorting provenance records across different data platforms, DSCEM get the data
supply chain. While PDRM algorithm uses provenance reconstruct the ancestor node.
During rebuilding, the algorithm displays data supply chain by replaying the gener-
ation process. We set different data size (100 K, 1 MB, 10 MB, 100 MB, 500 MB).
The construction time is composed of the time costing on provenance query and con-
struction execution.

From the results reported in Fig. 8, the construction time of ACDSC-LP algorithm
and PDRM algorithm increase with increasing of data size. ACDSC-LP algorithm
significantly outperforms PDRM algorithm for construction time of data supply chain
with different data size. The reason for the improvement is two-fold. First, PDRM
algorithm may affects the normal node during data reconstruction. Typically, a rebuild
process generates multiple nodes at a time, thus the generated nodes will automatically
overlie the existing nodes. Obviously, some of these nodes exist with a higher version
before rebuild will be covered. Hence, recovering the affected nodes to the normal state
and executing the process that generates nodes and input parameters needed during the
process execution make an obvious construction performance drop. Second, efficient
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Fig. 8 Construction 25
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provenance query is a must for high performance construction. Above section illustrate
that, for the ACDSC-LP algorithm case, querying provenance from database is more
efficient and much faster. Based on the two above-mentioned methods, the total time
in ACDSC-LP algorithm case is still smaller than in the PDRM algorithm case.

Figure 9 shows the construction time for ACDSC-LP and PDRM methods with
different utilization rate of provenance sets. From the results reported in Fig. 9, the
construction time of the two above-mentioned methods increases as the utilization rate
improves. ACDSC-LP significantly outperforms PDRM for construction time of data
supply chain with different utilization rate. The reason for the improvement is that
PDRM may generate a series of nodes even though the number of real nodes needed
to be rebuilt is only one or two. These excrescent nodes generated can raise the rebuild
execution time and the provenance query time. In addition, ACDSC-LP compresses
the provenance records in the PROV database and decreases the number of them, which
reduces the time of query and construction execution to achieve better performance.
We can see that provenance compression consumes less time for data supply chain
construction. The reason is that the compression time is much smaller than the time
costing on construction execution and provenance query, which illustrates validity of
the proposed approach from the side.

7 Conclusion

In this paper, we constructed data supply chain effectively in distributed environments
by proposing a scheme of constructing data supply chain based on layered PROV.
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We propose a PROV data generation algorithm for multi-platform, which formally
describes actions performed on data throughout its life cycle to achieve cross-platform
provenance query. In addition, to manage provenance records with high efficiency, we
introduce a tiered storage management of provenance based on summarization tech-
nology, which is based on processing provenance records elaborately, and compress
the duplicate mid versions. A key innovation is to display a multi-level data supply
chain using a layered query mechanism, which achieves high effective querying. The
experimental results indicate that this algorithm achieves the best tradeoff on compres-
sion ratio, compression time, and construction time when compared with the existing
algorithm.

In our future work, we intend to further reduce the collection overhead of SPADE
system and improve the query performance for constructing data supply chain in
distributed environment.
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