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Abstract We propose a method to solve the selection problem of principal com-
ponents in machine learning algorithms based on orthogonal transformation using
interactive evolutionary computation. The orthogonal transformation presents a linear
transformation method that preserves the inner product in the two coordinate systems,
the one is before the transformation, and the other is after the transformation. One
of the addressed subjects for machine learning algorithms based on orthogonal trans-
formation is how to decide the number of principal components, and which of the
principal components should be used to reconstruct the original data. In this work, we
use the interactive differential evolution algorithm to study these subjects using real
humans’ subjective evaluation in optimization process. An image compression prob-
lem using principal component analysis is introduced to study the proposed method.
We do not only solve the selection problem of principal components for machine
learning algorithms based on orthogonal transformation using interactive evolution-
ary computation, but also can analyse the human aesthetical characteristics on visual
perception and feature selection arising from the designed method and experimental
evaluation. We also discuss and analyse potential research subjects and some open
topics, which are invited to further investigate.
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1 Introduction

Interactive evolutionary computation (IEC) is an optimization approach that embeds
human subjective evaluation into a process of system optimization [23]. It is used to
optimize the problems where the explicit fitness functions are difficult or impossible
to be established. Using a real human’s subjective evaluation, the solution optimized
by canonical evolutionary computation (EC) converges to the human’s knowledge,
experience, and preference. In the process, the selection (evaluation) of IEC algorithm
uses the human’s knowledge, experience, capability, and preference in its optimization
so that the IEC is also referred to as the aesthetic selection [3]. From the optimization
system viewpoint, the IEC-based optimization system can be implemented with three
parts, i.e. a target system that is optimized, an EC algorithm that can use any type
of EC algorithm or swarm optimization algorithm, and a real human as an algorithm
evaluator. These three parts compose three research subjects in IEC field, i.e. IEC
application research, IEC algorithm research, and human characteristics research of
physiology and psychology from IEC evaluation, respectively [14].

Image processing is one of the research fields where IEC can be applied for solving
some optimization problems. For example, IEC was used to color separation appli-
cation in forensic image processing [2], IEC was applied to design image filter using
human subjective evaluation [9], etc. On the contrary, image processing methods or
algorithms also support a way to research the topics on human aesthetic judgements
or selections in IEC. For example, the aesthetic judgement learning was studied using
IEC in an evolutionary art system [6]. These two research directions are related to
the first and third aspects of IEC research, i.e. IEC application research and human
characteristic research, respectively. This paper concentrates on these two subjects as
well.

Orthogonal transformation is a linear transformation that preserves lengths of vec-
tors, and angles between vectors in inner product space. For example, a ∈ V and
b ∈ V are two vectors, and V refers to an inner product space, if there is a linear trans-
formation (T : V → V ) that can preserve the geometrical properties of vectors (a and
b) after the transformation, i.e. 〈a, b〉 = 〈Ta, Tb〉 (〈a, b〉 means the inner product of
vector a and vector b), the linear transformation (T : V → V ) is an orthogonal trans-
formation. There are several algebraic and geometrical properties that are preserved
before and after the transformation, many machine learning algorithms, therefore,
were developed using orthogonal transformation technique.

Principal component analysis (PCA) is one of the machine learning algorithms that
uses the orthogonal transformation technique [11]. The objective of PCA pursues to
establish a linear transformation by which the total variance of the original data is
projected to be maximum. After the transformation, the original data can be expressed
by the linear combination of projected lower dimensional data. It is one of the dimen-
sionality reduction methods for presenting the primary aspects of the data. One of
the study subjects in PCA is the selection problem of principal components after the
orthogonal transformation. It addresses that (1) how many principal components are
enough to present the original data; and (2) which principal components are useful to
reconstruct these original data. We attempt to discuss these subjects using the IEC.
This presents the originality of this work.
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This paper studies the selection problemof principal components formachine learn-
ing algorithms based on orthogonal transformation with the perspective of IEC. We
design an image compression application using the PCA, and solve the selection prob-
lem of principal components using interactive differential evolution (IDE). The paired
comparison mechanism of IDE is applied to reduce the user fatigue in the process of
human subjective evaluation. We also discuss the topics that use the human’s subjec-
tive evaluation for feature selection, and attempt to analyse the human characteristics
by designed method and experiment. On the one hand, we design a method that solves
the selection problem of principal components for machine learning algorithms based
on orthogonal transformation. On the other hand, we can also use the designedmethod
to analyse the human’s characteristics on feature selection. There are two innovative
contributions of this work.

Following this introductory section, we briefly make an overview of the differential
evolution (DE), the interactive differential evolution (IDE) and its paired comparison
mechanism, the orthogonal transformation, and the principal component analysis in
Sect. 2. In Sect. 3, we present principal component selection problem, and use the
IDE to solve an image compression problem. We explain how to select the principal
components to restore an image, and use some quantitativemetrics to evaluate the com-
pressed images with different restore methods. The evaluation and discussion of the
proposed method are presented in Sect. 4. We also report that how to analyse the char-
acteristics of human using the proposed method, and address the primary discoveries
from the human’s subjective evaluation. Some human visual perception conclusions,
and aesthetical judgements and characteristics are discovered by analysing the evalu-
ation results. Finally, we conclude the whole work, and discuss the future works, open
topics in Sect. 5.

2 An overview of related works and techniques

2.1 Differential evolution

Differential evolution (DE) is one of the population-based optimization algorithms [19,
22]. It searches the global optimumusing a differential vector between two individuals,
whose length is in proportion to the distribution size of individuals in general. Each
parent individual generates its offspring. As a parent’s individual is replaced with the
generated one only when the fitness of a generated one exceeds that of the parent,
we may say that DE operations have a similarity to an elite strategy or hill-climbing
method. The most perspective feature of DE is powerful search capability with the
quite simple algorithm implementation.

Suppose that an array on the left side of Fig. 1 means individuals, contour lines at
the right side are a fitness landscape, and circles on the landscape are the individuals.
DE algorithm for one search generation is described in the below and repeats until a
satisfied solution(s) is(are) found or the search reaches the maximum generation.

(1) Select one individual as a target vector.
(2) Select twoother individuals as parameter vectors randomly andmake adifferential

vector from them.
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Fig. 1 Differential evolution algorithm (DE), when comparing target vector and trail vector, it is a paired
comparison mechanism in DE algorithm nature, which benefits to human evaluator of interactive DE (IDE)

(3) Select the best individual from the remained individuals or one other individual
randomly as a base vector.

(4) Conduct a mutant vector by adding a weighted differential vector to the base
vector.

(5) Produce a trial vector by crossing the target vector and the mutant vector.
(6) Compare the target vector and the trial vector, and select a better one as offspring

in the next generation.
(7) Go to the (1) and generate other offspring until all individuals are processed and

compared, and then go to the next generation’s processing.

The terms of vector and individual mean the same search points. The above steps
(1)–(4) are summarized as in Eq. (1), which shows that the DE algorithm is easily
implemented, where F is called as a scale factor. There are several DE variations in
the number of differential vectors, selection methods of a base vector in the above step
(3), crossover methods in the above step (5), and others.

mutant vector = base vector + F × (parameter vector 2 − parameter vector 1). (1)

Differential evolution is an algorithm that can control the balance of exploration and
exploitation automatically thanks to a differential vector which average length is in
proportion to the distribution size of individuals. We can say that DE searches around
a base vector by narrowing its search area gradually because differential vectors have
different lengths and different directions, and are added to the base vector to find
search points [in the above step (4)]. Explanation in more detail, DE biases the search
area to each target vector side [in the above steps (5) and (6)].

2.2 Paired comparison-based interactive differential evolution

The interface design of IEC algorithm is one of the study subjects in IEC algorithm
research. Most IEC algorithms display all individuals to an IEC evaluator and request
him/her to input a fitness evaluation to each of them as it is represented by interactive
genetic algorithm (IGA). When individuals are images, for example, it is easy for an
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IEC evaluator to compare them spatially and evaluate them. It is the reason why most
IEC algorithms take this display-evaluation method. However, when individuals are
sounds or movies, an IEC evaluator has to compare an individual with the others in
memory and his/her mental load and fatigue become heavy. It was pointed out that
human has a memory limitation and cannot process more than five to nine different
information simultaneously [8]. Population sizes of many IEC algorithms frequently
exceed this memory limitation, so displaying 10–20 sounds or movies to an IEC
evaluator is not practical.

Paired comparison-based IEC solves this problem by replacing comparison of all
individuals with paired comparisons and is expected to reduce IEC evaluator fatigue.
The first approach to implement the paired comparison is a tournament IGA [7]. N −1
paired comparisons are iterated for N individuals in everygeneration, andfitness values
are calculated using the number of winnings and fitness difference between each pair.
The disadvantage of the tournament genetic algorithm (GA) is that the obtained fitness
includes noise among individuals that are not comparable because the tournament is
not a round robin competition against the canonical GA. The noise influences a GA
selection operation and results in worse GA optimization performance.

Interactive DE (IDE) adopts the DE algorithm by replacing the fitness comparison
in step (6) with real human subjective evaluation. The logic of step (6) is referred as a
paired comparison mechanism. On the other hand, paired comparison-based IDE does
not revise any parts of its algorithm because the algorithm includes paired comparison
nature in the above algorithm step (6) [24]. Since it displays paired comparisons of indi-
viduals to an IDE evaluator without modifying the implementation of DE algorithm,
the IDE is expected to be a promising IECmethod. Some other comparison-based IDE
algorithmswere, therefore, developed by consideringmultiple comparisonmechanism
in canonical IDE process, such as triple and quadruple comparison-based IDE [17],
triple comparison-based IDE based onmemetic search [18], chaotic evolution [12,13],
and paired comparison-based interactive chaotic evolution [15].

2.3 Orthogonal transformation

Orthogonal transformation is a linear transformationmethod, and it is a transformation
in the inner product space. It can preserve geometrical and algebraic properties of data
before and after the transformation. The geometrical size and shape of transferred
data are as the same as that of the data before transformation. In the another word,
the inner products of the transferred data and the original data are preserved, so the
relationof data does not be destroyedby the transformation.Orthogonal transformation
constructs a new coordinate system to present the data with some certain criteria.

The principal component analysis (PCA) [11] and linear discriminant analysis
(LDA) [4] are two of the machine learning algorithms that use the orthogonal trans-
formation to implement. The PCA pursues a reconstructed coordinate system where
the total variance of original data achieves being maximum, and the LDA pursues that
where not only the total distance sum of center points of all the group is maximum,
but also the total variance sum of data in each group is minimum. We can design a
variety of machine learning algorithms using orthogonal transformation with different
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criteria. The principal component discriminant analysis is one of the machine learning
algorithms that composes PCA and LDA into a uniform framework [16].

2.4 Principal component analysis

ThePCA is one of themachine learning algorithms that uses the principle of orthogonal
transformation. It is a statistical procedure, which transfers data into a coordinate
system defined by linearly uncorrelated variables using orthogonal transformation
technique [11]. In different fields, it has different name, such as the discrete Karhunen
Loève transform in signal processing, and the Hotelling transform in multivariate
quality control. The PCA yields a new coordinate system where the projected data
have the first maximum variance in the first axis of the coordinate system, i.e. the first
principal component, and have the second maximum variance in the second axis of
the coordinate system, i.e. the second principal component, and so on. It is one of the
image processing methods that can be applied to image compression and restore.

We firstly note some data symbols that are used in our derivations of the PCA. There
is a set of data, which is presented as {x1, x2, . . . , xn}, and n is the number of the data.
We also remark it as XT = [x1, x2, . . . , xn]. The observed data have d-dimension. It
can be expressed as in Eq. (2). We suppose that all the data are with zero mean. If the
data are not with zero mean, we make a pre-processing that every datumminuses their
mean value (Eqs. (3), (4)).

XT =

⎡
⎢⎢⎢⎣

x11 x21 . . . xn1
x12 x22 . . . xn2
...

...
. . .

...

x1d x2d . . . xnd

⎤
⎥⎥⎥⎦ . (2)

x = 1

N

N∑
i=1

xi . (3)

x ′
i = xi − x . (4)

The total variance of the data that is projected to a direction v (new constructed
coordinate system) can be expressed by Eqs. (5) and (6), where C is the co-variance
matrix of the data. The objective of the data projection is to find a new coordinate
system where the total variance has the maximum value. The aim of this optimization
problem is to find a solution of Eq. (7). We can solve this optimization problem using
Lagrangian multiplier method or matrix calculus method.

σ 2 = vTCv. (5)

C = 1

n

n∑
i=1

xi xi
T = 1

n
XT X. (6)

v = argmax
v

vTCv. (7)
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3 Principal component selection using interactive evolutionary
computation: a study of optimization of machine learning algorithm
with human subjective evaluation

3.1 Principal component selection problems

The objective of PCA transfers the original data X into another presented data, e.g. Y .
Eq. (8) shows this transformation, where V T = [v1, v2, . . . , vd ] that can be obtained
from the eigenvalue problem of Eq. (7). From Eq. (8), we can obtain Y = V ′X
(Y T = [y1, y2, . . . , yn]), i.e. X = V ′−1Y , so the final transferred data is in Eq. (10).
If V ′ is an orthogonal matrix, the Eq. (10) can be rewritten as X ′ = V ′T V ′X (due
to the property of orthogonal matrix, V ′T = V ′−1), and V ′T = [v1, v2, . . . , vm]
(m ∈ Z+,m <= d), where v1, v2, . . . , vm are d dimensional vectors, i.e. vTi =
[vi1, vi2, . . . , vid ], (i = 1, 2, . . . ,m), such as in Eq. (9). Here, we use m principal
components to reconstruct the original data.

Y = V ′X =

⎡
⎢⎢⎢⎣

vT1
vT2
...

vTm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x11 x12 . . . xn1
x12 x22 . . . xn2
...

...
. . .

...

x1d x2d . . . xnd

⎤
⎥⎥⎥⎦ . (8)

V ′ =

⎡
⎢⎢⎢⎣

vT1
vT2
...

vTm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v11 v12 . . . v1d
v12 v22 . . . v2d
...

...
. . .

...

v1d v2d . . . vmd

⎤
⎥⎥⎥⎦ . (9)

X ′ = [
v1 v2 . . . vm

]
⎡
⎢⎢⎢⎣

vT1
vT2
...

vTm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x11 x12 . . . xn1
x12 x22 . . . xn2
...

...
. . .

...

x1d x2d . . . xnd

⎤
⎥⎥⎥⎦ = V ′T V ′X. (10)

The canonical selection method of principal component considers the eigenvalue
to solve this problem by a threshold value. There are λi , (i = 1, 2, . . . , d) from the
eigenvalue solutions of Eq. (7). If the threshold of Eq. (11) achieves to a preset value,
e.g. 80–90 %, the first m principal components are selected according to the ranking
of their eigenvalues. This selection method considers the importance of principal
component accordance to its eigenvalue. Whether is it also important to human visual
perception, it is a research subject of this work.

∑m
i=1λi∑d
i=1λi

> threshold. (11)

This work handles the selection problems of principal component that yield:

1. how many principal components are enough to reconstruct the original data from
the human’s visual perception?

123



Principal component selection using interactive... 3009

2. which of the principal components are useful to reconstruct the original data?
3. which of the principal components are sensitive to the human’s visual perception?

These are the selection problems of principal components of machine learning
algorithms based on orthogonal transformation. We use the interactive evolutionary
computation algorithm as a tool to discuss and analyse these subjects.

3.2 Image compression using principal component analysis

Digital images can be compressed using the PCA. In Eq. (10), before project-
ing the original X back to original coordinate system using Y = V T X , we can
truncate the matrix V T to keep the certain number of principal components, i.e.
V ′T = [v1, v2, . . . , vm] (m ∈ Z+,m <= d). The PCA is a dimensionality reduction
method, by which we recover the matrix X , and transfer it into X ′ using the transfor-
mation as in Eq. (10). The two matrices (X and X ′) have the same dimensions, but the
contents of them may not be totally the same since we truncate the matrix V T . So the
matrix X ′ can present the primary information of matrix X in the sense of the number
of m and selection method of these principal components V ′T .

Let us study the left side ofEq. (10), it can be separated into twoparts.One is theV ′T ,
and the other is the V ′X . The size of these twomatrices is d×m andm×n, respectively,
and the size of the original data, X , is d × n. If the (d ×m) + (m × n) < (d × n), i.e.
in Eq. (12), it means that the matrix X can be compressed using matrix X ′ that can be
presented by the multiplication of two matrices, i.e. V ′T and V ′X of Eq. (10).

m <
d × n

d + n
. (12)

If the X is an image, we can use the principle of Eq. (10) to compress it using the
PCA. The image compression method using the PCA is a lossless compression since
it reduces not only the redundancy information, but also the irrelevancy information.
Here, we present three test images that are used in the evaluation parts in Fig. 2, they
are all greyscale format images, and the size of all the images is 256 × 256.

Fig. 2 Three test images, a girl, b house, and c tree, they are all greyscale format images, and the size of
all the images is 256 × 256
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3.3 Selection of principal components using interactive differential evolution

We code the 256 × 256 image into a data set with 256 data by column and with 256
dimensions by rows. Using the PCA, we can establish a 256×256 co-variance matrix
of these data. After we solve the eigenvalue problem of this co-variance matrix, we
can obtain 256 eigenvalues and their corresponding eigenvectors. From the Eq. (12),
the d = 256, n = 256 in the test images, so if the m < 128, the original test images
can be compressed. However, we should make a pre-processing that makes a mean
matrix with a size of 256 × 1, so the value of m should be less than or equal to 127.
Because the principal components, whose corresponding eigenvalues are small, are
less useful, and the maximum value of Matlab has limitation, we only investigate
the first 64 principal components and their combinations for these three test image
compression problems.

We use paired comparison-based IDE as an optimizer to find the best combination
solution of principal components of three compressed test images with human sub-
jective evaluation. The advantage of the paired comparison-based IDE is that it can
display only two objects (two compressed image in this paper) for human’s judge-
ment rather than other IEC algorithms force human to give a rank for each individual
simultaneously, such as IGA. As the feature of IEC algorithm setting, it needs less
population size and less generation number to relieve evaluator’s fatigue. We only use
six individuals and five generations in IDE algorithms. The parameters of IDE are
listed as in Table 1. We invited six subjects to involve in the evaluation, all of them
are university students, male, and age range is about (20,25).

4 Evaluations and discussions

4.1 Discussion on image compression results

This work uses an image compression application to discuss the subject of principal
component selection of machine learning algorithm based on orthogonal transfor-
mation. We need to firstly define some evaluation metrics to quantitatively discuss
the image compression results. In image processing field, there are several evalua-
tion metrics for quantitatively evaluating image, such as mean square error (MSE)
[5], peak signal-to-noise ratio (PSNR), compression ratio (CR), structural similarity
(SSIM) [25], and information entropy (IE) [21]. We use these evaluation metrics to

Table 1 IDE experiment
parameters setting Population size 6

Search range of parameters [1, 264]

Scale factor F 1.0

Crossover rate 1.0

DE operation DE/rand/1/bin

Max. search generation, MAXNFC 5
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discuss and analyse our results. The definitions of MSE, PSNR, CR, SSIM, and IE
are listed in Eqs. (13), (14), (15), (16), and (17), respectively. The x ′

i/x
′ and xi/x are

compressed data and original data in Eqs. (13) and (15). The MAXx is the maximum
value in the data of x in Eq. (14). The μ and σ are mean and variance values in
Eq. (16), where c1 = (k1L)2 and c2 = (k2L)2 are two variables to stabilize the divi-
sion with weak denominator; L is the dynamic range of the pixel-values (typically,
it is 2#bits per pixel − 1); and k1 = 0.01 and k2 = 0.03 by default. The p(x) is the
probability mass function of x in Eq. (17).

MSE = 1

n

n∑
i=1

(x ′
i − xi )

2. (13)

PSNR = 20 log10
MAXx

MSE
. (14)

CR = x

x ′ . (15)

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ 2
x + σ 2

y + c2)
. (16)

IE = −p(x) log2 p(x). (17)

Table 2 showsMSE, PSNR, and SSIM values of each imagewith different principal
component settings. Table 3 presents the information entropy of compressed data
(image) by the PCA and the IDE with different principal components. The legend,
PCA, in tablesmeans that the images are compressed by thePCAwith the samenumber
of principal components used by IDE, but it uses the method of Eq. (11) to select
the principal components. The legend, IDE, means that the images are compressed
using the principal components obtained by IDE (both the number and combination
of principal components). So the two methods have the same number of principal
components, but different combination of that. In Tables 2 and 3, there are categories
level = 0, level = 0.5, and level = 1, meaning that the images compressed obtained
by which we use selected more than the 100, 50, and 1 percent of all the selected
principal components, respectively. We analyse and discuss our proposal with these
results.

From theMSE and PSNR evaluations in Table 2, it shows that the difference in these
two metrics becomes larger when the applying selected principal component number
is increasing. When we use all of the selected principal components from the human’s
selection, i.e. the condition of Level = 0, theMSE and PSNR values from themethods
of IDE and PCAdo not havemany differences, because the PCAwas proved as the best
transform coding method for image compression when the data are under a normal
distribution condition [10]. When we use the selection method of Eq. (11) to select the
principal component to restore the images, it therefore presents the best effectiveness
comparingwith the original images. The PCA cannot automatically decide the number
of principal components. However, our proposal can support a solution for finding
a better selection method to decide the number and the combination of principal
components from the human visual perception. This presents the originality of this
work.
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Table 2 The MSE, PSNR and SSIM results, IDE means the images are restored using the principal
components selected by IDE, and PCAmeans images are restored using the Eq. (11) with the same principal
component number as IDE, but different principal components’ combination

Image (a) Image (b) Image (c)

IDE PCA IDE PCA IDE PCA

MSE

Level = 0 1311.415 1145.929 4785.905 4531.623 5027.810 3826.290

Level = 0.5 1521.185 1200.512 5597.984 4794.802 5418.308 4115.758

Level = 1 1521.185 1200.512 6194.937 5459.347 5934.638 4943.077

PSNR

Level = 0 16.953 17.539 11.331 11.568 11.117 12.303

Level = 0.5 16.309 17.337 10.650 11.323 10.792 11.986

Level = 1 16.309 17.337 10.210 10.759 10.397 11.191

SSMI

Level = 0 0.629 0.654 0.644 0.682 0.665 0.705

Level = 0.5 0.576 0.635 0.562 0.640 0.617 0.676

Level = 1 0.576 0.635 0.524 0.551 0.551 0.604

Table 3 The information entropy (IE) results; it indicates that human can obtain more information from
his or her visual perception

Image1 IDE PCA Image2 IDE PCA Image3 IDE PCA

Level = 0 3.243 3.436 3.434 2.901 3.193 3.148 3.141 3.273 3.199

Level = 0.5 3.243 3.477 3.432 2.901 3.286 3.143 3.141 3.338 3.228

Level = 1 3.243 3.477 3.432 2.901 3.227 3.226 3.141 3.445 3.327

The IDE and PCA have the same meaning as in Table 2

The SSIM is designed to improve conventional image evaluation methods, such as
the MSE and the PSNR, which have been proven to be not inconsistent with human
visual perception. From our evaluation result of SSIM in Table 2, it presents that SSIM
has almost the same tendency with the PSNR. We cannot find any benefits from our
results due to the test case by comparing the IDEand thePCA.However, the differences
between these two methods are slight. We can conclude that the principal component
selection methods of IDE and Eq. (11) under the condition with the same number of
principal components are not much different. However, the method of Eq. (11) cannot
decide a way to select the number of principal components; our proposal supports a
method to do.

For the information entropy (IE) evaluation in Table 3, we can conclude that the
information entropy obtained with the principal component selection by Eq. (11) is
less than that obtained by IDE when the number of principal components is the same
in both methods. On the one hand, human’s subjective selection has noise, which is
shown in the results of MSE and PSNR; it makes the information entropy become
increasing. On the other hand, human’s subjective selection can obtain more detail
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Fig. 3 Three compressed test images, they are a girl, b house, and c tree, the compression ratios are 2.81,
2.53, and 2.69, respectively

information from the human visual perception. So the information entropy obtained
by IDE method is more than that of PCA with selection method of Eq. (11). This is
one of the advantages of our proposal, i.e. principal component selection by IDE can
obtain more information of compressed images from the viewpoint of human visual
perception.

Figure 3 shows a result of compressed image by considering all the subjects’ selec-
tion. These compressed images do not have all the first m principal components, but
they can also present the primary aspects of the original images by comparing with the
original images in Fig. 2. There are 45, 50 and 47 principal components in compressed
images (a), (b), and (c) of Fig. 3, respectively. Their corresponding compression ratios
are 2.81, 2.53, and 2.69 for images (a), (b), and (c), respectively, using the Eqs. (15)
and (18), where PCs means the number of selected principal components.

compression − ratio = 256

2 × PCs + 1
. (18)

4.2 Discussion on characteristics of selected principal components

The objective of PCA is to find a new coordinate system where the total variance of
projected data can have the maximum value using orthogonal transformation tech-
nique. In image compression application, the first m principal components according
to larger eigenvalues present the important aspects of the original data. As it is known,
the coordinate (axis) with the maximal variance presents primary content of the data;
on the contrary, that with the minimal variance presents the noise. The principal com-
ponents with the larger eigenvalues, i.e. the firstm principal components (with relative
larger variance) can restore the image more clearly and more exactly. We, therefore,
conclude that human’s perception also follows this rule, i.e. human visual perception
is sensitive to images restored using the first m principal components.

Figure 4 displays a result of the percentage of selected principal components in the
final generation (the fifth generation) for each image, i.e. images (a), (b), and (c). In this
figure, the sequence of the principal components is rankedwith the their corresponding
eigenvalue, i.e. the first principal component is with the largest eigenvalue, the second

123



3014 Y. Pei

Fig. 4 The selected principal
component percentage in the last
generation (the fifth generation);
the results indicate that the
sensitiveness of human visual
perception is not in accordance
with the principal components
ranked by their corresponding
eigenvalues
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one with the second largest eigenvalue, etc., from the left to the right in X axis. We
can observe that the percentage of the selected principal components is not decreased
in accordance with the ranked eigenvalues for each principal component from left to
right. It indicates that the visual sensitiveness of human’s perception does not follow
the derivative conclusion.

Human can percept more detail visual information that is presented by the principal
components with the smaller eigenvalues. The principal component with the smaller
eigenvalue can support more sensitive information in a equally important manner as
can those with a larger eigenvalue for human visual perception. There is no difference
among the principal components with smaller eigenvalues or larger eigenvalues from
the human visual perception. This is the primary discovery of this work, and we
can also use this conclusion to further develop our proposal for finding sensitive
principal component from the data (images) for human in the viewpoint of human
visual perception.

4.3 Discussion on subjects’ aesthetical characteristics

One objective of this work is to investigate the relation between principal component
selection and human’s perception. Figure 5 shows the average number of selected
principal components of subjects 1–6 in each generation. The average number of
selected principal components does not increase with evolution optimization from
one generation to the next. It indicates that it is not true that more principal component
number means more sensitive information to human visual perception in the image
compression application. However, for the human face perception, i.e. test image (a).
girl, it may need more number of principal components to present a clear face because
the results of subjects 1, 3 and 6 in Fig. 5 support this conclusion.

Another two results can be obtained from observing Fig. 5. The one is that the
number of selected principal components depends on the different image compression
tasks. The other is that different subjects conduct different selection decision makings
that present the personal aesthetical selection, judgement, and characteristics. The
human characteristic clustering analysis can be conducted in accordance with this
discovery, i.e. subjects 1, 3, and 6 may have the same aesthetical thinking way on the
test image (a), because they have the same tendency of selecting principal component.

We also use self-organized map (SOM) as a clustering tool to analyse subjects’
aesthetical characteristics. The self-organized map is designed as 5× 5 meshes. From
the clustering results (Fig. 6), we can observe that subjects’ aesthetical selections
are different due to the application task, and we can obtain such knowledge from
the selected principal components using our proposed method, i.e. selecting principal
components using IEC. Especially, the clustering result of image (a), i.e. the subjects
1, 3, and 6 are clustered in the same class. It also verifies the conclusion from the
observation of Fig. 5. This presents one of the originalities in this work.

What is the sensitive information from the human visual perception?We can obtain
some qualitative results fromour designed evaluation.We reconstruct the images using
all the selected principal components 100 percent, 50 percent of principal components
according to their selected rate, and 10 percent according to their selected rate by
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Fig. 5 Average number of selected principal component in each generation, by analysing the evaluation
data in the optimization process; we can obtain the knowledge on subjects’ aesthetical judgement. For
example, subjects 1, 3, and 6 may have the same aesthetical thinking way on the test image (a)

the evaluators (see Fig. 7). Arising from observing and comparing these three group
images, we can find that the shape and frame information is sensitive to the human
visual perception, rather than the concrete information that can express the contents
of the images in detail. For example, the image (a) presents a face of a girl, the
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(1). clustering by SOM for image (a)
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(2). clustering by SOM for image (b)
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(3). clustering by SOM for image (c)

Fig. 6 Clustering analysis using self-organized map (SOM), for image (a), there are two classes: (subjects
1, 3, 6), and (subjects 2, 4, 5); for image (b), there are four classes: (subjects 1, 6), (subject 2), (subjects 3,
4), and (subject 5); for image (c), there are three classes: (subject 1 ), (subjects 2, 3), (subjects 4, 5,6). We
can use this method to analyse the human aesthetical judgement and characteristic
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Fig. 7 We use 100, 50, and 10 % selected principal components to reconstruct the images. We can obtain
that human visual perception is sensitive to the shape and frame information from these images’ comparisons

concrete five senses information is not presented in the image that is reconstructed
by 10 percent of all selected principal components, but the face frame information is
displayed evidently. This is one of the discoveries from our evaluations. The proposed
method and design can be used to analyse the aesthetical characteristics and human
perception by designing a variety of principal component selection applications.

5 Conclusion and future works

In this paper, we proposed a method to select principal components of machine learn-
ing algorithm based on orthogonal transformation using IEC. Conventional selection
method cannot support an efficient way to decide the number of principal components
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in related applications. Our proposal can efficiently solve this problem using human
subjective evaluation. The proposal does not only support a way to decide the number
of principal components, but also decide which principal components are sensitive to
the human perception, because the optimization process involves human’s aestheti-
cal judgement. We used image compression applications to investigate our proposed
method and discussed related research subjects. Another advantage of this method is
that it also supports a way to investigate a certain human’s aesthetical thoughts by
analysing the evaluation data.

In the future, we will extend this work in other application fields to investigate the
performance of proposed method, such as audio and video applications. The perfor-
mance issues of optimization algorithm are also a primary subject for the future study.
The paired comparison-based IDE can relieve the evaluators’ fatigue theoretically;
we need to use other IEC algorithms to investigate this issue, and study our proposed
method using the other IEC algorithms for a comparison. In this work, we only use
the PCA as an example to study our proposal, other machine learning algorithms and
applications based on orthogonal transformation, such as linear discriminant analysis,
kernel-based PCA [20], general discriminant analysis [1], and linear principal compo-
nent discriminant analysis [16] also need to solve the selection problem of principal
components. We will study principal component selection of other machine learning
algorithms in the future. These research subjects are invited to further investigate in
our future work.

References

1. Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput
12(10):2385–2404

2. Berger CEH,Koeijer JA, GlasW,MadhuizenHT (2006) Color separation in forensic image processing.
J Forensic Sci 51(1):100–102

3. Dawkins R (1986) Blind watchmaker. Alfred A Knopf, New York
4. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188
5. Lehmann EL, Casella G (1998) Theory of point estimation, vol 31. Springer Science & Business

Media, Berlin
6. Li Y, Hu C,Minku LL, Zuo H (2013) Learning aesthetic judgements in evolutionary art systems. Genet

Program Evolvable Mach 14(3):315–337
7. Lim IS, Thalmann D (2000) Tournament selection for browsing temporal signals. In: Proceedings of

the 2000 ACM Symposium on Applied Computing, vol 2. ACM, pp 570–573
8. Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for

processing information. Psychol Rev 63(2):81–97
9. Ono S,Maeda H, Sakimoto K, Nakayama S (2014) User-system cooperative evolutionary computation

for both quantitative and qualitative objective optimization in image processing filter design. Appl Soft
Comput 15:203–218

10. PapoulisA, Pillai SU (2002) Probability, randomvariables, and stochastic processes. TataMcGraw-Hill
Education, New York

11. Pearson K (1901) Liii. on lines and planes of closest fit to systems of points in space. Lond Edinb
Dublin Philos Mag J Science 2(11):559–572

12. Pei Y (2013) A chaotic ergodicity based evolutionary computation algorithm. In: 2013 Ninth Interna-
tional Conference on Natural Computation (ICNC2013). 23–25 Jul 2013 IEEE, pp 454–459

13. PeiY (2014)Chaotic evolution: fusion of chaotic ergodicity and evolutionary iteration for optimization.
Nat Comput 13(1):79–96

14. Pei Y (2014) Study on efficient search in evolutionary computation. PhD thesis. Kyushu University

123



3020 Y. Pei

15. Pei Y (2015) From determinism and probability to chaos: chaotic evolution towards philosophy and
methodology of chaotic optimization. Sci World J 2015:14. doi:10.1155/2015/704587

16. Pei Y (2015) Linear principal component discriminant analysis. In: 2015 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC2015), IEEE, Oct, 9–12 2015, pp 2108–2113

17. Pei Y, Takagi H (2013) Triple and quadruple comparison-based interactive differential evolution and
differential evolution. In: Foundations of Genetic AlgorithmsWorkshop XII (FOGA2013), ACM, Jan,
16–20 2013, pp 173–182

18. Pei Y, Takagi H, (2015) Local information of fitness landscape obtained by paired comparison-based
memetic search for interactive differential evolution. In: 2015 IEEE Congress on Evolutionary Com-
putation (IEEE CEC2015), IEEE, May, 25–28 2015, pp 2215-2221

19. Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global opti-
mization. Springer Science & Business Media, Berlin

20. Schölkopf B, Smola A, Müller K-R (1998) Nonlinear component analysis as a kernel eigenvalue
problem. Neural Comput 10(5):1299–1319

21. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423
22. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization

over continuous spaces. J Glob Optim 11(4):341–359
23. Takagi H (2001) Interactive evolutionary computation: fusion of the capabilities of ec optimization

and human evaluation. Proc IEEE 89(9):1275–1296
24. Takagi H, Pallez D (2009) Paired comparison-based interactive differential evolution. In: World

Congress on Nature & Biologically Inspired Computing 2009 (NaBIC 2009). 9–11 Dec 2009 IEEE,
pp 475–480

25. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility
to structural similarity. IEEE Trans Image Process 13(4):600–612

123

http://dx.doi.org/10.1155/2015/704587

	Principal component selection using interactive evolutionary computation
	Abstract
	1 Introduction
	2 An overview of related works and techniques
	2.1 Differential evolution
	2.2 Paired comparison-based interactive differential evolution
	2.3 Orthogonal transformation
	2.4 Principal component analysis

	3 Principal component selection using interactive evolutionary computation: a study of optimization of machine learning algorithm with human subjective evaluation
	3.1 Principal component selection problems
	3.2 Image compression using principal component analysis
	3.3 Selection of principal components using interactive differential evolution

	4 Evaluations and discussions
	4.1 Discussion on image compression results
	4.2 Discussion on characteristics of selected principal components
	4.3 Discussion on subjects' aesthetical characteristics

	5 Conclusion and future works
	References




