J Supercomput (2018) 74:1045-1060 @ CrossMark
https://doi.org/10.1007/s11227-016-1827-3

E2FS: an elastic storage system for cloud computing

Longbin Chen! . Meikang Qiu! -
Jeungeun Song? - Zenggang Xiong® -
Houcine Hassan*

Published online: 27 August 2016
© Springer Science+Business Media New York 2016

Abstract In cloud storage, replication technologies are essential to fault tolerance
and high availability of data. While achieving the goal of high availability, replica-
tion brings extra number of active servers to the storage system. Extra active servers
mean extra power consumption and capital expenditure. Furthermore, the lack of clas-
sification of data makes replication scheme fixed at the very beginning. This paper
proposes an elastic and efficient file storage called E2FS for big data applications.
E2FS can dynamically scale in/out the storage system based on real-time demands
of big data applications. We adopt a novel replication scheme based on data blocks,
which provides a fine-grained maintenance of the data in the storage system. E2FS
analyzes features of data and makes dynamic replication decision to balance the cost

B Longbin Chen
longbin.chen@pace.edu

Meikang Qiu
mqiu@pace.edu

Jeungeun Song
jsong@hust.edu.cn

Zenggang Xiong
jkxxzg2003@163.com

Houcine Hassan
husein@disca.upv.es

1 Pace University, New York, USA

2 School of Computer Science and Technology, Huazhong University of Science and Technology,
Hubei, China

3 School of Computer Science and Information Technology, Hubei Engineering University, Hubei,
China

4

Universitat Politecnica de Valencia, Valencia, Spain

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1827-3&domain=pdf

1046 L. Chen et al.

and performance of cloud storage. To evaluate the performance of proposed work, we
implement a prototype of E2FS and compare it with HDFS. Our experiments show
E2FS can outperform HDFS in elasticity while achieving guaranteed performance for
big data applications.

Keywords Elastic replication - Data usage analysis - Cloud storage - Availability

1 Introduction

Cloud storage provides the primary support for big data applications. Large clusters of
physical and virtual servers provide disk spaces to fulfill the demands of applications
which deal with massive datasets [1]. Datacenters or cloud storage systems run two
types of applications: external and internal applications. External applications work
for cloud users directly. They allocate resources [2] for user applications and schedule
tasks [3] for cloud consumers. Internal applications work for the datacenter itself.
They determine the location of data copies, migrate virtual machine, and recover lost
data during node failure.

Big data applications have high demands for back-end storage systems because of
their volume, variety, velocity, and veracity [4,5]. Large-scale storage systems such
GFS and HDFS have been designed, implemented, and used at the early stage of cloud
computing. However, the initial rationales of those distributed storage were not fully
targeted at big data applications. Although these storage systems have been widely
used in real world for many years, there is always room for improvement of current
big data storage. An important issue is to consider the trade-off between cost and
performance.

In cloud computing, storage systems are designed to be scalable and elastic. During
peak hours, cloud storage needs to scale out to meet the increasing demands of cloud
users. Scaling out means adding more server machines to the storage system. During
off-peak hours, a number of servers is shutting down gracefully to reduce power
consumption and other costs. Itis a trade-off between cost and performance. By scaling
out, cloud storage can provide high throughput and sufficient storage or computing
resources to clients. However, as a result, scaling out largely increases the power
consumption, capital expenditure, and operation expenditure.

In addition to providing on-demands resources and services, cloud computing is
notable for high availability of user data. In the era of cloud computing, more and
more users choose clouds as their primary backup of important data, such as photos,
text documents, movies, and even software [6]. One major reason is the guaranteed
availability of data storage in clouds.

Replication surely improves the availability of cloud storage, but the extra pains
are also coming along with it. Assume a cloud storage with replication factor of 3,
which means there are two extra copies of all data existing in the datacenter. The extra
cost on disk storage is tremendous in a large-scale cluster with thousands of nodes.
Moreover, the use of replication schemes also brings the issue of data consistency and
other operational expenditure.

@ Springer

E2FS: an elastic storage system for cloud computing 1047

In this paper, we present E2FS, an elastic storage system for large datasets. E2FS
aims at minimizing the cost in datacenter while ensuring high availability and perfor-
mance for cloud users. To achieve the optimal balance between cost and performance,
E2FS uses a technique called data classification. The key idea is to classify data files
stored in cloud storage systems. Data classification is common in many cloud appli-
cations especially data-intensive applications. But many cloud storage systems, such
as HDFS and GFS, are not aware of the difference of data files in their replication
schemes. Data classification of E2FS attaches tags to each data file based on its his-
torical activities. These tags can be used to assign priorities to large data files. E2FS
dynamically adjusts replication schemes for different data files and re-sizes the stor-
age system accordingly to reduce energy consumption. E2FS also supports replication
schemes with dedicated block distribution like CopySets [7]. Data blocks or chunks
are basic unit of storage in datacenters. Instead of random replication, we compute the
reliability of servers with many other factors and place data blocks for high availability
and throughput. Another novel idea of E2FS is its awareness of network performance
in the datacenter.

The main contributions of the paper include: (1) a data classification for replication
proposed on cloud storage. (2) A model introduced to calculate availability in aware
of network failure. (3) A fine-grained block distribution proposed to ensure high avail-
ability with minimum space cost. The rest of the paper is organized as follows: Sect. 2
motivates the work. Section 3 presents the proposed algorithms. Section 4 shows the
experiments and results. Section 5 lists work related to this paper. Section 6 concludes
the paper.

2 Motivations

With the explosive growing of big data market, cloud storage systems face the critical
challenge of maintaining large unruly datasets [8]. Because of the variety and volume
of datasets, the desire for new elastic storage system is increasing. Traditional storage
systems such HDFS and GFS have proved their success in supporting large-scale
distributed computing. Yahoo reported great computing performance of Hadoop on
HDFS. GFS is also greatly helpful for storing billions of web pages everyday. However,
there is still room for improvement in cloud storage due to the following reasons: (1)
the diversity of user data in this era. (2) Various user patterns on read and write. (3)
The development of network virtualization technologies.

The diversity of user data is already quite different from what it is 5 years ago.
The type of data varies from texts such as tweets and blogs to images and videos.
Multimedia data such as images, audios, and videos have caused the major traffic of
the Internet. In 2014, video traffic was 64 percent of all consumer Internet traffic and
will reach 80 percent in 2019 [9]. Users tend to upload more and more files to cloud
storage. Table 1 lists the storage service provided by major cloud companies [10].
Almost every vendor provides free storage space of several Gigabytes. Assume each
user uses 50 % of the free space in average, the number will be 2.5 to 7.5 GB per user.
In cloud storage, three-way replication is widely used. It means three copies of the
data are stored across the datacenter to keep high availability of data files for clients.

@ Springer

1048 L. Chen et al.

Table 1 Major cloud storage services

Provider Free storage File size Pricing

OneDrive 5GB 10GB $2/M for 50 GB

Dropbox 2GB 10GB $10/M for 1 TB
GoogleDrive 15GB 5TB $2/M 100GB, $10/M 1 TB
Box 10GB 25GB $10/M for 100GB

Hence, if cloud storage providers adopt three-way replication, they will have to use
extra 5 to 15 GB disk space for each user to ensure high availability. The number is
even more astonishing if we consider individual users with paid plans and enterprise
users.

2.1 Block-based replication

Replication can ensure high availability in cloud storage [11]. Usually, we use a repli-
cation factor R to indicate the number of copies of the same data in cloud storage.
Besides the replication factor R, there is another important factor: block size. In large-
scale storage systems, data are stored as files of several terabytes or larger. To improve
efficiency, large files are split into equal-sized blocks. For example, the default block
size in HDFS is 64 MB. Block size defines the granularity of storage. In some repli-
cation schemes, blocks are treated as the target of replication instead of whole files.
Such designs make the storage system more flexible and effective [12].

Here, we introduce a term: distribution rate d. d works as a key factor in this paper
and it reflects how data blocks are distributed across the storage system. In a storage
system with N nodes and R as the replication factor. A large data file is divided into
M blocks. We assume that N is far greater than M. We calculate d as: d = D/M,
where D is the number of separately stored blocks and M is number of blocks for a
file. For example, N = 1000, R = 3, and M = 30. If all data blocks of a copy are
stored in the same replica node, the distribution rate d is 1/M; if all data blocks are
stored on M replica nodes separately, then d is 100 %. We adopt the factor in our node
recovery scheme. Hence, when d is 100 %, the number of replica nodes involved in
this replication is: M x R = 90.

2.2 Cloud data usage analysis

Cloud data usage is the core parameter of the proposed work. Data usage means the
access frequency of data after users upload it to cloud systems. Such data consist of
several types. First, social media data such as photos, blogs, and videos from social
media services. Facebook claims that it stores billions of pictures and millions of new
pictures are uploaded to Facebook each day. Twitter also stores billions of tweets
which can sum up to multiple TB. The other type is cloud storage service such as
Google drive, Amazon S3, and DropBox. These services either provide free storage

@ Springer

E2FS: an elastic storage system for cloud computing 1049

spaces of several GB or charge very little for large amount of disk space. Users can
get extremely large storage with low-price plans. Individuals and small companies
store documents, images, or even videos on such cloud storage while enterprise users
purchase massive disk space for their large datasets (Fig. 1).

No matter which type of data, there is a usage rate for each of them. It is possible that
a set of data is uploaded to cloud systems and never used for a long period of time, just
like some data on personal computers. For such data, the read and write operations
are relatively small compared to other data. We use the terms “hot” and “cold” to
represent the popularity of user data. Hot data mean that the data are frequently used
while cold data are the type of data rarely used or modified by users. We list some
terms to measure the usage of cloud data in Table 2.

We use visit per time period (VPT) to present the number of accesses to a certain
data file during a give time period. It could be a minute, a hour, or even a day. Visit
intervals represent the average time interval between two visits of the data file during
a given time period. In this paper, the term VPH means the number of visits per hour.
For example, a data file is accessed 200 times in an hour, then its VPH is 200. If a
data file is visited at time ¢1 and re-visited at time 72, then the visit intervals of the
data file is 2 — ¢1. In a time period N, we can calculate the average time interval
between two visits as: t = avg(t2 —¢1,¢t3 —12,...,tn —tn — 1), where avg is the
function to compute average numbers. The largest time interval can be expressed as:

=

Data Files

Fig. 1 Replication scheme

Table 2 Measurement of data

usage Name Description
VPT Visit per time period
AVT Average visit time interval
LAVT Largest visit time interval

@ Springer

1050 L. Chen et al.

t =max(t2—t1,t3—1¢2,...,tn—tn— 1), where max is the function to get maximum
number.

2.3 Elasticity of cloud storage

The key point of E2FS is to be elastic even when external demands are stable. Many
cloud storage are designed to be elastic to only meet changing user demands. For
example, if users require more hardware resources, the datacenter will power on more
servers to meet their requirements of computation or storage. When the demands of
resource declines, the datacenter turns down parts of its servers to reduce power and
operational costs.

Such elasticity can guarantee the service level agreement (SLA) while utilizing
hardware and software resources in datacenters. However, a major concern is the
overhead of storage and transmission caused by coarse-grained replication schemes.
As we mentioned previously, most cloud storage systems use random three-way repli-
cation. Three extra copies of data files are stored in the datacenter. As we calculated
above, the price of ensuring high data availability is expensive. In cloud storage, with
the classification of data files, we can adjust our replication schemes for different types
of files.

In E2FS, we propose a dynamic scheme to scale out or in copies of data files based
on the popularity of data files. Instead of giving two extra copies to all data, E2FS
assigns different numbers of copy to various data based on their popularity. If a data
file is visited frequently, the replication factor of the data will be three or higher.
Meanwhile, if a data file is rarely used, its number of extra copy will shrink to 1 or O.

With the analysis of user data, we will be able to perform our dynamic replication
schemes. We profile user activities on data files. The method collects a user’s visit
history of data files in a E2FS storage system. E2FS maintains metadata for each user
to record the access history of stored data. Based on the metadata, E2FS dynamically
adjusts the number of replications for all data of the user.

3 Algorithms

In this section, we introduce our replication schemes. First, we explain our block-
based replication scheme. Our scheme aims at distributing data blocks evenly across
the cluster. Therefore, we can achieve maximum parallelism in reads. Second, we
introduce our elastic replication adjustment, which adjusts the number of replicas in
real-time based on the profiled user data patterns.

In traditional replication schemes, nodes or servers are selected randomly to store
the copies of data blocks. Such approaches are not effective since the network topology
of the storage system is not fully considered. Furthermore, the location of data blocks is
not treated as a primary factor. In our replication scheme, we include network topology
of the storage system and the distribution rate of blocks into our replication scheme
to further improve the availability and efficiency of cloud storage. Our node recovery
scheme also benefits from this replication design.

@ Springer

E2FS: an elastic storage system for cloud computing 1051

The selection of replica nodes is described in Algorithm 3.1. In this algorithm, we
define a sub-network as: if servers connect to the same switch directly, then we consider
them in the same sub-network. If servers connect with others through more than one
switch, we consider them in different subnetworks. When a data file is uploaded to the
storage system, it is split into equal-sized blocks (lines 1-2). The replication factor
R in line 3 represents the number of copies will be existing in the storage system.
During the replication, we consider the distribution rate of blocks. We term K to
be the number of blocks which will be copied on the same node. K is calculated
as: K = M/D, where M is the total number of blocks and D is the distribution
rate. For each copy of data, we decide the replica node for every K blocks (lines
4-20).

For example, if R = 3 and D = 3, for the first copy of data, we select three available
nodes from the same sub-network of the original datanode. We assume there are at
least three datanodes available in the sub-network. We distribute data blocks across all
three datanodes. Each datanode has M/3 data blocks in it. For the second copy of the
data, we select three available nodes from a different sub-network in the same rack.
Similarly, we copy M/3 blocks on each datanode. After the replication, there are three
copies of the data files in the storage system with a distribution rate of 3/M.

Algorithm 3.1 Block-based replication scheme

Require: data file, node list, distribute numberD, replication factor R
Ensure: replicated data blocks
1: while data file is not null do

2 split file into N blocks

3 compute subnetworks for R replicas
4 for each replica subnet do

5: get M available nodes

6 if M =D then

7 for each node i do

8 if N = o0 then

9: copynext N/D blocksto i
10: end if

11: end for

12: clse

13: for each block j do

14: k=j modM

15: copy j to nodek

16: end for

17: end if

18: end for

19: end while

In Algorithm 3.2, we explain our dynamic adjustment of replicas. During a time
period 7, we check metadata of each data file (line 2). We ignore files which have been
adjusted recently (line 3). If a file’s VPT is greater than the higher threshold VPTH
and the file has fewer replicas than three, we increase the number of copies for that file
(lines 4-7). On the contrary, if the file’s VPT is less than the lower threshold VPTL
and the number of copies is greater than two, we reduce copies for the file (lines 8—11).
We perform the similar scheme on average visit per time period in lines 12—-19. We
increase or decrease the number of copies based the average visits of files.

@ Springer

1052 L. Chen et al.

Algorithm 3.2 Dynamic Replica Adjustment

Require: Data usage information D, time period T, threshold VPTH andVPTL threshold
AVTH and AVTL
Ensure: Replication adjustment

1: while During a time period T do

2: for Each file f in datanode doO

3: if fis not in recent adjustment list then

4: if f vpt greaterthan VPTH andf’s replica less than 3 then
5: increase f’s replica

6: add f to adj list

7: end if

8: if f’s vpt less than VPTL and f’s replica greater than 2 then
9: decrease f’s replica

10: add f to adj list

11: end if
12: if f's ave greatthan AVTH andf’s replica less than 3 then
13: increase f’s replica
14: add f to adj list
15: end if
16: if f’s avt less than AVTL and f’s replica greater than 2 then
17: decrease f’s replica

18: add f to adj list
19: end if
20: end if
21: end for

22: end while

4 Experiments

In this section, we evaluate the performance of our replication and recovery schemes
on customized storage system. We examine read and write latency of our replication
scheme. We also generate random user data access and classify the data based on their
visit history.

4.1 Implementation

To evaluate the performance of our replication and node recovery schemes, we develop
a customized cloud storage system which is similar to HDFS but with basic features
only. The storage system has 16 nodes including 1 namenode and 15 datanodes. These
nodes are virtual nodes running on physical machines.

Each node has limited disk storage and virtual network interfaces. Datanodes store
data files in the form of blocks. The namenode stores and maintains metadata such as
the location of data files, the mapping between data files and blocks, and the infor-
mation of all copies of a data file. In our design, all metadata are stored in disk files.
The information of a data file is kept as entries in a unique file on namenode; when
data on datanodes changes, the related information on metadata files is also updated.
The namenode is responsible for assigning datanodes to clients and selecting replica
nodes for each data file.

We provide interfaces for client programs. Through the interfaces, clients can per-
form operations including upload, read, and write. When a client program uploads
files from its local disk to the storage system. The namenode receives the request, and

@ Springer

E2FS: an elastic storage system for cloud computing 1053

determines a datanode to store the file. The address of the datanode is returned to the
client program. After that, the files are sent over TCP sockets to the datanode. Once
the write operation completes, the namenode selects several datanodes to store the
copies of the new data files. This process is transparent to the client.

4.2 Experimental setup

Our experiments were running on four physical machines. We develop prototype
systems to create 16 virtual nodes on the four physical servers. We configure one
virtual node to be namenode of the storage system, and the other 15 nodes to be
datanodes. Each node has a CPU core of 2.5 GHz, 4GB RAM, and 100 GB local
hard disk space. The default block size is 32 MB. The namenode has manager pro-
gram running on it, which maintains metadata of each datanode and takes charge
of replication and recovery. We also have network controller running on namenode.
The controller reads link data from switches and computes forwarding decisions at
runtime.

To make our evaluation simple, we use files with size of 640 MB, 1.28 or 2.56 GB.
Hence, the file size can be easily divided by block size. In the fat-tree topology, we
assume each switch has eight ports. We set the bandwidth of edge switches to be 1 MB/s
and the one of core switches to be § MB/s. By read operations, we mean downloading
the full file from the storage system. For write operations, we upload the whole file
and update all copies of the file instead of performing partial updates. To complete
these operations, we write programs to simulate clients of the storage system. The
client programs use interfaces to upload and download files to and from the storage
system. As a comparison, we also set up HDFS on our virtual nodes.

4.3 Analysis of data usage

In this experiment, we profile data usage for our elastic replication. Figure 2 shows the
number of visits per hour and Fig. 3 shows the maximum time intervals between two
visits of the same data. Both parameters show the popularity of data in cloud storage.
Visit-per-hour shows the frequency of data usage while visit-time-intervals reveal the
idle time of data. In Fig. 2, we divide the number of visits into ten sections. The first
section means the number of visits is greater than 1000 times per hour. The second
section means the number of visits is between 900 to 1000 in an hour. The last section
indicates the number of visits is less than 200 in an hour. As we observe, only 15 %
of total data has a vph higher than 1000. More than 30 % of data is visited less than
200 times in an hour. While the other vph numbers all have percentages lower than
12%.

In Fig. 3, we examine the maximum time intervals between two visits of the same
data. We divide the time intervals into ten sections. The smallest interval is less than
100 s, and the largest interval is over 1350 s (roughly 22 min). This experiment shows
the idle time of selected datasets. Only 8 % of the profiled data is visited twice or more
within 1 and a half minute. About 9 % of the data is visited twice within 2.5 min. More
than 20 % of the profiled data is never visited within 22 min.

@ Springer

1054

L. Chen et al.

0.35

0.30

0.20

0.15

Percentage

0.10

0.05

0.00

Fig. 2 Visit per hour

0.30

0.25

0.20

0.15

Percentage

0.10

0.05

Data Usage Distribution

M Percentage

>1000 900-1000 800-900 700-800 600-700 500-600 400-500 300-400 200-300 <200

Distribution Number

E

<100

150

Fig. 3 Visit time intervals

4.4 Latency analysis

300

Data Usage Intervals

¥ Percentage

450 600 750

Time Intervals (s)

900

1050

1200

1350+

In this evaluation, we focus on how read/write latency is affected by our replication
scheme. We assume the read/write latency of single copy storage as baseline. We first
analyze read latency of HDFS and E-replica scheme. We use replication number as
the tuning factor to examine the effect of E-replica scheme. The replication number R
varies from 1 to 15. When R = 1, only a single copy of the data exists in the storage

@ Springer

E2FS: an elastic storage system for cloud computing 1055

system. In this case, when a client requests for the data file, only one datanode is
available for the read operation.

Hence, the maximum speed of the read depends on the only TCP link between the
datanode and the client. When R = 15, the data are fully replicated across the storage
system. Every datanode has a copy of the data. Hence, the read latency depends on
the total bandwidth of the client’s network.

However, in traditional storage system, copies of data files are not fully used.
Figure 4 shows that even if the replication factor grows, it has little effect on the
read latency of HDFS storage. In contrast, our scheme makes full use of all replica-
tions when a client requests for the file. Through computation, our scheme returns
the client with connections to multiple datanodes. Each datanode has a copy of the
file. Our design allows different blocks of the file to be transmitted to the client
over simultaneous connections. Therefore, the read performance can be fully uti-
lized.

However, it is not practical to have high replication factor. There are some reasons:
(1) waste of disk space. When we have high replication factor in storage systems, it
means that too many copies of the same file exist in the system. Large amounts of
disk space are used to store same files. (2) Replication increases write cost. In cloud
storage, synchronization is a major challenge. Every copy of a data file needs to be
synchronized correctly when the file is modified. Large replication factor means large
numbers of write operations in the storage system. The cost of maintenance increases
significantly. Figure 5 shows the impact of replication on write latency for HDFS and
E-replica. We assume the write latency of a single copy is N. When the file is fully
replicated, the write operations increase up to 10 times of the single copy replication.
Therefore, in practice, a replication factor of three is widely agreed due to its balance
in availability and write performance.

0.70
Read latency
0.60 -
N E-REPLIC

& 5 - ® HDFS
5 050
]
5
§ 0.40 -
o«

0.30 -

1 2 3 4 5 6 7 8 9 10 17 12 13 14 15
Replication number

Fig. 4 Read latency analysis

@ Springer

1056 L. Chen et al.

950 T Write latency

8.50 T

7.50 T

- -& - E-replica

—=®— HDFS

Write latency (N)
(%]
v
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Replication number

Fig. 5 Write latency analysis

4.5 Block distribution

Block distribution rate is a critical factor to increase data read and recovery perfor-
mance. Block distribution can determine the parallelism of all data read operations,
which means how many copies of data can be accessed simultaneously from multi-
ple datanodes. Block distribution rate is defined based on the number of blocks for
a data file. If a data file is split into N blocks, its block distribution rate ranges from
1/N,2/N, ..., 1. The term 1/N means that all blocks of the copies of file are stored
on the same replica node. For example, if two extra copies of the file are kept in the
storage system, then all blocks of each copy are stored on two datanodes. Therefore,
the total number of datanodes attached to the file is three. If the rate is one, it means
every block of the file is copied on a separate datanode. Assume the nu MBer of extra
copies is also two.

For the first copy, N data blocks of the copy are stored on N different nodes.
The scheme is repeated on the second copy, where another N datanode is selected.
Therefore, in this case, the nu MBer of node related to the file is 2N + 1. When a user
tries to read a data file with block rate N, the ideal read latency can be calculated as:
t =s/(b+ p x n x b). Term ¢ is the total read latency, s is the size of the data file,
b is the average bandwidth of nodes, p represents the percentage of using replicas in
parallel, and n means the nu MBer of replicas.

In this experiment, the size of data files is 10.24 GB in total and they consist of
documents, videos, and images. Since we have limited the nu MBer of nodes to 16, the
nuMBer of data blocks of each file might be much larger than 10. Therefore, we use the
distribution rate range from 1/10, 2/10, ..., 10/10 since ten is the maximum nu MBer
of possible replica. Similar to previous experiments, we use three-way unmodified
HDES as baseline for comparison. Figure 6 shows the read latency of data files. When
only blocks are distributed to one or two extra nodes, the read latency is similar to

@ Springer

E2FS: an elastic storage system for cloud computing 1057

0.60
Read latency
0.50 1 w./_*_‘\.
z I»-..,.
> 0.40 A
2 L3 z
8 -- i E-Replica
ki L3
-]
S 030 + B ~@®—HDFS
o '~..
'........
0.20 “....
‘.- &
Distribution Rate u
0.10 t + t t ; t ; t + t t t +
o oo o oo oo \o o oo o ol oo o oo oo O
& o7 096\ N R Y . 4 096\ &P F I
A . U R - S Y. .

Fig. 6 Read latency with distribution rate analysis

HDFS. Read latency reduces significantly as three or more extra nodes are used in
parallel. When data blocks are fully distributed across ten nodes, the total latency is
around 13 % of the baseline nu MBer. Therefore, read operations can benefit largely
from block distribution.

In the previous experiments, we randomly generate node failure in the simulated
storage system. For simplicity, we assume only one node crashes at a time and no
node crashes during the recovery of another node. If a node fails, the total time
to recover data on that node is calculated as: + = tc + ts, where tc is the time
used to choose a new node and ts is the time for all data to be sent to the new
node.

5 Related works

SpringFS [13] is a new elastic storage system that fills the space between state-of-the-
art designs in the trade-off among agility, elasticity, and performance. SpringFSs data
layout and offoading/migration policies adapt to workload demands and minimize
the data redistribution cleanup work needed for elastic resizing, greatly increasing
agility relative to the best previous elastic storage designs. As a result, SpringFS can
satisfy the time-varying performance demands of real environments with many fewer
machine hours. Such agility provides an important building block for resource-efficient
data-intensive computing (a.k.a. Big Data) in multi-purpose clouds with competing
demands for server resources.

In an analysis of Facebook messaging [14], the authors present a multilayer study
of the Facebook Messages stack, which is based on HBase and HDFS. We collect and
analyze HDFS traces to identify potential improvements, which we then evaluate via
simulation. Messages represent a new HDFS workload: whereas HDFS was built to

@ Springer

1058 L. Chen et al.

store very large files and receive mostly sequential I/O, 90 % of files are smaller than
15MB and I/O is highly random. We find hot data are too large to easily fit in RAM
and cold data are too large to easily fit in flash; however, cost simulations show that
adding a small flash tier improves performance more than equivalent spending on RAM
or disks. HBases-layered design offers simplicity, but at the cost of performance; our
simulations show that network I/0 can be halved if compaction bypasses the replication
layer. Finally, although messages are read dominated, several features of the stack (i.e.,
logging, compaction, replication, and caching) amplify write I/O, causing writes to
dominate disk I/O.

Multi-tiered storage made up of heterogeneous devices are raising new challenges
in allocating throughput fairly among concurrent clients. The fundamental problem
is finding an appropriate balance between fairness to the clients and maximizing sys-
tem utilization. In the work of Wang and Varman [15], the authors cast the problem
within the broader framework of fair allocation for multiple resources. They present
a new allocation model BAA based on the notion of per-device bottleneck sets.
Clients bottlenecked on the same device receive throughputs in proportion to their
fair shares, while allocation ratios between clients in different bottleneck sets are cho-
sen to maximize system utilization. They show formally that BAA satisfies fairness
properties of Envy Freedom and Sharing Incentive. They evaluated the performance
of our method using both simulation and implementation on a Linux platform. The
experimental results show that their method can provide both high efficiency and
fairness.

In the work of Cidon et al. [16], the authors presented Tiered Replication, a repli-
cation technique that automatically places the nth replica on a separate cluster, while
minimizing the probability of data loss under correlated failures, by minimizing the
nuMBer of copysets. Tiered Replication improves the cluster-wide MTTF by a factor
of 20,000 compared to random replication, without increasing the storage capac-
ity. Tiered replication supports additional data placement constraints required by the
storage designer, such as rack awareness and chain replication assignments, and can
dynamically adapt when nodes join and leave the cluster. An implementation of Tiered
Replication on HyperDex, a key-value storage system, demonstrates that it incurs a
small performance overhead.

Bowers et al. [17] introduced High-Availability and Integrity Layer (HAIL), a dis-
tributed cryptographic system that allows a set of servers to prove to a client that a
stored file is intact and retrievable. HAIL strengthens, formally unifies, and stream-
lines distinct approaches from the cryptographic and distributed system communities.
Proofs in HAIL are efficiently computable by servers and highly compact, typically
tens or hundreds of bytes, irrespective of file size. HAIL cryptographically verifies and
reactively reallocates file shares. It is robust against an active, mobile adversary, i.e.,
one that may progressively corrupt the full set of servers. They propose a strong, for-
mal adversarial model for HAIL, and rigorous analysis and parameter choices. They
show how HAIL improves on the security and efficiency of existing tools, such as
Proofs of Retrievability (PORs) deployed on individual servers. They also report on a
prototype implementation.

@ Springer

E2FS: an elastic storage system for cloud computing 1059

6 Conclusion

High availability and performance are always the major concerns of cloud storage
systems. While replication is widely used as a scheme to improve availability and
throughput of storage systems, some important features of replication are still not
explored. Data classification and block-based replication are promising in improving
the efficiency of cloud storage. In the paper, we introduced a block-based replication
and dynamic replica adjustment. Our block-based replication used block distribu-
tion as a key factor to improve effectiveness of replication schemes. We profiled
and classified user data based on their visit history. We also implemented a proto-
type system and performed experiments. Our experiments proved the effectiveness
of our dynamic replication adjustment compared to traditional three-way replica-
tion.

Acknowledgements This work is supported by NSF CNS-1457506 and NSF CNS-1359557.

References

1. Chen M, Hai J, Wen Y, Leung VC (2013) Enabling technologies for future data center networking: a
primer. IEEE Netw 27(4):8-15
2. Li J, Qiu M, Niu J, Gao W, Zong Z, Qin X (2010) Feedback dynamic algorithms for preemptable
job scheduling in cloud systems. In: Proceedings of the IEEE/WIC/ACM International Conference on
Web Intelligence, DC, USA, pp 561-564
3. Dai W, Qiu M (2015) Energy optimization with dynamic task scheduling mobile cloud computing.
Syst J IEEE PP(99):1-10
4. Chen M, Mao S, Zhang Y, Leung VC (2014) Big data: related technologies, challenges and future
prospects. Springer Briefs in Computer Science
5. Zhang Y, Chen M, Mao S, Hu L, Leung VC (2014) Cap: Community activity prediction based on big
data analysis. IEEE Netw 28(4):52-57
6. ChenM,Hao Y, Li Y, Lai C, WuD (2015) On the computation offloading at ad hoc cloudlet: architecture
and service modes. IEEE Commun Mag 53(6):18-24
7. Cidon A et al (2013) Copysets: reducing the frequency of data loss in cloud storage. In: USENIX
Annual Technical Conference 2013 (USENIXATC 13). San Jose, pp 37-48
8. QiuM, Ming Z (2013) Informer homed routing fault tolerance mechanism for wireless sensor networks.
J Syst Archit 59(4):260-270
9. CISCO (2014) Cisco Visual Networking Index: Forecast and Methodology, 2014-2019 White Paper.
http://www.cisco.com/c/en/us/solutions/collateral/service- provider/ip-ngn-ip-next- generation-netw
ork/white_paper_c11-481360.html. Accessed 18 Feb 2016
10. CNET (2013) Cloud storage comparison. http://www.cnet.com/how-to/onedrive-dropbox-google
-drive-and-box-which-cloud-storage-service-is-right-for-you/. Accessed 18 Feb 2016
11. Gai K, Qiu M (2015) Dynamic Energy-aware Cloudlet-based Mobile Cloud Computing Model for
Green Computing. J Netw Comput Appl 59:46-54
12. Wu G, Qiu M (2013) A decentralized approach for mining event correlations in dis- tributed system
monitoring. J Parallel Distrib Comput 73(3):330-340
13. Xu L et al (2014) SpringFS: bridging agility and performance in elastic distributed storage. In: Pro-
ceedings of the 12th USENIX Conference on File and Storage Technologies (FAST 14). Santa Clara,
CA, pp 243-255
14. Harter T et al (2014) Analysis of hdfs under hbase: A facebook messages case study. In: Proceedings
of the 12th USENIX Conference on File and Storage Technologies (FAST 14), pp 199-212
15. Wang H, Varman P (2014) Balancing fairness and effciency in tiered storage systems with bottleneck-
aware allocation. In: Proceedings of the 12th USENIX Conferenceon File and Storage Technologies
(FAST 14), pp 229-242

@ Springer

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cnet.com/how-to/onedrive-dropbox-google-drive-and-box-which-cloud-storage-service-is-right-for-you/
http://www.cnet.com/how-to/onedrive-dropbox-google-drive-and-box-which-cloud-storage-service-is-right-for-you/

1060 L. Chen et al.

16. Cidon A et al (2015) Tiered replication: a cost-effective alternative to full cluster geo-replication. In:
2015 USENIX Annual Technical Conference (USENIX ATC 15), pp 31-43

17. Bowers KD, Juels A, Oprea A (2009) Hail: a high-availability and integrity layer for cloud storage. In:
Proceedings of the 16th ACM Conference on Computer and Communications Security. ACM, New
York, pp 187-198

@ Springer

	E2FS: an elastic storage system for cloud computing
	Abstract
	1 Introduction
	2 Motivations
	2.1 Block-based replication
	2.2 Cloud data usage analysis
	2.3 Elasticity of cloud storage

	3 Algorithms
	4 Experiments
	4.1 Implementation
	4.2 Experimental setup
	4.3 Analysis of data usage
	4.4 Latency analysis
	4.5 Block distribution

	5 Related works
	6 Conclusion
	Acknowledgements
	References

