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Abstract Workflows are adopted as a powerful modeling technique to represent
diverse applications in different scientific fields as a number of loosely coupled tasks.
Given the unique features of cloud technology, the issue of cloud workflow scheduling
is a critical research topic. Users can utilize services on the cloud in a pay-as-you-go
manner and meet their quality of service (QoS) requirements. In the context of the
commercial cloud, execution time and especially execution expenses are considered
as two of the most important QoS requirements. On the other hand, the remarkable
growth of multicore processor technology has led to the use of these processors by
Infrastructure as a Service cloud service providers. Therefore, considering the mul-
ticore processing resources on the cloud, in addition to time and cost constraints,
makes cloud workflow scheduling even more challenging. In this research, a heuristic
workflow scheduling algorithm is proposed that attempts to minimize the execution
cost considering a user-defined deadline constraint. The proposed algorithm divides
the workflow into a number of clusters and then an extendable and flexible scor-
ing approach chooses the best cluster combinations to achieve the algorithm’s goals.
Experimental results demonstrate a great reduction in resource leasing costs while the
workflow deadline is met.
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1 Introduction

Nowadays, the demand for processing data-intensive and compute-intensive tasks is
ever increasing in different fields of scientific applications. As the latest means of util-
ity computing in distributed systems, the concept of cloud computing has drawn much
attention from researchers, not only in academics but also in commercial and industrial
fields. The most recent emerging trend in this context and one of the greatest features
of distributed systems, such as grid and especially the cloud is the on-demand accessi-
bility of processing resources with variable sizes and capabilities. Utility grids employ
the monetary concept in a way that storage and processing resources with different
quality of service (QoS) characteristics can be provided at different prices [1]. TheQoS
requirements of users in these systems are guaranteed throughuser and service provider
contracts called service level agreements (SLAs). Considered as an extension of utility
grids, cloud computing uses pay-as-you-go and quality of service concepts to offer the
utility grid features over the Internet. Instead of investing in required resources and
their maintenance, one can lease resources as required. Moreover, the on-demand and
pay-as-you-go usage of cloud resources makes this infrastructure highly scalable and
cost effective. Through a virtualization process, storage and processing resources are
presented on the cloud as separate physical infrastructures, which is an important cloud
feature. Therefore, the virtual environment provided by the cloud is entirely indepen-
dent of other environments and physical hardware [2]. This feature also allows service
providers to offer customized environments based on user requirements. Accordingly,
the cloud can be considered as an appropriate platform for executing loosely coupled
applications consisting of cooperative tasks, such as scientific workflows which may
require high computing power far beyond a single processing resource.

The workflow model is used in numerous scientific applications in distributed sys-
tems, including those for chemistry, computer science, physics, and biology, etc. One
method to describe a workflow is the directed acyclic graph (DAG), in which each task
is dependent on the data produced by its predecessors. Data communications between
tasks create precedence constraints on the workflow. In this model, the vertices repre-
sent the tasks and the edges represent control and data dependencies. In more general
cases, some workflows can be modeled as hybrid DAGs composed of tasks and super-
tasks in which tasks within super-tasks can interact during execution [3]. To execute
this type of applications, many workflowmanagement systems have been designed by
projects such as Pegasus [4], GrADS [5], and ASKALON [6] that describe, manage,
and execute workflows on the grid. The latest version of these workflow management
systems also supports the execution of workflows on the cloud platform.

Workflow scheduling is considered as the process of mapping tasks on processing
resources so as to satisfy some performancemetrics [7]. Like all task scheduling issues,
optimalworkflow scheduling is awell-knownNP-complete problem.Hence,most task
scheduling algorithms attempt to overcome this issue by proposing heuristic andmeta-
heuristic methods. Most workflow scheduling techniques on the grid try to minimize
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the workflow execution time (i.e., makespan) [8,9]. In the pay-as-you-go cloudmodel,
execution cost is one of the most important factors considered in scheduling methods,
in addition to that of the workflow makespan. Therefore, a proper trade-off between
two of the most important QoS factors, execution cost and makespan renders the
problem of scheduling workflows on the cloud even more challenging.

On the other hand, the widespread development of multicore processor technology
has caused service providers to choose these kinds of processors as their infrastructure.
Consequently,workflowexecution on the cloudmust consider scheduling onmulticore
processors in such a way that the user-defined deadline is met, and the monetary costs
of the workflow execution are also minimized. Due to the higher leasing costs of
multicore resources, the execution costs and utilization of leased resources gain higher
importance. Most of the current studies conducted in this context have not considered
the multicore resources available on the cloud and their utilization.

The current study proposes the cluster combining algorithm (CCA), a new static
scheduling algorithm that attempts to overcome the problem of workflow schedul-
ing on the multicore cloud. The main goal is to minimize the monetary costs of
workflow execution while meeting a user-defined deadline. The proposed approach
consists of two main phases; first, the workflow is clustered by a primary clus-
tering algorithm. The primary clustering phase of the CCA algorithm considers a
sequence of related tasks for each cluster. We have assumed that for each cluster
after the primary clustering phase a single-core processing resource is leased. This
is only an assumption and not a fact. The second phase of the algorithm chooses
the best combination among the available cluster combinations via a novel scoring
approach and maps cluster tasks on multicore processing resources using a step-
by-step approach. An extendable and flexible scoring approach is presented for the
combination phase. In this phase of the algorithm, the best available cluster com-
bination candidate meeting the deadline and reducing the workflow execution cost
achieves a score higher than the other combinations and so is chosen. This scor-
ing method also considers the serial and parallel execution of the resulting clusters
and selects the best execution method based on the achieved score. This approach
employs a new concept called time overlap to decide how to execute the combined
clusters. The clusters with a high time overlap are executed in parallel while those
with no time overlap or a low time overlap are executed in series. Therefore, the par-
allel execution of clusters results in a higher score if the combining clusters have a
high time overlap. Obtaining a high time overlap in a parallel execution reduces the
free time gaps in the schedule map, which directly increases the utilization of the
leased resources. If the workflow deadline is violated, the algorithm will attempt to
reduce the makespan even by leasing powerful resources and undertaking more free
time gaps, both of which increase monetary costs. The second phase of the algorithm
is repeated until no other combination of available clusters improves the workflow
score.

The main contributions of the present study can be listed as follows:

– Exploitation of multicore platform facilities.
– Consideration of multiple quality of services in the scheduling algorithm.
– Usage of a heuristic method for discerning the best cluster combination.
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– Introduction of an extendable and flexible scoring method which allows multiple
criteria scheduling.

The rest of the paper is organized as follows. A background on workflow scheduling,
resource management, and related work on distributed systems is provided in Sect. 2.
Section 3 presents in detail the required system model and basic definitions. The pro-
posed algorithm is described in Sect. 4. Section 5 presents the simulation results, and
the execution time’s performance evaluation and the cost of the proposed algorithm.
A brief discussion on algorithm’s performance is provided in Sect. 6. Concluding
remarks and intended future works are covered in the last section.

2 Related work

The cloud offers four types of services, namely Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), Software as a Service (SaaS), and Network as a Service
(NaaS). Someof these services are broader and can be considered as platforms for other
services. For example, Financial Software as a Service (FSaaS) and Risk Visualization
as a Service (RVaaS) are grouped with SaaS, as in [10,11]. Users can benefit from
these services; quality of service (QoS) parameters can bemet based on a Service Level
Agreement (SLA) between the user and the service provider on a pay-as-you-go plan.

Arabnejad and Barbosa [12] have classified workflow scheduling algorithms in
this area into two main categories: QoS optimization and QoS constrained. The QoS
optimization algorithm attempts to optimize all QoS parameters in the schedule map.
In this category, some research has been conducted to provide a balance between QoS
parameters such as time and cost in [13–16]. The QoS constrained algorithms tried to
optimize some QoS parameters while meeting other user-defined QoS constraints. For
instance, this category can optimize the cost of a workflow execution on a distributed
system while taking care not to violate a user-defined deadline, as in [1]. On the
other hand, workflow scheduling algorithms can be classified into static and dynamic
approaches. In the static mode, the schedule map is created before execution and does
not change during execution. In contrast, dynamic scheduling algorithms do not have
any previously made plan before runtime. Instead, during runtime, the scheduler plans
according to available resources.

Dynamic scheduling methods can be classified into two categories: online and
batch. In the online mode, as soon as a task is ready, it is scheduled on a resource
which leads to the earliest finish time, as in [17]. On the other hand, the batch mode
gathers the ready tasks in a set and schedules them on resources in a best-effort manner.
The two most well-known algorithms in this context are Min–Min [18] and Max–Min
[18]. The Min–Min method selects the task with the minimum earliest finish time and
schedules it on a resource that provides the earliest completion time. Similarly, the
Max–Min algorithm selects the task with the maximum earliest finish time.

Some comparative studies consider that static scheduling methods outperform
dynamic ones from different points of view in most cases [19]. The main reason
for this superiority is using available prior information, both at the task and workflow
level.
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The present research is a QoS constrained heuristic on the static scheduling of
scientific workflows on the IaaS cloud. Time and cost can be considered as two of the
most important user quality of services. Therefore, a proper time/cost trade-off is very
critical in scheduling algorithms [12].

Generally, optimal task scheduling pertains to the NP-complete class. To this aim,
heuristic and meta-heuristic methods attempt to address the issue in polynomial com-
plexity [20–23]. Another category of studies has investigated these NP-complete
problems using mathematical formulations [24,25].

Scheduling on distributed systems such as grid and cloud, has been investigated in
a wide range of studies, such as [8,9,26–28]. Numerous early studies on distributed
systems proposed reducing execution time (i.e., makespan). For instance, the HEFT
algorithm introduced by Topcuoglu et al. [20] is one of the most famous algorithms
in the static list scheduling context on heterogeneous processors. This method selects
the task with the highest upward rank and assigns it to a processing resource, which
leads to the minimum earliest finish time of the selected task. The CPOP algorithm,
which uses the summation of the upward and downward rank as the priority of each
task, is also introduced in the current research. A wide range of heuristics is dedicated
to the extension of this well-known method as discussed in [12,29,30].

The Dominant Sequence Clustering (DSC) algorithm proposed by Yang and Gera-
soulis [31] is one of the well-known clustering scheduling algorithms based on
prioritizing directed acyclic graphs. This method selects a task with the highest prior-
ity in each step and combines it with one of its parents’ clusters. The Path Clustering
Heuristic (PCH) proposed in [22] is also a cluster-based static scheduling algorithm
on the grid. The main objectives are maximizing the throughput and utilization of
resources and reducing runtime. A similar method was also proposed for scheduling
multiple workflows in [32], which maximizes the fairness between processes while
minimizing the required scheduling time. A two-stage procedure for scheduling on
multiprocessors is proposed by Sarkar [21]: (1) a primary clustering phase based on
edge zeroing with the assumption an infinite number of processors exist and (2) the
aggregating and scheduling of these primary clusters to meet the number of available
processors.

HPC application scheduling on the cloud data centers with energy efficiency mod-
eling is considered in [33]. An increase in energy consumption decreases the profits
of service providers and drastically affects environmental pollution. A resource pro-
visioning heuristic for the cloud data centers is proposed in [34] by setting fixed
utilization thresholds. The main objective of this research is reducing energy by the
dynamic adaptation of virtual machine allocation during runtime and also by turning
idle nodes to the sleep mode.

Much research [35–38] has investigated the issues of considering load balancing,
performance, accessibility, and reliability in resource management and scheduling on
the cloud. The pricing model used on the cloud is one of the main differences between
the cloud and the grid. Hence, execution expenses, in addition to execution time, are
considered as an important QoS factor in most scheduling algorithms on the cloud.

The SPSS algorithm proposed by Malawski et al. [39] is a static scheduling algo-
rithm formultiple workflows on the IaaS cloud that tries tominimize costs with respect
to the specified deadline. Firstly, it allocates a sub-deadline to each workflow task and
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chooses tasks according to their sub-deadline. These are then mapped on the cheapest
possible resource that minimizes the start time of the task. However, this research has
not considered the available multicore processing resources of the cloud.

The IC-PCP algorithm was proposed by Abrishami et al. [7] to schedule scien-
tific workflows on the IaaS cloud, an extension to their previous PCP method [1] for
schedulingworkflows on the grid. This approachminimizes execution costs by consid-
ering time constraints using the Partial Critical Path concept. Therefore, a sequence
of tasks is mapped onto a processor for execution. Furthermore, they proposed the
Budget-PCP [40] which minimizes execution time with respect to cost constraints.
This approach distinguishes the sequence of tasks well, but does not recognize the
relationship between the sequences. Accordingly, this method cannot function prop-
erly for scheduling on multicore processors.

Poola et al. [41] presented a critical path-based workflow scheduling algorithm on
the cloudwhich considers robustness and fault-tolerancewith time and cost constraints
by using three different resource allocation policies. This method solves the problem
of uncertainties, such as performance variations and failures in cloud environments,
by adding slack time based on deadline and budget constraints. However, this method
does not take into account the available multicore processing resources in the cloud.

Introduced by Bittencourt and Madeira [2], the Hybrid Cloud Optimized Cost
(HCOC) algorithm schedules multiple workflows on private and public clouds and
also considers multicore processing resources. The general purpose of this method is
to schedule workflow on the private cloud. Hence, if the deadline is not met, resources
are leased from a public cloud to meet the specified deadline while trying to minimize
the renting cost. This method’s main deficiency occurs when the workflow does not
meet the deadline. As a result, the algorithm functions very slowly, mainly because,
in each iteration, more tasks are selected for testing on a higher number of processing
resources.

3 System model and basic definitions

This section presents the fundamentals of the current work’s scheduling algorithm,
such as application, resource, and pricing models.

3.1 Application model

The workflow model is one of the most successful paradigms for programming scien-
tific applications on distributed infrastructures, such as the grid and the cloud. Bags
of tasks is another successful application that can be covered by this model [42,43].
The present study’s scheduling algorithm focuses on scheduling scientific workflows
on the cloud.

Since a workflow’s tasks are optionally interconnected, the application model used
for a scientific workflow is a Directed Acyclic Graph G = (V, E), in which V =
{vi |i = 1, . . . , V } denotes the set of tasks of the workflow, and E = { ei, j |(i, j)
∫{1, . . . , V }× {1, . . . , V }} shows the edges between the vertices. Also, each edge has
a weight which denotes the precedence constraint and the amount of data commu-
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Fig. 1 Sample workflow

nication between tasks vi and v j . The amount of data communication between tasks
is predetermined and known in advance. Therefore, for the computation of a task to
begin, all the data needed for its predecessors must be received and ready. Since the
algorithm requires a graph with individual entry and exit nodes, a ventry and vexit with
zero processing time and zero communication have been added to the DAG. Many
techniques, such as analytical benchmarking, code profiling, statistical prediction, and
code analysis, have been used to estimate the execution time of a task on an arbitrary
resource [1]. Therefore, the average computational capacity of each task is assumed
to be known a priori.

With each workflow DAG, a deadline and/or maximum available budget are sub-
mitted by the user. Hence, a sub-deadline is computed for each task which must be
observed so that the workflow meets the deadline. The focus of the present research
is scheduling a single workflow on the cloud and observing a user-defined deadline.
However, simple techniques can be used to combine multiple workflows into a single
DAG that share a common deadline and/or an overall available budget.

Figure 1 shows a small sample workflow consisting of 10 nodes and two dummy
nodes, start and end. The numbers inside the nodes denote the task numbers and the
numbers above the nodes and the edges denote the estimated average execution time
and the estimated average communication time, respectively, in minutes. The two
dummy nodes are added so that the workflow has a single entry, and also a single
exit node and the computation and communication times of the two dummy nodes
are considered as zero. For instance, for the processing of task 5 to begin, all the data
needed from tasks 2 and 3must be received. Similarly, all the data from tasks 6, 7, and 8
must be ready to begin the computation of task 9. Themakespan of theworkflow, in this
case, will be the finish time of the end node which is equal to the finish time of task 9.

3.2 Resource model

The IaaS cloud model used by the current work offers a set of virtualized processing
resources to its users. To model the cloud service provider S, the triple I aaSS =
(SP, RL , BP) is employed, which denotes the service provider’s name, a list of
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available multicore resources and resource attributes, and billing time periods. The
processing resources on the cloud aremodeled as inconsistent heterogeneous resources
in such a way that different tasks may achieve different performances on the same
processing resource. In addition, each multicore processing resource consists of a
set of homogeneous cores. The present study’s scheduling algorithm uses a resource
model which consists of R heterogeneous resources, in which all resources can belong
to a single service provider or different service providers. Each multicore resource
node iconsists of a set of homogeneous cores. To model cloud resource R,RLR =
(C,PW,PR, M) is employed which, respectively, denotes the number of cores of
each resource, the computational capacity of each core, the leasing price for each
resource billing unit, and also the available memory for each instance. Although there
are many QoS attributes in this context, only execution time and cost, respectively, is
QoS (T, C), are considered the most important. Bandwidth is also a square matrix that
defines the communication bandwidth between resources; this is given by the service
provider and is equal among the resources offered by the specific service provider.

3.3 Pricing model

One of the available pricing models used by most commercial IaaS cloud service
providers is based on a pay-as-you-go manner. In this model, users are charged by
the amount of service demanded and without any up-front investment. In other words,
the user is charged based on overall leasing time intervals used for the execution
of the workflow, even if the user does not completely use the leased time intervals.
Because the present work’s scheduling algorithm divides the workflow into clusters
and each cluster is executed on a separate resource, the execution cost of each cluster
can be separately calculated. To compute the cloud’s data transfer cost of theworkflow,
namely TC(ei, j , a, b) between resource a that is processing task iand resource b that
is processing task j , it is assumed that the amount of communication inside the cloud
is free, and each service provider (e.g., Amazon) clearly specifies the data communi-
cation fees from/to cloud service providers outside the current cloud. Therefore, this
parameter is modeled as Pout/in

s , which denotes the data transfer price to and from
instance sin $ per GB for non-local data communications.

3.4 Basic definitions

The current study assumes that the average execution time of each task on a single-core
processor and the communication capacity between all the workflow tasks is a priori.
Hence, the transfer time of each communication can be computed by dividing the
data communication volume by the available bandwidth among the service providers’
processing resources executing data dependent tasks.

Also, the Minimum Execution Time (MET(vi )) and the Minimum Transfer Time
(MTT(ei, j )) are defined as follows:

MET(vi ) = min
s∈Si

ET(vi,s) (1)
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MTT(ei, j ) = min
r∈Si , s∈S j

TT(ei, j , r, s) (2)

Here vi is the i th task, Si and S j are the set of available services, and ei, j denotes
the communication edge between tasks vi and v j . Also, ET and TT are acronyms for
execution time and transfer time, respectively. Using the following definitions, the
Earliest Start Time (EST) is computed as follows:

EST(ventry) = 0 (3)

EST(vi ) = max
vp∈v′

i parents
(EST(vp) + MET(vp) + MTT(ep,i )) (4)

Also the latest finish time of each task is defined as the latest time at which the task’s
computations must be completed so that the workflow meets the specified deadline as
shown in (5) and (6):

LFT(vexit) = deadline (5)

LFT(vi ) = min
vc∈ vi

′schildren
(LFT(vc) − MET(vc) − MTT(ei,c)) (6)

Therefore, the overall execution time or makespan of the workflow is defined as
the time between ventry and the completion of vexit.

4 The proposed workflow scheduling algorithm

The main objective of the present research is the QoS constrained static scheduling of
scientific workflows on the multicore IaaS cloud platform.

The widespread availability of multicore processing resources on the cloud poses a
significant challenge for the scheduling ofworkflows.The issue of amulticore platform
adds some difficulties to this scheduling problem. One of the main purposes of using
these processors is parallel computing. The data communications and precedence
constraints between workflow tasks make optimal scheduling of the workflow more
difficult to achieve. Therefore, the workflow can be divided into clusters that can be
executed in parallel or serial. The concept of clustering the workflow has been studied
in different scheduling algorithms [22,32]. The current research proposes an algorithm
which combines existing clusters according to certain criteria.

The higher leasing cost of multicore processors compared to that of single cores
significantly increases the importance of cost in the multicore cloud and the utilization
of available cores. In addition, execution cost and makespan in the cloud environment
create conflicting side effects; that is reducing themakespan requires higher processing
power resources, thus resulting in higher leasing fees.On the other hand, resourceswith
desirable lower computing capacity and lower leasing prices increase the makespan.
Therefore, a proper trade-off between these two concepts is vital.

In order to choose the optimum cluster combination in each combination step, a
scoring function has been introduced. The proposed scheduling algorithm is designed
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Fig. 2 Sample workflow after the primary scheduling phase

in a way that different criteria in the workflow scheduling context, such as energy
efficiency and load balancing among others, can be investigated by the criteria in the
scoring function. Thus, the criteria may be applied in the cluster combination phase,
and the scheduling will evolve in a way that those criteria will be enhanced during each
combination phase. The scoringmethod uses the new concept of time overlap to decide
which clusters should be combined and which ones should remain unchanged. Time
overlap denotes the amount of time intersection between the clusters. This concept
is also used in deciding the execution manner of the combined clusters. Executing
two clusters with a high time overlap in parallel reduces the free time gaps in the
available leased time periods. Reducing the free time gaps in each step lessens the
overall needed time intervals which directly affect the execution cost of the workflow.
To compute the time overlap for each pair of clusters, a time period for the execution
of each cluster must be defined. Having computed the EST and LFT of each task of
the workflow the Earliest Finish Time (EFT) of each task is also computed as follows:

EFT(vi ) = EST(vi ) + MET(vi ) (7)

Therefore, as shown in (8) and (9), the EST and EFT can also be defined for each
cluster according to the task in each cluster:

EFT(Ci ) = Max(Tj .e f t) s.t Tj ∈ Ci (8)

EST(Ci ) = Min(Tj .est) s.t Tj ∈ Ci , (9)

where Ci denotes the ith cluster and T j denotes the jth workflow task. Hence, by
considering EST of each cluster as the start time of the cluster and the EFT as the
finish time of the cluster, the minimum execution time interval for each cluster can be
computed. The amount of time overlap between each pair of clusters can be calculated
based on the minimum execution time interval of the clusters. Considering the work-
flow in Fig. 2, the EST of cluster1 composed of nodes start, 0, and 2 is 0 and the EFT
is 17. Accordingly, the EST and EFT of cluster2 composed of nodes 1, 4, and 6 are 12
and 36. Therefore, the time overlap interval of these two clusters is between 12 and 17.
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Executing two clusters in serial is only possible if the LFT of all the combining
cluster tasks is met. Even if only one task misses its LFT, then the workflow deadline
will be missed. The general intention in the serial execution of clusters is making the
maximum use of the rented time periods of the processing resources.

The CCA algorithm consists of two main phases:

– In the first phase which is called pre-clustering, the workflow is divided into
primary clusters and a single-core processing resource for the execution of each
cluster is considered.

– The second phase is called combination and mapping, performs the main part of
the algorithm. In this phase, a priority is assigned to each of these primary clusters
and the clusters are combined in such a way that the total execution cost of the
workflow is reduced, the makespan meets the defined deadline, and the utilization
of the processing resources is maximized. Hence, after combining these clusters,
the scheduling algorithm must decide the appropriate processing resource for the
execution of the resulting cluster. After each cluster combination is fulfilled, a
mapping phase is conducted which maps the tasks of the resulting cluster on the
cores of the resource. Furthermore, the combination of two clusters zeros their
intra-cluster communications which affects the attributes of the tasks. Therefore,
attributes, such as the EST and LFT, must be recalculated after each combination.

Depending on the structure of the workflow, different clustering algorithms can be
applied in the primary phase. Each task can even be considered as a cluster in the pri-
mary clustering phase. In this way, the proposed approach starts by combining these
individual tasks, acting in a way as a clustering algorithm with special consideration
of multicore processing resources. The default algorithm that is used in the primary
clustering phase is the algorithm proposed by Bittencourt and Madeira [32]. The main
advantage of this algorithm is that each primary cluster consists of nodes whose prede-
cessors have already been scheduled or are to be scheduled alongwith them. In the first
phase of the algorithm, it is assumed that a single-core processing resource is consid-
ered for executing each cluster. Therefore, k single-core processing resources are con-
sidered for executing kprimary clusters after executing the first phase of the algorithm.

The second phase of the CCA, which is considered as the main phase of the algo-
rithm, consists of combining the primary clusters generated in the first phase. In this
research, we have assumed that reducing workflow’s makespan has no advantages for
the users and completing each workflow no later than its deadline suffices. Therefore,
this method focuses on reducing the costs regarding not to pass the user-defined dead-
line. However, this assumption is not necessary in all cases. The critical issue in this
phase is to choose the best combination from among the available combinations. To
this aim, a scoring function is proposed that assigns a score to each available combi-
nation, with the best combination achieving the highest score. This scoring function
operates in such a way that, by choosing the best available combination, the costs
of executing the workflow is minimized, and the user-defined deadline is met. This
function evaluates a serial and also a parallel execution for each pair of clusters and
chooses the best execution mode based on the workflow score achieved. Therefore,
this method not only chooses the best available combination, but also determines
the execution mode of the resulting cluster and the required processing resource in
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terms of the number of cores. This combination is repeated until no other combination
improves the overall score of the workflow. In addition, to regulate the cluster combi-
nation phase, a priority to each cluster is assigned. In order to assign a priority to each
cluster in this phase of the algorithm, each task must be assigned a priority. To assign
a priority to each workflow task the upward rank computed in the HEFT algorithm
[20] must be employed. This rank determines the critical path distance of each task to
the exit task and is defined as follows:

rank(ni ) = ETi + max
n j∈succ(ni )

(TTi, j + ranku(n j )) (10)

ranku(nexit) = wexit (11)

where ETi denotes the execution time of the i th task and TTi, j represents the com-
munication time between tasks i and j . Furthermore, succ(ni ) shows the immediate
successors of the i th task.

The upward rank of the HEFT algorithm has a number of advantages, which make
it a worthy candidate for the prioritizing phase. The simplicity of the upward rank
can be considered as its first advantage. Secondly, this distance takes into account the
critical path of the workflow and the communication time between each pair of nodes
in addition to their computation time. Moreover, this method guarantees that every
node of the workflow has a higher priority over its successors.

The priority of each cluster is considered as the maximum priority of the cluster’s
tasks, as follows:

priori t y(Ci ) = Max(Tj .priori t y) s.t Tj ∈ Ci , (12)

where Ci denotes the ith cluster and T j denotes the jth workflow task. By assigning
a priority to each cluster of the workflow, this method combines clusters with higher
priorities earlier than other clusters, which gives regularity to the combination phase. If
no priority is given to each cluster, then the cluster combination in the early workflow
levels (i.e., clusters with higher priority tasks at the beginning of the workflow) might
take place after the cluster combination in the later levels. Hence, clusters combined
in the early stages of the algorithm may be affected. Therefore, this priority orders the
combination of clusters in such a way that those with higher priorities are combined
first. In other words, after a cluster combination is performed in the higher levels (i.e.,
clusters with lower priorities), there is no combination done in the lower levels.

To calculate the combination score of each cluster pair, the execution cost and
makespan of the workflow after the desired combination must be computed. Hence,
it is necessary that the schedule map of the resulting cluster’s tasks on the processing
resource be determined so as to compute the workflow execution cost and time. A
schedule map must be created for the parallel execution of the combining clusters,
and one schedule map must be constructed for the serial mode. To this aim, the HEFT
algorithm is extended so that it adapts to the CCA. Accordingly, the precise procedure
of taskmapping on the processing resource is as follows: among the two clusters’ tasks,
the task with the highest priority is chosen and mapped on a core on the processing
resource, which leads to the earliest finish time of the desired task. This mapping
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procedure is repeated for all tasks of the combining clusters until all are scheduled.
Such a mapping procedure reduces the free time gaps in each core and, more broadly,
in the schedule map of the workflow.

A pruning technique is conducted to reduce the computation capacity of the CCA
algorithm which eliminates the score computation and scheduling procedure of the
infeasible cluster pairs. Therefore, the parallel combination score and parallel execu-
tion of cluster pairs without time overlap drastically increases free time gaps in the
schedule map and so will not be computed. Besides, cluster pairs with a distance in
execution time intervals of more than one leasing period will not be considered for
serial execution nor will their score be calculated.

4.1 Cluster combining scheduling algorithm

The pseudo-code of the CCA workflow scheduling algorithm is shown in Algorithm
1. This algorithm is given a workflow and its related deadline as input. Based on the
deadline, the EST and LFT of all the workflow tasks are computed. In Line 3, the
primary clustering phase is executed. After the primary clustering phase is executed,
the internal communications of each cluster are zeroed in Line 4. The attributes of
the tasks and clusters are updated in Line 5, and the primary scheduling phase is per-
formed in Lines 6 and 7. In line 8, a priority is assigned to each cluster which is equal
to the maximum priority task in the cluster. In other words, the combination of clusters
is only performed within the Cluster_Subset, which consists of all feasible candidate
clusters for a combination with a priority less than the current cluster’s priority in Line
11. Hence, infeasible cluster candidates are eliminated from the Cluster_Subset by a
pruning technique to reduce the algorithm’s unnecessary computations. The Calcu-
late_Combination function chooses the best possible combination candidate for each
clusterwithin theCluster_Subset and checkswhether or not this combination improves
the score of the workflow. After the fulfillment of each iteration of the algorithm, Cur-
rentbest_Schedule presents the best possible schedule map in terms of execution cost
and with respect to the deadline.

Algorithm 1: Cluster Combining Algorithm 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Cluster_Combining ( Workflow , Deadline ) 
Begin  
Compute EST and LFT of all the workflows tasks; 
Cluster the graph;  //Primary clustering algorithm
Update communications; //zeroing internal communications for each cluster
Compute EST and LFT for each cluster; 
Assign a single core processor to each cluster; 
Compute the Currentbest_Schedule  according to current schedule map; 
Assign a priorityi to each cluster; 
For i =2 to length(clusters) do  
          begin 

Cluster_Subset = feasible candidate clusters with priority less than 
or equal to priorityi; 
(Currentbest_Score,Currentbest_Schedule)=
Calculate_Combination (Current_Schedule, Cluster_Subset); 

           end; 
return Currentbest_Schedule; 
End. 
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Algorithm 2: Calculate_Combination function 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28

Calculate_Combination(Current_Schedule,Cluster_Subset) 
Begin 

Best_Schedule = null;
Best_Score = 0;

     Combination_Done= false;
For each pair of (C1 , C2) s.t. C1 , C2 ϵ Cluster_Subset do 

              begin  
                 New_Schedule =  Serialcombination(C1,C2, Current_Schedule);    
                 Serial_Score = Calculate_Score (New_Schedule ,Old_Schedule ); 
                 New_Schedule =  Parallelcombination(C1,C2, Current_Schedule); 
                 Parallel_Score = Calculate_Score (New_Schedule ,Old_Schedule ); 
                 Score = Max (Parallel_Score, Serial_Score); 

If ( Score > Best_Score ) then 
                        begin 

Best_Score = Score; 
Best_Schedule = new_schedule; 
Combination_Done = true; 

end; 
               end; //the best combination in the Cluster_Subset is considered 

If (Combination_Done == true) then 
                 begin 

Currentbest_Score = Best_Score; 
                     Currentbest_Schedule = Best_Schedule; 

update Cluster_Subset; 
update the priorities of the resulting cluster and it’s successors; 
Calculate_Combination(Cluster_Subset); 

end; 
return Best_Score, Best_Schedule; 
End; 

Algorithm 3: Calculate_Score function 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Calculate_Score ( New_Graph , Old_Graph ) 
Begin 
Old_Makespan = Old_Graph.makespan(); 
New_Makespan = New_Graph.makespan(); 
Old_Cost = Old_graph.cost(); 
New_Cost = New_Graph.cost(); 
If (New_Makespan <= Deadline && Old_Makespan <= Deadline) then 

Score = Old_Cost – New_Cost; 
Else if ( New_Makespan >  Deadline  && Old_Makespan <= Deadline ) then 

Score = -infinite; 
Else  if ( New_Makespan > Deadline && Old_Makespan > Deadline ) then 

Score = Old_Makespan – New_Makespan; 
Else  

Score = New_Makespan; 
return Score; 
End; 

4.2 The Calculate_Combination function

Algorithm 2 shows the pseudo-code of the Calculate_Combination function. This
function is given the Cluster_Subset and Current_Schedule as input parameters, and it
tests all the feasible combinations within the Cluster_Subset using a scoring method
be discussed in detail in the next section. The Serialcombination function considers
the serial execution of the cluster pair and the Parallelcombination addresses their
parallel execution. When there is a pair of combining clusters for a parallel operation,
processors with more cores are employed. For example, if two clusters use dual core
processors for execution, after the combination phase, a quad core processor will
execute the resulting clusters. Therefore, instead of two dual core processors being
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leased, a quad core processor is rented. According to the scores achieved, the best
execution method for each pair of clusters is the one with the highest score. The
optimum combination will be the one that improves upon the workflow execution’s
best score when compared to the Current_Schedule. If any combination occurs within
the subset, cluster attributes,_such as clusters and_their related priorities should be
updated. Moreover, the Boolean variable, Combination_Done, is set as true, and the
Calculate_Combination is called recursively to check for any feasible combinations
to improve the score with the new Cluster_Subset. It must be mentioned that, with the
accomplishment of each combination, the attributes of all the taskswithin the combined
clusters are affected by the zeroing of the internal communications. Therefore, after
each combination phase, all the attributes of the combined clusters and their successor
clusters must be updated.

4.3 The Calculate_Score function

The pseudo-code of the Calculate_Score function is illustrated in Algorithm 3. First,
the makespan and execution cost of both the workflow graph before performing the
combination with the current schedule map and the graph after performing the desired
combination is computed. The first condition in Line 6 checks whether or not the
makespan of both the new graph and the old graph meet the specified deadline. In
this case, the combination score will be the difference between the Old_Cost and the
New_Cost. This method combines clusters that reduce the leasing cost when the dead-
line has been met. In other words, reducing the New_Cost increases the combination
score. Therefore, the combination with the greatest reduction in the execution cost
will achieve the maximum score.

The second condition in this algorithm checks if the combination cannot meet
the workflow deadline; if so, it will be identified as ineffective by the assignment of
–infinite to the score.

If themakespan of both the old graph and the new graph does not meet the workflow
deadline, then the difference between the Old_Makespan and the New_Makespan
becomes the combination score. This scoringmethod ensures the makespan is reduced
so as to meet the specified deadline in case of any possibility it won’t be fulfilled.
Therefore, in this case, the algorithm even shoulders a higher execution cost by leasing
resources with more cores, which creates a reduction in the workflow makespan.
This continues until the makespan meets the defined deadline. If the deadline is met,
the scoring method then focuses on reducing the cost. In other words, whenever the
deadline is met, the main goal of the scoring function is to reduce the execution cost.

Lemma 1 If the scheduling of primary clusters in the first phase of the algorithm
without any combination is feasible, then after executing the second phase of the
Cluster Combining Algorithm, the scheduling of all the workflow clusters remains
feasible.

Proof Assume that the scheduling of the workflow is feasible regarding the given
deadline. It then follows that the scheduling of each cluster is also feasible. On the
other hand, the CCA algorithm combines clusters which zeros their intra-cluster data
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communications, decreases the EST of some tasks, and leaves the EST of other tasks
unchanged. In some cases, the algorithm tries to lower the workflow’s execution cost
and increases the makespan of the tasks, which is only possible if the LFT of each
task is met. Hence, the CCA algorithm will not violate the LFT of the workflow tasks,
and so the scheduling of the clusters remains feasible.

Lemma 2 In the early stages of the algorithm, if the scheduling of the workflow is
not feasible according to the given deadline, the CCA method might make workflow
scheduling feasible in the later stages by combining the clusters. In other words, as
the CCA algorithm advances, infeasible schedules according to the given deadline
might be made feasible.

Proof In the case where workflow scheduling is not feasible regarding the deadline,
this algorithm shall lease processing resources with a higher number of cores and
even take on free time gaps in the schedule map. Therefore, by executing clusters in
parallel and zeroing their intra-cluster data communications, the workflow makespan
is reduced, and the deadline perhaps met. However, after meeting the desired deadline,
the algorithm will work to minimize the execution cost.

Lemma 3 If the schedulemap of the primary clusters in the first phase of the algorithm
meets the user-defined deadline, then the final schedule map of the CCA algorithm will
meet the deadline, and the execution cost will be less than or equal to the execution
cost of the primary schedule map.

Proof The CCA algorithm creates a subset for each cluster consisted of feasible com-
bination candidates with time overlap, and the best combination is chosen within the
subset using theCalculate_Combination function. The best possible combination will
be the onewith the highest score from theCalculate_Score function. The scoring func-
tion only considers combinations that do not violate the defined deadline. Furthermore,
the combinations that reduce the execution cost the most, will achieve higher scores.
The CCA algorithm will reduce the execution cost of the workflow step-by-step by
combining the clusters while taking care not to violate the deadline otherwise clusters
will not be combined.

4.4 A sample of workflow scheduling

By the usage of an example, the proposed workflow scheduling method is presented
in more detail. The scheduling sample considers the workflow shown in Fig. 1. It is
also assumed that the defined deadline for this workflow is 47 min.

It has also been supposed that the available processing resources are single cores,
dual cores, and quad cores and that their leasing prices for one billing unit are $0.1,
$0.2 and $0.4, respectively, as obtained from the Amazon EC2 pricing policy. The
length of each billing unit is considered 10 min.

According to the defined deadline, the EST and LFT of all workflow nodes are
first computed. The initial phase of the algorithm is primary clustering and updating
the graph communications. Figure 2 shows the workflow after primary clustering,
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Fig. 3 Sample workflow schedule map

which consists of four clusters; each with three nodes, and the zeroing of intra-cluster
communications. Nodes in the same cluster have similar fill patterns and colors.

Figure 3 shows the schedule map of the CCA algorithm for the sample workflow.
The boxes designate the tasks and the numbers inside the boxes denote the task num-
bers. Tasks with higher execution times are denoted by longer boxes. Therefore, the
execution start and finish time of each task can be specified by the beginning and the
end time of each box according to the time bar underneath each step. The start and end
nodes with zero computation and communication time have no effect on the schedul-
ing procedure and are not shown in the schedule map. The example’s four scheduling
steps are as follows:

– The first step, which is described in more detail in Fig. 3, maps each cluster to
a single-core resource for execution. Consequently, four single-core processors,
depicted as S1, S2, S3 and S4 in the figure, are leased for 2, 3, 4, and 2 leasing
time slots, respectively. In this case, the workflow makespan is 49 min, and the
total execution cost is $1.1. Therefore, in this step, the workflow does not meet the
specified deadline.

– The second step attempts to reduce themakespan so that the schedulemapmeets the
deadline. As expected in this stage, the scheduling method reduces the makespan
which then increases the execution cost. This stage combines the cluster consisting
of nodes 0 and 2with the cluster composed of nodes 1, 4, and 6 andmaps them on a
dual core resource. Hence, two single-core processors, namely S3 and S4, remain
unchanged and one dual core processing resource, D1, is leased. This combination
reduces the makespan to 46 min so that the deadline is met. The execution cost in
this stage rises to $1.3.

123



CCA: a deadline-constrained workflow scheduling algorithm. . . 773

– With the deadline being met in the previous stage, the next step reduces the exe-
cution cost of the workflow while taking care not to pass the defined deadline.
Therefore, the cluster consisting of tasks 3, 5, and 8, which are executed on a
S3 single-core processor, is combined with the cluster composed of tasks 0, 1,
2, 4, and 6, which are executed on a dual core resource. Figure 3 clearly shows
that this combination reduces the free time gaps between the tasks in the schedule
map. In addition, mapping these tasks for execution on one resource substan-
tially reduces the data communications between these tasks since the bandwidth
inside a resource is very high. The data communication between tasks on the same
resource is approximately zero. Consequently, the single-core processor is leased
for two leasing periods and the dual core resource is leased for four time slots. The
makespan in this stage is 46 min, and the execution cost is reduced to $1.

– The last step combines the cluster consisting of tasks 7 and 9 with the tasks exe-
cuting on the dual core processor. Therefore, in this stage, all the workflow tasks
are executed on a dual core resource for 5 leasing time slots. This combination
reduces the makespan to 43 min, and the execution cost remains $1.

As predicted, foremost, the scoring method can reduce the makespan to meet the
deadline. After the deadline is met, the scoring function reduces the execution cost
of the workflow. This reduction in the makespan and the execution cost is mainly
achieved by reducing the free time gaps in the schedule map, which also increases the
utilization of the leased resources. Moreover, mapping tasks onto the same resource
zeros intra-cluster communications positively impacting the reduction of free time
gaps and increasing the utilization of resources. In the next section, Fig. 5 shows in
more detail the effect of the proposed scheduling algorithm on the makespan and
execution cost in a larger scientific workflow.

4.5 Computational complexity

To analyze the computational complexity of the CCA algorithm, consider mas the
total number of workflow tasks, n as the number of primary clusters, and r as the
total number of available cores of the processing resources. The main part of the
CCA algorithm starts on Line 9 of Algorithm 1. Since the instructions inside the loop
will be repeated (n − 2) times, therefore, the complexity of this algorithm will be
t ∗ (n − 2). Variable tdenotes the computational complexity of each iteration of the
loop. To compute t , the complexity of the Calculate_Combination function must be
analyzed. The time complexity of the main loop of Algorithm 2 in Line 5 is O(p2),
where p is the number of clusters in the Cluster_Subset which in the worst-case
scenario, no combination is fulfilled within the subset and will be O(n2).On the other
hand, this loop tests the serial combination and the parallel combination of the cluster
pairs which is equal to the complexity of the HEFT algorithm O(mr). Therefore,
the complexity of the Calculate_Combination function is O(n2mr). In the worst-case
scenario this function will be called n times; therefore, the overall complexity of the
proposed algorithm is O(n3mr). However, in practical cases, this time complexity is
very rarely reached because of the conditions that need to be fulfilled for theworst-case
scenario. Moreover, the proposed pruning technique that only computes the score of
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cluster pairs that have a time overlap improves the actual execution of the proposed
algorithm.

5 Performance evaluation

In the following section, simulation results and the performance evaluation of the
proposed method is presented.

5.1 Experimental setup

For the evaluation process, well-known scientific workflows are employed which are
benchmarks in research [4,44]. These graphs are based on real scientific workflows
in different fields of science such as geology, astronomy, physics, and genetics, and
which have different sizes from the aspect of the number of nodes: Montage, SIPHT,
Epigenomics, Cybershake, and LIGO. Figure 4 provides the approximate structure of
these workflows which have a small number of nodes. The workflows also include
features, such as data aggregation, pipelining, data distribution, and redistribution

Table 1 Specifications of
processing instances and leasing
prices

Vcpu Memory (GiB) Windows usage
(per hour)

m3.medium 1 3.75 $0.067

m3.large 2 7.5 $0.133

m3.Xlarge 4 15 $0.266

m3.2Xlarge 8 30 $0.532

Fig. 4 Scientific workflow DAGs (top row from left Montage, Epigenomics, LIGO. Bottom row from left
SIPHT, CyberShake) [43]
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[41]. Table 1 presents the Amazon EC2 instances considered in this research and their
related leasing prices (https://aws.amazon.com/ec2/pricing/).

The proposed algorithm has been compared with one of the most cited algorithms
in this context, the hybrid cloud optimized cost (HCOC) algorithm, proposed by Bit-
tencourt et al. [2]. This method schedules the workflow on a hybrid cloud and, most
importantly, utilizesmulticore processing resources. Themain goal of this algorithm is
to minimize the monetary costs of the workflow execution with respect to the specified
deadline constraint, objectives very similar to the present work’s proposed method.
The HCOC receives an initial schedule from the PCH method and tries to reduce the
costs and also meet the deadline by iteratively rescheduling the workflow tasks on
processing resources.

To compare the current study’s simulation results with those of the HCOC algo-
rithm, first a reasonable deadline for each workflow must be defined. Therefore, a
methodwhich defines five different possible deadlines for each workflow is employed,
as follows:

Deadline = M f + α (Ms − M f ) (13)

where Ms is the workflow makespan when it consists of only the primary clusters
and each cluster is running on a single-core processing resource. In other words, Ms

denotes the makespan of the longest schedule. Also, M f denotes the makespan when
all available clusters have been combined into a single cluster, and all communication
costs are zero. Similarly, M f is the makespan of the fastest schedule and α is the
deadline factorwhich can be set between 0 and 1. If the deadline factor is set to 0, the
Deadlinewill beM f which is the fastest makespan. In practice, however, meeting such
a deadline is, in fact, impossible. Likewise, setting the deadline factor to 1 will result
in making Ms the deadline. Hence, setting the deadline factor in the range between
0.5 and 0.9 gradually increased the deadline in the current research’s tests.

Figure 5 shows the scheduling procedure of the proposed algorithm and the HCOC
method from the makespan perspective on the Montage workflow with 50 nodes and
the deadline factor set to 0.7. In this figure, the unit of bandwidth is in bytes and the
average makespan in minutes. What is first noted is that, as the bandwidth gradually
increases, the deadline steadily decreases. To explain, by augmenting the bandwidth,
the data transmission time between nodes decreases, thus directly reducing the work-
flow makespan. Figure 5 demonstrates that the proposed method selects resources in
such a way that the workflow makespan is very close to the defined deadline and yet
does not pass it so as to decrease execution costs, since we have assumed that reducing
the workflow makespan has no advantage for the user. In other words, the CCA algo-
rithm attempts to use available free time gaps in the schedule map instead of leasing
new resources. In contrast, the HCOC method employs the HEFT scheduler which
usually selects solutions that do not consider execution costs and attempts to reduce
the overall makespan with respect to the available resources. Furthermore, increasing
the bandwidth reduces the data communications between clusters mapped on separate
resources. Therefore, there is a reduction in the difference between mapping clusters
with high communications on the samemulticore resources and executing themon sep-
arate resources and so the outcome of the twomethods is similar in higher bandwidths.
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Fig. 5 Makespan results on the Montage workflow

Fig. 6 Normalized cost of scheduling using CCA and HCOC on small workflows

Figure 6 shows the execution costs of the CCA and HCOC algorithm on small
workflows consisting of about 25–30 nodes with 60-min leasing time slots. A random
number between 0.95 and 1.05 was generated, and this random number was multi-
plied with the execution and communication weights to create one hundred different
workflows of the same kind, but with a very small variation in computations and
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communications for each step. The results show the average of these one hundred
workflows for each case. Since the attributes of the workflows may differ the cost
must be normalized to make the comparison easier. Therefore, the normalized cost
in these charts was considered. This is computed by dividing the current execution
cost of the workflow by the execution cost of the cheapest possible schedule. The
charts in Fig. 6 demonstrate that the CCA method outperforms the HCOC algorithm
in all cases. One of themost impressive characteristics of the proposedmethod is that it
works verywell for communication-intensive workflows; by schedulingmultiple clus-
ters on a multicore processor, the communication between these clusters is reduced to
zero, especially if resources with a higher number of cores are used. Thus, processing
resources with more cores result in increased parallel execution of workflow clusters.
In addition, mappingmore clusters onto the same resource reduces the communication
between these clusters down to zero, which significantly impacts the makespan. For
example, in the Montage workflow, the CCA cost results are much lower than those
of the HCOC method. The goal of this scheduling method is to choose processing
resources in such a way that the workflowmakespan is closest to the defined deadline.
This method allows the scheduling algorithm to select resources which result in the
minimization of free time gaps. Minimizing free time gaps overall reduces the needed
leased resource time periods, maximizes the utilization of the leased resources, and
so directly lowers the execution cost. Therefore, in cases in which the deadline of the
workflow is not strict, the schedule map changes to reduce execution costs with the
constraint of not passing the specified deadline. This situation is clearly presented in
Fig. 6. In cases in which the defined deadline is tight (e.g., deadline factor= 0.5), the
proposed scheduling method chooses processing instances so that the deadline can
be met. This leads to more free time gaps in the schedule map and leased processing
instances, which raises the cost in tight deadlines. However, increasing the deadline
factor removes the tight constraint, and the execution costs can be lowered by the
algorithm. In other words, if the workflow has no deadline constraint, then a single
resource may be used for executing the workflow. The workflow tasks can be mapped
so that the tasks’ precedence is observed and the free time gaps also minimized. In this
case, the execution cost of the workflow is minimized. Generally, the CCA method
attempts to reduce the data communications between clusters.

Figure 7 shows the same experiment for the sameworkflows butwith approximately
100 node sizes. The resulting pattern is very close to that of experiments conducted
with small workflows. The current research employed the same random generation
procedure to create one hundred different workflows of the same type, and the results
are the average normalized costs of these workflows. As the number of tasks in each
workflow rises, the chances increase of combining clusters that can be executed in
parallel. Therefore, these clusters can be mapped on resources with a higher number
of cores for execution. This procedure leads to zeroing more data communications
between the clusters. Furthermore, more tasks are available to fill the existing free time
gaps in the schedule map. Hence, increasing the number of tasks in each workflow
has a positive effect on the normalized cost of the workflow. This can be clearly seen
in Fig. 7’s Inspiral workflow, in which the normalized cost lowered by the increase in
the number of tasks from 30 to 100. On the other hand, the structure of the Montage
workflow shows that this workflow ismade up of small clusters with low time overlaps,
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Fig. 7 Normalized cost of scheduling using CCA and HCOC on large workflows

Fig. 8 Normalized cost of scheduling using CCA and HCOC on a small and large Epigenomics workflow
(left small Epigenomics, right large Epigenomics)

which cannot be executed in parallel thus increasing free time gaps in the resource
scheduling. Therefore, increasing the tasks of this workflow raises the normalized
cost.

6 Discussion

The current study reports that the proposed algorithm shows superior results in
communication-intensive workflows, mainly because this method attempts to com-

123



CCA: a deadline-constrained workflow scheduling algorithm. . . 779

bine clusters with high data communications. Therefore, in computation-intensive
cases with very little communication between tasks, the proposed algorithmmight not
perform as expected.

Figure 8 presents the results for Epigenomics workflows with 24 and 100 tasks,
respectively. In an Epigenomics workflow, the HCOC method performs better in all
five deadline factor cases. The currently proposed method does not perform well in
the Epigenomics case, because in this workflow, there is a very limited interaction
between the selected clusters of the PCH algorithm. Since the present work’s method
tries to combine clusters with high data communications, combining primary clusters
improves the leasing costs. On the other hand, the HCOC method removes the cluster
structure task by task and allows tasks to be scheduled by the HEFT algorithm, which
increases the chances of finding a completely different and better schedule map.

7 Conclusion and future works

The present paper proposes a new workflow scheduling algorithm on the IaaS cloud
which makes use of available multicore processing resources. The main goal of the
proposed method is to reduce monetary costs while not passing the user-defined dead-
line. Themain difference between the proposed algorithm and previous similar studies
is that the present work utilizes a flexible scoring approach to combine the available
clusters in theworkflow.This scoring considers different criteriawhen combining clus-
ters, such as leasing cost, makespan, and resource utilization. The scoring function
is adjusted in such a way that the cluster combinations reduce workflow costs while
not passing the user-defined deadline. In cases where the workflow makespan does
not meet the deadline, the current method attempts to reduce the makespan by leasing
processing resources with a higher number of cores and so undertakes larger free time
gaps in the schedule map. Therefore, the algorithm raises the monetary costs until the
deadline is reached. After meeting the deadline, the present method strives to lower
execution costs by filling the free time gaps with tasks from other clusters by combin-
ing them. The proposed method was evaluated by comparing the monetary costs of
running the workflows with the HCOCmethod. The experimental results indicate that
the currently proposed method outperforms the HCOC algorithm in almost all cases.
In the future, the present study’s algorithm shall be extended so that it also performs
well with computation-intensive workflows with small data communications between
tasks. The proposed algorithm will also be enhanced on the real IaaS cloud platform,
which can tolerate inaccurate task computation estimations and data communications
between the tasks.
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