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Abstract Solving large-scale sparse linear systems over GF(2) plays a key role in
fluid mechanics, simulation and design of materials, petroleum seismic data process-
ing, numerical weather prediction, computational electromagnetics, and numerical
simulation of unclear explosions. Therefore, developing algorithms for this issue is
a significant research topic. In this paper, we proposed a hyper-scale custom super-
computer architecture that matches specific data features to process the key procedure
of block Wiedemann algorithm and its parallel algorithm on the custom machine. To
increase the computation, communication, and storage performance, four optimiza-
tion strategies are proposed. This paper builds a performance model to evaluate the
execution performance and power consumption for our custom machine. The model
shows that the optimization strategies result in a considerable speedup, even three
times faster than the fastest supercomputer, TH2, while consuming less power.

Keywords Architecture · SpMV · Wiedemann algorithm

1 Introduction

The large-scale sparse linear systems solver is one of themost challenging questions in
scientific and engineering computing, such as fluid mechanics, simulation, and design
of materials, petroleum seismic data processing, numerical weather prediction and
numerical simulation of unclear explosions. Therefore, it became a favorable applica-
tion for building large-scale supercomputer. The blockWiedemann (BW) algorithm [8]
is the most effective method for solving large-scale sparse linear systems over GF(p)
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[2]. The most time-consuming part in this algorithm is the iteration computation of
a large sequence of large-scale matrices, which requires considerable computation
capability and storage resources. The general architecture of modern supercomputers
has high flexibility for many fields, but it would not match the execution and data
characteristics for the key steps of BW. When the matrix size significantly increases,
common supercomputer may not afford the time cost.

Thomé et al. [22] work on the BW algorithm itself and describe how the half-
gcd algorithm can be adapted to speed up BW algorithm. Schmidt et al. [19] derive
an efficient CUDA implementation of this operation. In addition, their GPU cluster
implementation of BW algorithm results in a significant speedup over traditional CPU
cluster implementations. Güneysu et al. [12] build a massively parallel cluster system
based on low-cost FPGAs for cryptanalytical operations, such as BW, and describe
a novel architecture targeted for a more versatile and reliable system. Several studies
have analyzed the speeding up of sparse matrix–vector multiplication (SpMV), which
is the kernel operation of sparse linear systems solvers. Catalyurek and Aykanat [6]
built a hypergraph model for decomposing sparse matrices on a multiprocessor plat-
form to minimize the communication data while balancing the computing tasks on
each processor. Baskaran and Bordawekar [4], Dou et al. [11] and Dave et al. [9]
speeded up the operation or matrix multiplication on specific computing architectures
such as GPU and FPGA. Buluç and Gilbert et al. [5], Langr and Tvrdik [15] investi-
gated the compact format for sparse matrices to decrease the data volume involving
memory-access and obtained a significant speedup.

Some scholars analyzed the data feature for acceleration, such as [14], who quan-
tified the effect of matrix structure on SpMV performance. Sedaghati et al. [20]
presented some insights into the correlation between matrix features and the best
choice for sparse matrix representation. Furthermore, several studies on supercom-
puter platforms, for example, that of Anzt et al. [1], unveiled some energy efficiency
and performance frontiers for sparse computations on GPU-based supercomputers.
Pichel et al. [17] estimated the influence of data and thread allocation in the SpMV
performance on the FinisTerrae supercomputer, an SMP-NUMA system with more
than 2500 processors. Some scholars contribute to constructing a energy-efficient plat-
form for high-performance computation(HPC). Mont Blanc project tries to build from
energy-efficient solutions used in embedded and mobile device [18,21]. Kapre and
Moorthy [13], Dordopulo et al. [10] and Awad [3] study on FPGA-based platform for
energy-saving or supercomputing.

However, all of these studies were either oriented toward general sparse data fea-
tures or on general purpose platforms, such as clusters and supercomputers. However,
the specific sparse matrix features with customized architecture show a high potential
for performance improvement. In this paper, we proposed a hyper-scale custom super-
computer architecture matching specific data features to process the key procedure of
BW. The major contributions in this paper are as follows:

– We have proposed four optimization strategies according to the algorithm and data
characteristics, which show high acceleration effects in terms of communication,
computation, and memory access.
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– Based on these optimization strategies, we propose the parallel algorithm of the
principal steps and a custom machine in an economical and efficient manner.

– The performance model of our custom machine was built according to the
algorithm and architecture parameters. The computation complexity was com-
prehensively analyzed based on the model. The evaluated results indicate that our
custom machine works well, even better than the fastest computer in the world on
this specific problem.

The remainder of this paper is organized into several sections: Section 2 describes
the execution flow and characteristics of principal steps in BW. Section 3 proposes
optimization strategies according to the algorithm features. Section 4 proposes the
parallel algorithm of MSC and a custom machine to support its parallel execution.
Section 5 builds the performance model of MSC and evaluates the performance the
custom machine can generate. Finally, Sect. 6 presents the conclusions.

2 Execution of block Wiedemann algorithms and characteristics of MSC

2.1 Execution framework of block Wiedemann algorithms

The BW algorithm is a blocked iterative algorithm for linear equation Bω = 0,
which can obtain a solution for the linear equation with high probability. Its procedure
includes three steps, as shown in Fig. 1: A sequence of matrices Z (i)

n×m is calculated
in step 1 (MSC). A polynomial Z(α) is built as the input of step 2 using Z (i). The
generalized block Berlekamp–Massey algorithm is used in step 2, which generates
sequence vector ωi . Then, the sequence of ωi is iteratively multiplied with matrix B
until a zero vector is obtained and ωi is the final result in a high probability. In BW, the
MSC step is the most time-consuming stage that is worthy of acceleration. Algorithm
1 shows the serial implementation for MSC. Input B is a sparse matrix, and V and W
are randomly generated matrices.

Referring to Algorithm 1, iterative sparse matrix–matrix multiplication is the major
operations, which can be regarded as iterative sparse matrix–vector multiplications
when X (i) and Y are treated as vectors of block width m or n.

Fig. 1 The execution flow of
BW algorithm
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Algorithm 1: Serial MSC algorithm of BW
Input: BN×N ;
Generate matrix Vm×N and WN×n randomly;

Define X (0)
N×m = V T

m×N , Yn×N = WN×n

Output: Z (i)
n×m = Yn×N × Bi

N×N × X (i)
N×m ; 0 ≤ i ≤ N

m + N
n + O(1)

1 for i = 0; i ≤ N
m + N

n + O(1); i + + do

2 X (i+1)
N×m = BN×N × X (i)

N×m Z (i)
n×m = Yn×N × X (i+1)

N×m
3 end

Table 1 The data characteristics of MSC

Matrix Scale Characteristic Memory capacity

B N × N Sparse matrix, with low density d
and small-value elements like 1,
−1 and other small numbers

Compressed format with sb bytes
indicates an element: N × d × sb

X N × m Dense matrix, elements are big
numbers

sx bytes indicates an element:
N × m × sx

Y n × N Sparse matrix, all elements’ values
are 1

sy bytes indicates an
element: n × N × sy

Z n × m Dense matrix, elements are big
numbers

sz bytes indicates an element:
n × m × sz

2.2 The data and execution characteristics of MSC

Table 1 shows the data features involved in MSC. B is an input sparse matrix with a
size of N ×N , whereas X and Y are randomly generated matrices with sizes of N ×m
and n × N , respectively. MSC yields a sequence of matrices Z (1), Z (2), . . . , Z (i), . . ..
Matrix B, with large sparsity d, can be stored in a compact manner using a CSR
format. Its nonzeros are uniformly distributed, and most of them are 1 or −1, and the
given sb bytes indicate an element in B.

Matrix X is a dense matrix, given that each element takes sx bytes.
Matrix Y is a sparse matrix and its nonzeros are 1. Although the given sy bytes

indicate one element, n × N × sy bytes are required to store Y . Z is the result matrix,
also given sz bytes to indicate for each element; thus, n × m × sz bytes are required
in total.

3 Optimization strategies

As previously introduced, the key operation in MSC is SpMV. In this section, we
introduce four optimization strategies to accelerate SpMV according to the execution
and data characteristics of MSC. Assuming that x (i) is a vector (a column) in matrix
X , Xi is the i th vector block of x after partitioning, Bi j is the matrix block in Bi ,
that is, the columns from ( j − 1) × N

C + 1 to j × N
C in Bi where C is the number

of processors. In this section, we primarily consider the iterative multiplication of
x (i ter+1) = Bx (i ter).
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(a) (b)

Fig. 2 Schemes to project matrix and vector into different processors

3.1 Matrix partition strategy

Vastenhouw and Bisseling [23] note that the natural parallel algorithm for sparse
matrix–vectormultiplicationwith an arbitrary distribution of thematrix and the vectors
consists of the following four phases:

1. Each processor sends its components x (i ter)
j to those processors that possess a

nonzero bi j in column j .

2. Each processor computes the products bi j x
(i ter)
j for its nonzeros bi j and adds

the results for the same row index i . This operation yields a set of contributions
x (i ter+1)
is , where s is the processor identifier, 1 < s ≤ C.

3. Each processor sends its nonzero contributions x (i ter+1)
is to the processor that pos-

sesses x (i ter+1)
i .

4. Each processor adds the contributions received for its components x (i ter+1)
i , giving

x (i ter+1)
i = ∑C−1

t=0 x (i ter+1)
i t .

One-dimensional (1D) and two-dimensional (2D) partition methods may be used.
Some scholars proposed more complex and precise means of performing the partition
anddistributionwork, such asÇatalyürek andAykanat,whopresented a 2Dhypergraph
model. However, random uniformly distributed matrices are expected to gain little for
a 2D approach.

For uniformly distributed sparse matrix–vector multiplication, two 1D schemes
can be used to map the matrix into different processors, namely row distribution and
column distribution. As depicted in Fig. 2, scheme (a), column-wise partition (CWP)
partitions matrix B into C blocks column-wise, and in scheme (b), row-wise partition
(RWP) is performed row-wise.

The advantage ofCWP is that it only needs point-to-point communication; however,
its communication volume is large. By contrast, the advantage of RWP is that it
removes phases 3 and 4, the price to be paid is to distribute the elements of the
vector over a large number of processors, and the number of destination processors
of x j can reach C − 1. Moreover, based on the sparsity and size of the matrix, we
demonstrate that the same vector component x j is required by all processors with high
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Fig. 3 Comparison of CWP and
RWP on communication data
volume with various processors.
The trend shows that the CWP’s
communication volume will
grow into two times of RWP’s
with the increasing of processors

probability. Thus, broadcast vector component x j will be efficient and minimize the
true communication volume. We will quantify the total communication data volume
per processor for these two schemes.

The i th processor holds Xi and Bi ; however, for CWP, the i th processor computes
Bi × Xi per iteration and transmits its results to its corresponding processor, such as
Bip × Xi to processor p as described in phase 3. It receives its intermediate results
transmitted fromother processors andmerges themas thefinal outcomeof this iteration
as described in phase 4. Different from CWP, the i th processor for RWP broadcasts
Xiter
i and receives the xiter part that it does not hold from all of the other processors

when computing X (i ter+1)
i = Bi xiter . The data involving memory access are in the

same size because the computation task is uniformly distributed in both schemes.
The transmitting data volume for each processor per iteration is C−1

C × N × sx and
represents the same volume of receiving data when CWP is exploited, where C is the
number of processors.

In contrast to CWP, RWP broadcasts its vector block at one time; thus, the trans-
mitting data volume is 1

C × N × sx . The receiving data volume of RWP is the same
as CWP, that is, C−1

C × N × sx . Hence, the total communication data volumes for
one processor per iteration are 2 × C−1

C × N × sx and N × sx for CWP and RWP,
respectively. In Fig. 3, the dark grep bar shows the communication volume of RWP
with various processors, whereas the light grey bar shows the communication data
volume of CWP. Referring to Fig. 3, we note that the communication volume of CWP
will increase to twice that of Nsx with the increasing number of processors, whereas
RWP will remain at Nsx . Thus, RWP is better than CWP in terms of communication
data volume.

3.2 Memory partition strategy

TheMSC algorithm is principally repeated in executing SpMV; however, the involved
data types are countable. Based on this observation, we exploit the strategy of partition
main memory to store different data, a new storing style that is derived from the
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Fig. 4 Memory partition of one processor. Matrix block B is divided into three parts: elements’ value is
1, is −1 and others. Next to it are the vector block result of last iteration, the vector block result of last
iteration received from others, the vector block result of intermediate of current iteration and other control
information

partition cache scheme. This strategy matches the MSC algorithm(small data types)
andmaps the index of dense vector x element into thememory address, which prevents
the storage of the elements’ indexes and yields sx = 128 bytes.

Figure 4 shows the method of memory partition for the i th processor. Matrix block
Bi is stored into three parts, aswill bementioned in the next optimization strategy.Next
to it are the vector block results of the last iteration Xiter

i , the vector block received
from the other Xiter∗ , the vector block of the current iteration Xiter+1

i and other control
information, as well as the result matrix Z . Notably, Z is the result and will be only
stored in the main memory temporarily before being stored into the next level of the
memory system.

3.3 Separated value compression

As previously mentioned, most of the elements of matrix B are 1 or −1, and this
aspect poses the potential for acceleration. We exploit this aspect by dividing B into
three parts for storage: B1 for elements whose value is 1, B2 for −1, and B3 for
other elements. The benefits are derived from the decrease in the demanding memory
capacity and the reduction of the computation amount.

The first benefit is the minimizing of sb. If we store B without dividing and in the
CSR compression format, each nonzero at least requires two words: one for its value
and another for its column index when ignoring the row pointer. Thus, sb = 8 bytes.
However, when we store them apart and combined them with the partition of the main
memory, the value item for 95 % of nonzeros can be ignored, and sb decreases into
nearly 4 bytes, thus gaining a half reduction. Storing them apart doubles the quantity
of row pointers, but this quantity is trivial compared with what we have obtained.
The reduction of sb decreases not only the demanding memory capacity but also the
volume of memory access data.
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The other benefit is the reduction of the computation amount. The original multipli-
cation accumulation operation will degenerate into simple addition for 1 or subtraction
for −1 because of the special position of 1 and −1 in multiplication. For nearly 95 %
of nonzeros of matrix B being 1 or −1, the decrease in the multiplication operation
amount is 95 %, which is considerable.

These two benefits are shown in Fig. 5a, b, respectively. For the demandingmemory
capacity, we have compared the most popular compress format CSR and COO and our
storagemethod demonstrates a considerable decrease in storage size. Furthermore, the
computation amount significantly decreases in our method.

3.4 Vector communication strategy

Based on the 1D row distribution scheme and given that Bp(:, j) is the j th column
of matrix B’s block in the pth processor and that at least one nonzero exists in the
column, then the component x j is required by the pth processor. Vice versa, when all
of the elements in the j th column of matrix block Bp(:, j) are zero (all-zero-column),
the component x j is unnecessary and its probability is

p = (1 − d)G , (1)

where d is the sparsity of matrix B and G = N/C is the number of rows of B in
one processor. Thus, the expectation columns whose elements are zeros are derived
as follows.

E(p) = N × p (2)

The ratio of the unnecessary elements to all of the elements is w = E(p)/N = p,
which is equal to the probability itself. When the problem size varies, the relationship
between the probability of the all-zero-column and its expectation value with various
processors is presented in Table 2.

Table 2 shows that the probability of the all-zero-column depends on the number
of nonzeros per row, that is, N × d. When N × d is larger than 103, even the amount
of processors increases to 512 and the probability of the all-zero-column is no more
than 0.14. Considering the matrices involved in this study, N × d is larger than 103,
and nearly all of the elements in x are indispensable for every processor. Based on
this observation, we exploit the broadcast method to transfer vector block Xi , which
decreases both the communication volume and the complexity of interconnection
structure among the processors as will be introduced below.

4 Parallel architecture for MSC

Having improved the performance of SpMV in communication, computation, and
memory accessing for MSC, we propose a parallel algorithm and architecture of our
custom machine to support its parallel execution in this section.
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Table 2 Probability of all-zero-column and its expectation value with various processors and problem size

Problem size Processors 64 128 256 512

N = 106 p 0.21 0.46 0.68 0.82

d = 10−4 E(p) 2.1 × 105 4.6 × 105 6.8 × 105 8.2 × 105

N = 106 p 1.6 × 10−7 4.0 × 10−4 0.02 0.14

d = 10−3 E(p) 0.16 403 2.0 × 104 1.4 × 105

N = 107 p 0.21 0.46 0.68 0.82

d = 10−5 E(p) 2.1 × 106 4.6 × 106 6.8 × 106 8.2 × 106

N = 107 p 1.6 × 10−7 4.0 × 10−4 0.02 0.14

d = 10−4 E(p) 1.64 4.04 × 103 2.0 × 105 1.4 × 106

N = 108 p 0.21 0.46 0.68 0.82

d = 10−6 E(p) 2.1 × 107 4.6 × 107 6.8 × 107 8.2 × 107

N = 108 p 1.6 × 10−7 4.0 × 10−4 0.02 0.14

d = 10−5 E(p) 16 4.0 × 104 2.0 × 106 1.4 × 107

4.1 Parallel algorithm of MSC

Considering that the computation for each column of X can be parallelly executed
and other matrices take narrow space, we use m nodes in the parallel architecture. In
the architecture, each node holds one column of X and stores other matrices dupli-
cate. Thus, each node is responsible for the one column of X for the iterative SpMV;
the computation will be executed independently without any communication. Algo-
rithm 2 describes the parallel version of the MSC algorithm with m nodes and C
processors in each node. Both vector x and matrix B are divided by row-oriented
and stored into each processor, whereas Y being column-oriented is divided. Thus,
each processor stores G = N

C rows of matrix B, G elements of x , and G columns of
Y .

In Algorithm 2, x (i)
p is the intermediate result vector and the subscript indi-

cates its owner processor, whereas its superscript i indicates identifiers of iteration.
All m nodes need to execute N

m + N
n + O(1) iterations, and each iteration needs

to compute x (i) = B × x (i−1) (11–24) and Z = Y × x (i) (25–33). To com-
pute x (i) = B × x (i−1), each processor must have complete vector x (i−1);
thus, it involves two interleaving operations, namely transferring x (i−1) block
vector and multiplication accumulation. A token exists to designate the proces-
sor that occupies the data bus to broadcast its own x (i−1) block vector, and the
others receive this broadcast until all of the processors have broadcasted and
computed. Computing Z = Y × x (i) also involves two operations, namely com-
puting local Z and merging all of the processors’ local Z in processor 1. The
“+” used for matrix in the algorithm signifies expanded addition for the sparse
matrix. The execution flow of lines 11–33 in Algorithm 2 is also depicted in
Fig. 6.
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Algorithm 2: Parallel implementation algorithm for MSC
Input: BN×N ,XN×m ,Yn×N ;

Output: Z (i)
n×m ; 0 ≤ i ≤ N

m + N
n + O(1)

1 %Use m nodes with C processors in each node to solve the problem;

2 G = N
C ;

3 forall the node j , 1 ≤ j ≤ m,processor p,1 ≤ p ≤ C do

4 x(0)
p = X (p ∗ G − G + 1 : p ∗ G, j);

5 Bp = B(p ∗ G − G + 1 : p ∗ G, :);
6 Yg = Y (:, p ∗ G − G + 1 : p ∗ G);
7 end

8 %Store x(0)
p ,Bp and Yp in processor p,node j ; Each node calculates a column of X by C processors,

each processor calculates G elements;
9 forall the node j , 1 ≤ j ≤ m do

10 for i = 1, i ≤ N
m + N

n + O(1),i + + do
11 forall the processor p, 1 ≤ p ≤ C do

12 x(i)
p = 0;

13 for k = 1; 1 ≤ k ≤ C; k + + do
14 if token == me then

15 Broadcast x(i−1)
p ;

16 x(i)
p + = Bpp × x(i−1)

p ;
17 end
18 else

19 Receive x(i−1)
t ; % A block of X from processor t ;

20 x(i)
p + = Bpt × x(i−1)

t ;
21 end
22 end
23 end
24 end
25 forall the processor p,2 ≤ g ≤ C do

26 Z (i)
p = Yp × x(i)

p ;

27 Send Z (i)
p to processor 1;

28 end
29 for processor 1 do

30 Z (i)
p = Yp × x(i)

p ;

31 Receive Z (i)
p from other C − 1 processors;

32 Z (i)+ = Z (i)
p ;

33 end

34 Z (i)
j = Z (i);

35 end

4.2 Custom machine for MSC

4.2.1 Interconnection structure

All of the processors in one node only involve the transfer of x vector block when
ignoring the transfer of Z . In addition, we have evaluated that the broadcast method
will satisfy the demands; thus, this paper takes the bus structure as the interconnect
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Fig. 6 Execution flow of lines 11–33 in Algorithm 2

structure among processors in one node. The data demands can be satisfied when all of
the processors occupy the data bus and broadcast their own x vector block individually.
Compared with the crossbars or other interconnected schemes, the bus structure costs
less resources with low complexity.

4.2.2 Memory structure

Nearly all of the data accessed from the main memory are concentrated on lines 14–
20 in Algorithm 2 and their volume is at the TB level, whereas others stay on the
MB level when no cache memory exists. x (i−1)

p involves twice the memory accessed

for broadcast and computation. The broadcast will access the entire x (i−1)
p at once,

whereas the computation needs to access the elements of x (i−1)
p for nnz(Bpp) times

because each non-zero element of Bpp will access one element in x (i−1)
p frommemory

when disregarding the cache memory. Bpp involves a one-time load from memory,

and x (i−1)
p involves a one-time load and one-time storage. Hence, when ignoring

the other operation, the total data volume accessing from the main memory for one
processor per iteration is Dv = volumn(x (i−1)

p ) + nnz(Bpp) × sx + volumn(Bpp) +
volumn(x (i−1)

p ) = G × sx + d × G2 × sx + d × G2 × sb + G × sx = 2× G × sx +
d × G2 × (sx + sb).

When considering cache memory, given that the cache can store f elements of x ,
that is, the size of the cache is sx × f bytes. Algorithm 3 shows the implementa-
tion algorithm of x (i)

p + = Bpp × x (i−1)
p , which corresponds to line 16 or line 20 in

Algorithm 2. The algorithm contains Blocks = �G
f � sub-steps. Each sub-step con-

tains one load and multiplication accumulation. Each load operation will access f
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Algorithm 3: Parallel implementation algorithm for x (i)
p + = Bpp × x (i−1)

p with
Cache
Input: Bpp ,x

(i−1)
p ;

Output: x(i)
p

1 Divide Bpp based on the size of cache f;

2 Blocks =
⌈
G
f

⌉
; for q = 1, q ≤ Blocks,q + + do

3 Load(x(i−1)
p ((q − 1) × f + 1 : q × f ));

4 x(i)
p ((p−1)× f +1 : p× f ))+ = Bpp(:, (q−1)× f +1 : q× f )×x(i−1)

p ((q−1)× f +1 : q× f );
5 end

elements of x from the main memory to cache. Multiplication accumulation will load
and store G elements of x (i)

p and load BG× f itself. Thus, the data volume for each
sub-step that involves memory access is f × sx + 2 × G × sx + d × G × f × sb.
The total data volume for each processor per iteration is subsequently Dvc =
Blocks×( f ×sx+2×G×sx+d×G×t×sb) = G×sx+2× G

f ×G×sx+d×G2×sb.
Table 3 compares the memory access data volume with different sizes of cache and

without cache (when cache size equals to zero) when the processors, matrix size, and
sparsity ratio vary. Table 3 shows that when the matrix size increases to 107 and the
row weight (number of nonzeros per row) is less than 103, the scheme without cache
is better than the one with cache because of the less main memory access volume and
resources.

4.2.3 Computation architecture

Themultiplication accumulation should be executed in three independent parts, B1,B2,
and B3, because of the manner of storing matrix B. The computation architecture for
this operation is shown in Fig. 7. The blocks in this picture, except for MUX for
multiplexing, are organized according to the FIFO (first input first output) scheme for
storing data, and the shaded ones indicate that the data stored are directly accessed
from the main memory.

The data flow is primarily controlled by the state of all of the FIFOs. First, we load
the indexes of the three parts of matrix B, intermediate result x (i)

p , and matrix elements

into their own FIFO. We subsequently load the corresponding x (i−1)
p elements based

on the column index of matrix nonzeros. We store the vector elements indexed by the
B1 part into FIFO x1, the B2 part into FIFO x2, and the B3 part into x3. For the first
two parts, the multiplication accumulation will degenerate into addition or subtraction
accumulation because the matrix values are 1 or −1. Only the third part of the matrix
will maintain multiplication accumulation. The intermediate accumulation result will
be stored into Q1, Q2, and Q3. Subsequently, these results will be merged into x (i)

p

based on their row indexes. Finally, the merged result x (i)
p will be written into its

corresponding main memory partition part.
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Table 3 Data volume involving memory access with various size of cache and varies processors (GB)

Problem size Cache size C = 64 C = 128 C = 256 C = 512

0 MB ( f = 0) 0.0072 0.0028 0.0012 0.0006

N = 106 8 MB ( f = 0.0625 M) 0.0031 0.0013 0.0006 0.0003

d = 10−4 16 MB ( f = 0.125 M) 0.0026 0.0011 0.0005 0.0003

32 MB ( f = 0.25 M) 0.0023 0.0011 0.0005 0.0003

0 MB ( f = 0) 0.0362 0.0010 0.0030 0.0010

N = 106 8 MB ( f = 0.0625 M) 0.0040 0.0015 0.0006 0.0003

d = 10−3 16 MB ( f = 0.125 M) 0.0035 0.0014 0.0006 0.0003

32 MB ( f = 0.25 M) 0.0032 0.0013 0.0006 0.0003

0 MB ( f = 0) 0.0722 0.0281 0.0120 0.0055

N = 107 8 MB ( f = 0.0625 M) 0.1210 0.0352 0.0113 0.0041

d = 10−5 16 MB ( f = 0.125 M) 0.0710 0.0227 0.0082 0.0033

32 MB ( f = 0.25 M) 0.0460 0.0165 0.0066 0.0029

0 MB ( f = 0) 0.3623 0.1006 0.0301 0.0100

N = 107 8 MB ( f = 0.0625 M) 0.1298 0.0374 0.0119 0.0042

d = 10−4 16 MB ( f = 0.125 M) 0.0798 0.0249 0.0087 0.0034

32 MB ( f = 0.25 M) 0.0548 0.0187 0.0072 0.0030

0 MB ( f = 0) 0.7223 0.2806 0.1201 0.0550

N = 108 8 MB ( f = 0.0625 M) 10.2098 2.6024 0.6756 0.1814

d = 10−6 16 MB ( f = 0.125 M) 5.2098 1.3524 0.3631 0.1033

32 MB ( f = 0.25 M) 2.7098 0.7274 0.2069 0.0642

0 MB ( f = 0) 3.6227 1.0057 0.3014 0.1004

N = 108 8 MB ( f = 0.0625 M) 10.2977 2.6244 0.6811 0.1828

d = 10−5 16 MB ( f = 0.125 M) 5.2977 1.3744 0.3686 0.1047

32 MB ( f = 0.25 M) 2.7977 0.7494 0.2124 0.0656

The execution for computing line 26 or line 30 in Algorithm 2 is the same as that
for the B1 part of matrix, for the sake of Y ’s elements being 1. Thus, introducing its
detailed data flow is unnecessary.

5 Performance evaluation and verification

The entire computation as previously analyzed is SpMV operation, and the computa-
tion time can be overlapped bymemory accessing time because of its low computation
memory ratio. Thus, the total time is determined by the time ofmemory access and data
communication among all of the processors. This section evaluates the performance of
the parallel architecture previously introduced on the basis of the data volume involved
in memory accessing and communication. The performance model will neglect these
steps because the data involving lines 24–34 in Algorithm 2 are trivial.
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Fig. 7 Computation architecture. The blocks in this picture, except for MUX for multiplexing, are FIFO
structure using for store data and the shaded ones indicate the data it stored are accessed from memory
directly. Adders in picture operate 1024bits operators and multiplier for operator of 32 bits multiplies 1024
bits operator

5.1 Performance evaluation

Matrix B is split into C processors uniformly; hence, it takes d × N 2 × sb bytes/C
memory space in each processor. Vector x is also split into C processors uniformly,
but two times more space should be spared, one for the received vector block and the
other for the intermediate result. Thus, it takes 3 × N × sx bytes/C .

One processor will broadcast and receive a complete vector x per iteration; hence,
the communication data volume is N×sx bytes.While x is stored in themainmemory,
the communicationwill also cause the same volume ofmemory access, which overlaps
with communication. No communication occurs for matrix B because every processor
holds its necessary matrix block B.

The memory access pattern in one iteration generally consists of regular access
patterns over the matrix two times that of the intermediate vector x access: one for
loading and the other for storage. This aspect results in d × N 2 × sb bytes/C of
B and 2 × N × sx bytes of x for memory access. Each nonzero of B will index a
corresponding elements of x from memory in an irregular manner. This aspect results
in d × (N 2/C) × sx bytes of irregular memory access. The analyzed results are
presented in Table 4.
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Table 4 Data volume involving memory store, access, and communication in one iteration

Data Memory size Memory access volume Commun. volume

Matrix B d × N × N × sb B/C d × N × N × sb B/C 0

Matrix X (Q(i−1), Q(i)) 3 × N × sx B/C Continuously 2 × N × sx B N × sx B

Incontinuously
d × (N2/C) × sx B

Continuously N × sx B
(overlapped with
commun.)

We take Bandc and Bandm as the peak communication bandwidth and memory
bandwidth with the efficient of Ec and Em, respectively. Provided that the regular
memory access efficient is α times than the irregular one, the total time required for
solving this problem is as follows.

T = iterations × (Commu.time + Memory time)

=
(
N

n
+ N

m

)

× ((N × sx B)/min(Bandc × Ec, Bandm × Em)

+ (d × N 2 × sbB/C + α × d × (N 2/C) × sx B)/(Bandm × Em)) (3)

Moreover, the entire memory capacity demanded for each processor is

M = d × N 2 × sbB/C + 3 × N × sx B/C (4)

The memory data width is 512 bits for each processor; in our custommachine, each
processor exploits eight memory access channels with 64 bits per channel and 8 burst
length. The x element is 1024 bits; hence, the irregular memory access of x will use
2 burst length in 8, and the access efficient α equals 4.

The system exploits DDR4 as its memory with 268 Gbps bandwidth per channel.
The Bandm equals 268 GBps because eight channels exist on each processor. The
interconnection exploits Intel QPI, which can obtain 400 Gbps with 16-way, that
is, B and c = 400 Gbps. The efficient of communication bandwidth is generally
significantly high, given Ec = 1 in this case.

Em is determined by the feature of the algorithm itself and the manner of storing
data.To ascertain its value inMSC, this paper uses theDRAMSimsimulator to simulate
the execution of MSC and obtain the trace of memory access. Based on the memory
access trace, Em = 64 %, after ascertaining the major parameters of our architecture,
we consider one specific problem as an example. For a specific problem size with
n = m = 1000, Eq. 3 can calculate its performance, and the result is shown in
Table 5 with various processors and sb = 4 bytes. Table 6 shows the performance
evaluation when N = 108, d = 10−4 with various processors and sb. Observing that
the communication time is independent of sb and processor amount, theCommu.t ime
is not shown in Table 6.
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Table 5 Evaluation performance with various processors but constant sb

Problem size Processors 64 128 256 512

Commu.time (s) 0.0026 0.0026 0.0026 0.0026

N = 106 Memory time (s) 0.0047 0.0024 0.0012 0.0006

d = 10−4 Exec.time (s) 0.0073 0.0049 0.0037 0.0031

A vec.time (days) 0.0002 0.0001 0.00009 0.00007

Commu.time (s) 0.0026 0.0026 0.0026 0.0026

N = 106 Memory time (s) 0.0470 0.0235 0.0118 0.0059

d = 10−3 Exec.time (s) 0.0496 0.0261 0.0143 0.0084

A vec.time (days) 0.0011 0.0006 0.0003 0.0002

Commu.time (s) 0.0256 0.0256 0.0256 0.0256

N = 107 Memory time (s) 0.0470 0.0235 0.0118 0.0059

d = 10−5 Exec.time (s) 0.0726 0.0491 0.0374 0.0315

A vec.time (days) 0.0168 0.0114 0.0086 0.0073

Commu.time (s) 0.0256 0.0256 0.0256 0.0256

N = 107 Memory time (s) 0.4701 0.2350 0.1175 0.0588

d = 10−4 Exec.time (s) 0.4957 0.2606 0.1431 0.0844

A vec.time (days) 0.1147 0.0603 0.0331 0.0195

Commu.time (s) 0.2560 0.2560 0.2560 0.2560

N = 108 Memory time (s) 0.4701 0.2350 0.1175 0.0588

d = 10−6 Exec.time (s) 0.7261 0.4910 0.3735 0.3148

A vec.time (days) 1.6807 1.1366 0.8646 0.7286

Commu.time (s) 0.2560 0.2560 0.2560 0.2560

N = 108 Memory time (s) 4.7006 2.3503 1.1752 0.5876

d = 10−5 Exec.time (s) 4.9566 2.6063 1.4312 0.8436

A vec.time (days) 11.4737 6.0331 3.3129 1.9527

Table 6 Evaluation performance with various processors and sb

Problem type Processors 64 128 256 512

sb = 2 bytes Memory time (s) 46.8240 23.4120 11.7060 5.8530

Exec.time (s) 47.0800 23.6680 11.9620 6.1090

A vec.time (days) 108.9814 54.7870 27.6898 14.1412

sb = 4 bytes Memory time (s) 47.0062 23.5031 11.7515 5.8758

Exec.time (s) 47.2622 23.7591 12.0075 6.1318

A vec.time (days) 109.4032 54.9979 27.7952 14.1939

sb = 8 bytes Memory time (s) 47.3706 23.6853 11.8426 5.9213

Exec.time (s) 47.6266 23.9413 12.0986 6.1773

A vec.time (days) 110.2467 55.4196 28.0061 14.2994
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Fig. 8 The interconnection structure of the node and its power consumption

– Commu.t ime is the communication time per iteration. Given that the commu-
nicated data volume is constant, the time required will not change with various
processors and is 0.256 s.

– Memorytime is the memory access time per iteration, and Exec.t ime is the sum
of the time of the first two events.

– A vec.t ime is the time executed for one vector of matrix X . When using 1000
nodes, each node will calculate one vector, and the A vec.t ime is also the
Totaltime for solving this entire problem.

Power consumption is also the machine’s characteristic of user attention, and this
paper evaluates the power consumption of the custom machine based on the current
situation of products and TH2. Power consumption chiefly consists of three parts,
namely processor chip power consumption, memory power consumption, and inter-
connection power consumption. We evaluate the power consumption of the system of
1000 nodes and each node with 64 processors below.

– Processor chip power consumption: Processor chip logic includes three parts:
memory controller, network controller (NC), and computation logic. Each part
will consume no more than 2 W based on our engineering experience; thus, we
calculate processor chip consumption as 6 W.

– Memory power consumption The storage system exploits DDR4, and each proces-
sor is equipped with eight channels with 32 SDRAM chips in total. Each SDRAM
chip, taking Micron’s MT40A512M16 as an example, consumes 0.3 W, and the
entire storage system per processor with Em = 64 % will consume 6.2 W.

– Interconnection power consumption Building the data bus interconnection in one
node requires five16×16 cross bar chips (NR) as shown inFig. 8, and each cross bar
chip takes 20 W. These cross bar chips are interconnected by SerDes interfaces,
and each SerDes interface takes approximately 8 W. Thus, the interconnection
module power consumption is 132 W per node.

Therefore, the total power consumption of the custom machine in a typical solving
state is 64,000 × (6 + 6.2) + 1000 × 132 = 0.92 MW.
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Fig. 9 Verification method

5.2 Performance verification

The preceding result is verified through a hardware module combined with a software
module, as shown in Fig. 9. In the softwaremodule part, we useDRAMSim to simulate
DDR4 and use C language to implement the simulation of a computation module. We
subsequently record the data and clock information returned from DRAMSim into a
file, named testbench.v. The hardware module is simulated by ModelSim, the compu-
tation logic is written by verilog code, and the interface ofmemory and interconnection
logics is simulated by the IP processor from Xilinx Inc. In the consideration of its low
simulating speed, we simulate a sequence of block matrix multiplications and deduce
its performance, which is reasonable because the nonzeros are uniformly distributed.
The testbench.v functions as an input file for the hardware module part, andModelSim
runs at 50 MHz.

Figure 10 shows the simulation results after the calibration into 2.1GHz,which is the
maximum working frequency of DDR4 and the comparison of our model evaluations
with the problem size of N = 108, d = 10−5. The evaluated value is consistent with
our simulated value, thereby verifying that our performance model of MSC is correct
and precise.

We also evaluate the performance on the fastest computer TH2 based on its con-
figuration parameters depicted in Fig. 11 [7]. Referring to Fig. 11, we note that TH2
comprises 16,000 nodes, and each consists of two Intel Xeon E5 2692 and three Intel
Xeon Phi processors; five processors are used in each node. The memory bandwidth
is 51.2 GBps per processor. The system with some 2000 NR interconnection chips
ensures that the communication bandwidth is higher than the memory bandwidth. To
ensure that the system fits into our performance model,we take 16 nodes in TH2 as
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Fig. 10 The comparison of
simulation and evaluation results

Fig. 11 The configuration of TH2 which is consisted in 16,000 nodes with two Intel Xeon E5 2692 and
three Intel Xeon Phi each

one node in our model; thus, 16,000/16 = 1000 nodes exist, each with 16 × 5 = 80
processors.

Based on Eq. 3, Fig. 12 compares the execution time of our custom machine with
n node and each node with various processors and TH2 on some specific problems,
including N = 106–109 and d = 10−3–10−8 when n = m = 1000. The evaluation
performances are commonly higher than TH2 and can obtain average 3× speedupwith
1000 nodes, each with 64 processors. The power consumption of TH2 is 17.8 MW,
whereas our custom machine consumes merely 0.92 MW, which is far below that of
TH2.

DimitriosMeintanis [16] in 2009 also designed a hardware architecture forMSC on
FPGA. The implementation of 1024 Virtex-5 chips processes MSC for a N = 4×107
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and d = 2.5 × 10−6 matrix takes about 2.72 days, while the same problem may take
one node with 64 processors of our proposed machine 0.2689 days, that is ,about 10×
speedup.

6 Conclusion

This paper proposes a custom machine for iterative large sparse matrix–vector multi-
plication in block Wiedemann algorithm. To maximize the full potential performance
of SpMV inMSC, four optimization strategies are suggested in the aspects of computa-
tion, communication, and storage. Based on these strategies, we proposed the parallel
algorithmofMSCand a custommachine includes an interconnection structure, amem-
ory structure, and a computation architecture. Subsequently, a performance model is
built to evaluate the execution ofMSC, which shows a 3× speed up and reduced power
consumption for our custom machine when compared with TH2.
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