
J Supercomput (2016) 72:4497–4519
DOI 10.1007/s11227-016-1756-1

Straightforward solutions to reduce HoL blocking
in different Dragonfly fully-connected interconnection
patterns

Pedro Yébenes1 · Jesus Escudero-Sahuquillo1 ·
Pedro J. García1 · Francisco J. Quiles1

Published online: 27 May 2016
© Springer Science+Business Media New York 2016

Abstract The performance of interconnection networks is a challenging issue for
High-Performance Computing (HPC) systems, which becomes even more important
when the number of interconnected endnodes grows. In that sense, Dragonfly intercon-
nection patterns are a very popular option to configure the network topology, especially
for large systems, as they are able to achieve a high scalability relying on high-radix
switches. This kind of hierarchical topologies has two levels of interconnection (i.e.,
connections within the element of a group and connections among groups) and each
one can be interconnected using different patterns. However, regardless of the Drag-
onfly interconnection pattern, the Head-of-Line (HoL) blocking effect derived from

This work has been jointly supported by the Spanish MINECO and European Commission (FEDER funds)
under the projects TIN2012-38341-C04 and TIN2015-66972-C5-2-R, and the FPI grant BES-2013-063681,
and by Junta de Comunidades de Castilla- La Mancha under the project PEII-2014-028-P. Jesus Escudero-
Sahuquillo has been funded by the Spanish MINECO under the postdoctoral grant FPDI-2013-18787 until
November 2015 and, from that date, he has been funded by the University of Castilla-La Mancha (UCLM)
and the European Commission (FSE funds), with a contract for accessing the Spanish System of Science,
Technology and Innovation, for the implementation of the UCLM research program (UCLM resolution
date: 31/07/2014).

B Pedro Yébenes
pedro.yebenes@uclm.es; pedroyebenes@gmail.com

Jesus Escudero-Sahuquillo
Jesus.Escudero@uclm.es

Pedro J. García
pedrojavier.garcia@uclm.es

Francisco J. Quiles
francisco.quiles@uclm.es

1 Department of Computing Sytems, University of Castilla-La Mancha, Instituto de Investigación
en Informática de Albacete (I3A), Campus Universitario s/n, 02071 Albacete, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1756-1&domain=pdf

4498 P. Yébenes

congestion situations may jeopardize the Dragonfly performance. This paper analyzes
the dynamics of congestion in different Dragonfly fully-connected interconnection
patterns. Also, we describe a queuing scheme calledHierarchical Two-Level Queuing
(H2LQ), designed specially to reduce HoL blocking in any fully-connected Dragonfly
network that uses minimal-path routing. Finally, we present experiment results which
show that this scheme significantly boost Dragonfly performance, regardless the inter-
connection pattern, especially when congestion arises, while requiring fewer network
resources than other techniques oriented to deal with the effects of congestion.

Keywords High performance computing · Interconnection networks ·
Dragonfly topology · HoL blocking · Congestion control

1 Motivation

High-Performance Computing (HPC) systems are widely used nowadays to support
the growing computational demands of applications used in many and diverse fields,
like Big-Data, parallel computing, GPU computing, cloud computing, distributed
file-systems, databases, social networks, etc. These systems need an interconnection
network able to meet their high communication requirements, offering high-bisection
bandwidth and low latency. Otherwise, the network may be the system bottleneck and
the whole system may not behave as expected. One of the most important factors in
the design of a network is its topology, as many other network aspects depend on it.
In that sense, Dragonfly topologies [22] are becoming popular as an alternative to
traditional direct and indirect topologies. Specifically, the Dragonfly topology offers
a high scalability at a very good cost/performance ratio with the current hardware.
Indeed, it is able to maintain network performance as the network size grows, at the
cost of requiring switches with a higher radix. Besides, it offers a very low diame-
ter, path diversity, and a high bisection bandwidth. Currently, several supercomputer
manufacturers use this topology in their systems such us the Cray XC series [3] or the
IBM PERCS [6].

The original Dragonfly topology definition is very loose because several aspects are
not specified. For instance, this topology is defined as a hierarchical structure with two
levels of interconnection (inter- and intragroup), but the specific inter-and intragroup
patterns are not restricted. In fact, although fully-connected patterns are suggested,
the decision remains in the network designer. Several authors have analyzed thor-
oughly the Dragonfly topological properties and proposed several fully-connected
interconnection patterns [8,18], i.e., different ways of fully interconnecting the net-
work components. The analysis of these configuration patterns is an issue of great
importance for the design of the system layout. Depending on the infrastructure and on
the physical system components, some patterns for connecting the nodes and switches
may be more convenient than others. Therefore, it is important to know the advantages
and disadvantages of each pattern from the point of view of the network performance.

Regardless of the specific interconnection pattern, Dragonfly performance may
drop significantly due to the negative effects derived from congestion situations. The
worst of them is the Head-of-Line (HoL) blocking effect [20], which appears when

123

Straightforward solutions to reduce HoL blocking... 4499

a packet at the head of a buffer blocks the rest of the packets of that buffer, even
if they request access to available ports. The impact of this phenomenon is stronger
in HPC networks as they do not discard congested packets, in contrast with “lossy”
networks such as Internet. Many solutions have been proposed to deal with conges-
tion and HoL blocking. In general, any solution focused on limiting traffic load in the
network or avoiding/removing congestion situations may lower HoL-blocking proba-
bility. However, we think that it is more efficient if we focus on reducing/removing the
HoL blocking instead of proactive or reactive solutions that make attempts to remove
congestion trees. The problem with these solutions is that either they require global
information of the network status, which may be difficult to obtain, or they are slow
removing the congestion of the network. Hence, there exist many techniques specially
designed to reduce the HoL-blocking effect. Most of them are based on storing sep-
arately different packets flows (or different groups of packet flows) at switch ports,
so that the interaction among flows is reduced and so HoL-blocking. This approach
requires to have at switch ports separate queues (or similar structures), that can be actu-
ally implemented in different ways, depending on switch architecture (for instance,
by using Virtual Channels (VCs) [9], or by having buffers with several read ports).
Moreover, packet flows can be mapped to these queues according to different policies
(queuing schemes).

Some of these solutions are able to prevent completely HoL blocking but require
additional resources not available in current switches [10,14,15]. On the other hand,
there exist other feasible queuing schemes which reduce just partially HoL blocking
[4,23,31]. We have noticed that among these feasible queuing schemes, the most
efficient ones are those which are specially designed for specific network topologies
and routing algorithms. In [12,17,33], some examples of topology-aware techniques
are proposed that reduce the HoL blocking in a more efficient way and/or require
fewer queues per port. The idea is to use the most efficient mechanism to reduce HoL
blocking, which requires the minimum number of resources.

Akey point to take into accountwhen designing topology-aware queuing schemes is
the behavior of the traffic inside the specific topology. This paper analyzes traffic flow-
ing in Dragonfly networks configured with different interconnection patterns, using
the Dragonfly minimal routing algorithm with the deadlock-avoidance mechanism
proposed in [22]. Specifically, we describe congestion dynamics in these networks,
as well as the network locations where hotspot points are more likely to appear. This
analysis leads to a thorough knowledge of the HoL-blocking effect in the different
Dragonfly configurations. On its side, this knowledge eases the design of efficient
schemes suitable for these topologies that reduce the probability of HoL-blocking.
In that sense, we describe in this paper the queuing scheme know as Hierarchical
Two-Level Queuing (H2LQ), designed specifically for Dragonfly topologies using the
minimal-routing algorithm. H2LQ assumes IQ-switches configured with several vir-
tual channels (VCs) per port. Besides, at each switch port the VCs are grouped in
two virtual networks (VNs) to prevent HoL blocking: the standard VN, where packets
usually travel, and the escape VN used for avoiding deadlocks. We also evaluate the
efficiency and the suitability of this scheme for different fully-connected Dragonfly
interconnection patterns, in order to provide network designers with some insights
about the dynamics of congestion related with different Dragonfly layouts.

123

4500 P. Yébenes

The rest of this paper is organized as follows: Sect. 2 describes in detail the Dragon-
fly topology. We detail different options for connecting inter- and intra-group subnet-
works based on fully-connected interconnection patterns, the deterministic minimal-
path routing algorithm and the deadlock-avoidance mechanism. Section 3 explains
network congestion and its effects and offers an overview of techniques that try to pre-
vent or reduce them. Also, congestion dynamics in Dragonfly networks are analyzed.
In Sect. 4,H2LQ is explained in detail, specifically the assumed switch architecture, the
mapping policy, and how HoL blocking is reduced. Section 5 shows the performance
evaluation of the different Dragonfly interconnection patterns configuring different
queuing schemes. This evaluation is based on simulation experiments for both syn-
thetic and real-based traffic scenarios. Finally, in Sect. 6, some conclusions are drawn.

2 The Dragonfly topology

The Dragonfly topology [22] is a high-performance hierarchical topology consisting
of a set of groups, each one composed of several switches where several endnodes
are attached. Switches belonging to the same group are interconnected by means of
local channels that form an intra-group subnetwork. Groups are also interconnected by
an inter-group subnetwork through the global channels of the switches. Any network
topology can be used for intra- or inter- group subnetworks. However, in [22] it is
suggested the use of fully-connected topologies for both levels of subnetworks, in
order to improve their cost-effectiveness. Figure 1 shows a generic diagram of this
topology. In detail, Dragonfly topology can be defined by three parameters:

– a Number of switches in each group.
– p Number of endnodes connected to each switch.
– h Number of channels within each switch that connect to other groups (global
channels).

All this means that each switch has p terminal channels for connecting with the
endnodes, a − 1 local channels which are part of the intra-group subnetwork, and h
global channels which are part of the inter-group subnetwork. In a fully-connected
Dragonfly topology there are ap(ah + 1) endnodes, ah + 1 groups, and a(ah + 1)
switches, each one with p+a+h−1 ports. Despite the fact that Dragonfly parameters
a, p and h may have any values, a = 2p = 2h are recommended to balance the

Fig. 1 Dragonfly topology diagram

123

Straightforward solutions to reduce HoL blocking... 4501

Fig. 2 Interconnection scheme of a fully-connected Dragonfly network (a = 4, h = 2, p = 2)

channel load. An example of interconnection scheme for a fully-connected Dragonfly
with a = 4, h = 2 and p = 2 parameters is shown in Fig. 2.

2.1 Interconnection patterns

There are several fully-connected interconnection patterns that can be used for both
intra- and intergroup subnetworks. In order to describe easily these patterns,we assume
that the network is composed of e elements with e−1 ports. An element may be either
a switch or a group, as a group can be seen as a virtual switch with a×h connections to
other switches. In that sense, in [8] and [18] several ways to arrange these connections
are proposed:

– The consecutive arrangement consists in connecting the port i of element j to
element i if i < j and to element i + 1 otherwise. For instance, port 0 of element
1 is connected with element 0; port 1, with element 2; and port e− 2 with element
e − 1. Figure 3a depicts this arrangement.

– The palmtree arrangement connects the first port of an element with the next
element, the second port to the element two ahead, and so on. More formally, port

(a) (b) (c)

Fig. 3 Different fully-connected Dragonfly configurations. a Consecutive, b Palmtree, c Circular-based

123

4502 P. Yébenes

i of element j is connected to element (i + j +1)%e being i ∈ {0, . . . , e−2} and
j ∈ {0, . . . , e − 1}. For instance, port 0 of element 2 is connected with element
3; port 2, with element 4; and port e − 2, with element 1. This arrangement is
depicted in Fig. 3b.

– The circular-based arrangement Each element connects its port 0 to the next
element, its port 1 to the previous element, its port 2 to the element two ahead, its
port 3 to the element two behind, etc. In a formal way, port i (i ∈ {0, . . . , e − 2})
of element j (j ∈ {0, . . . , e−1}) is connected to element (j + i/2+1) if i is even
and element (j − �i/2� − 1) if i is odd. This arrangement assumes that elements
have an even number of ports. If there is an odd number of ports, the last port e−2
of each element cannot be connected following the previous pattern. To solve this
case, the port e − 2 of element i must be connected to the port e − 2 of element
i + e/2, if i < e/2. For instance, port 0 of element 0 is connected with element 1;
port 1, with element e− 1; port 2, with element 2; and port 3, with element e− 2.
In Fig. 3c is shown this connection pattern.

2.2 Routing algorithm

There are several routing algorithms proposed for the Dragonfly topology [22], the
most straightforward one being the minimal-path routing algorithm (MIN). Specif-
ically, MIN routing defines three steps to route a packet from a source endnode s
attached to switch Ss in group Gs , to a destination node d attached to switch Sd in
group Gd :

1. If Gs is different from Gd and Ss does not have a global connection with Gd ,
packets are routed within Gs to an intermediate switch S1 connected with Gd .

2. IfGs is different fromGd , packets are sent from the intermediate switch S1 through
a global channel to reach another switch S2 in Gd .

3. If the arrival switch S2 is not Sd , packets are routed within Gd from S2 to Sd .

However, MIN routing is not deadlock free. To solve this problem, in [9] it is
proposed to use two disjoint sets of virtual channels (VCs), supported by two queues
at each port (see Fig. 4). Basically, each disjoint set of VCs, e.g. the set of all VC0
channels, forms a virtual network (VN) with different purposes. There are two VNs:
the standard VN, which is composed of VCs, and the escape VN (EVN), which is
composed of escape VCs (EVCs). First, packets use the standard VN (VC0) as long as
they are traveling inside their source group or when they are traveling to another group
(i.e., they are performing either step #1 or #2 of the routing process). Second, packets
moving within the destination group (i.e., they are performing step #3 of the routing
process) are mapped to the EVN (EVC0), in order to break the cycles in the channel-
dependency graph. Note that the EVN is used only at input ports of the intragroup
subnetwork.

Fig. 4 Virtual channels used for
avoiding deadlocks

123

Straightforward solutions to reduce HoL blocking... 4503

3 Congestion: problems and solutions

3.1 Congestion derived problems

Congestion consists in intense traffic clogging paths within the network, thus slowing
down traffic and degrading the network performance. The origin of congestion is con-
tention, which occurs when several packet flows simultaneously request access to the
same output port in a switch. Congestion could also occur when a destination node for
one reason or another is not able to remove packets from the network at the speed they
are received. In these cases, and assuming lossless networks,1 any packet stored in a
switch or network adapter port, which is not granted, remains blocked in a queue until
its request to cross is accepted. If this situation persists in time, blocked packets delay
the advance of other packets in the same queue, then the queues fill up and finally the
flow-control backpressure propagates this congestion to other switches. Eventually,
congestionmay spread throughout the network reaching the endnodes, then increasing
packet latency and, in general, degrading network performance. It is worth pointing
out that in a congestion situation, not only the “hot flows” (i.e., flows contributing to
congestion) are affected by the traffic jam. Indeed, flows not contributing to conges-
tion (which are known as “cold flows”) end up advancing at the same speed as hot
flows because both cold and hot flows share queues. This is a particular case of the
effect known as Head-of-line (HoL) blocking, which in general occurs when a packet
requesting a busy port is blocked and prevents other packets stored behind in the same
queue from advancing, even if these packets stored behind request free ports [11].
Thus, in a congestion situation hot flows may produce HoL blocking to cold flows if
a hot packet is blocked at the head of a queue containing cold packets.

Actually, there are two types of HoL blocking derived from congestion, depending
on where the congestion arises. On the one hand, if the HoL blocking affects a cold
flow at the switch where the congestion is originated, it is called low-order HoL
blocking [20].On the other hand, if a cold flow is affected by congestion trees spreading
from other switches, the resulting effect is known as high-order HoL blocking [19].
Regardless the type of HoL blocking, this effect can be considered as the main cause
of network performance degradation upon congestion. Really, if hot flows did not
interact with cold flows, congestion would not significantly degrade performance as
the network paths followed only by hot flows would be used at a maximum speed [15].

3.2 Solutions to congestion

Nowadays two main approaches are followed to deal with congestion. On the one
hand, injection throttling [28] relies on the switches to detect congestion and then
informs the source endnodes which contribute to congestion that they must reduce
their injection rates. Once congestion is removed, its derived problems are removed

1 Lossless networks are those where packet discarding is not allowed. Note that lossless networks are
the common option for HPC systems, the InfiniBand technology being the most significant example of
HPC-based network technology.

123

4504 P. Yébenes

too. This approach is the one followed by the InfiniBand specification. However,
this technique presents several drawbacks: it does not scale with network size, and
notifications may be too slow, so once source endnodes are warned to throttle the
injection, the congestion information may be obsolete [14].

On the other hand, queue-based flow-separation techniques consist in the allocation
of queues (or virtual channels [9] or virtual lanes [7]) to isolate as much as possible
the hot flows, so preventing the HoL blocking caused by them. There are two queuing
approaches. The first one consists in explicitly identifying hot flows in order to isolate
them in dynamically-allocated queues. Proposals that follow this approach are the one
described for ATLAS [21], the Regional Explicit Congestion Notification (RECN)
mechanism [15], and Efficient and cost-effective Congestion-Control (EcoCC) [14].
However, these techniques require additional resources such as mechanisms to detect
and separate hot flows, special control messages, or Content-Addressable Memories
(CAM) to keep track of congested points at each port, which are not supported by
current commercial interconnects. In the second approach, packets from different
flows are stored in different queues according to a staticmapping policy, independently
of the traffic conditions. Some of these solutions have feasible implementations but
others do not. For instance, Virtual Output Queues at network level (VOQnet) [10]
maps each packet destination to a queue, and it prevents totally low- and high-order
HoL blocking. However, it requires one queue per destination so it does not scale with
network size. Among the feasible ones, the scheme known as Virtual Output Queues
at switch level stores separately packets requesting different output ports, so that low-
order HoL blocking is eliminated, but not the high-order one. Note that this requires
as many queues per port as there are ports in the switch. Actually, this strategy can
be implemented in different switch architectures, either by having at input buffers as
many read ports as output ports (as in non-blocking switches [13]), or by dividing input
buffers into as many logical queues as output ports, these queues sharing a single read
port (as in [4] and [31]). Note the latter approach can be based on Virtual Channels to
implement the queues, which allows to exploit VC-level flow control. Note also this
approach requires look-ahead routing [26]. Other similar queuing schemes that reduce
HoL blocking only partially areDynamically Allocated Multi-Queues (DAMQs) [31],
Destination-Based Buffer Management (DBBM) [23], and Dynamic Switch Buffer
Management (DSBM) [24].

In general, the described approaches are not aware of neither the topology nor the
routing algorithm. By contrast, other solutions are specially designed to be aware of
these aspects so that HoL blocking is reduced by using fewer resources. For instance,
queuing schemes such as Output-Based Queue Assignment (OBQA) [12,13] and
vFTree [17] have been devised for fat-tree topologies and the routing algorithms pro-
posed in [16] and [34], respectively. Similarly, Band-Based Queuing (BBQ) [33] is
tailored to KNS topologies [27] with Hybrid-DOR routing algorithm [27]. In gen-
eral, all these schemes leverage the available queues to separate traffic flows as much
as possible, taking into account the traffic distribution determined by the topology
and the routing algorithm. The queuing scheme described in Sect. 4 follows this
approach, being suitable to Dragonfly topologies, using minimal-path deadlock-free
routing algorithm, proposed in [22].

123

Straightforward solutions to reduce HoL blocking... 4505

(a) (b) (c)

Fig. 5 Dragonfly types of paths followed by traffic flows. a From endnodes. b From intragroup network.
c From intergroup network

3.3 Analysis of congestion dynamics in Dragonfly networks

As explained in Sect. 2.2, the use of MIN routing algorithm in Dragonflies implies
that a packet may cross a maximum of four switches (i.e., four hops) from its source
until it reaches its destination. The different types of paths performed by the MIN
routing algorithm are described below and summarized in Fig. 5. As local and global
connections are not specified, these paths are valid for all the connection patterns
described in the Sect. 2.1. Note that we use acronyms for referring connections from
endnodes (EN), intra-group channels (IG), and inter-group channels (EG). We denote
a path from A to B by using the number “2”, so that it can be expressed as “A2B”.

– From endnodes (EN). When a packet is generated, it may follow one of the
following types of path:
– To an endnode (EN2EN) attached to the same switch (blue arrow in Fig. 5a).
Therefore, packets perform only one hop.

– To the intragroup subnetwork (EN2IG). The destination endnode is in the
same group but attached to a different switch, or it is in another group without
connections with the source switch (red arrow in Fig. 5a).

– To the intergroup subnetwork (EN2EG). The destination endnode belongs to
a different group connected with the switch attached to the source endnode
(green arrow in Fig. 5a).

– From intragroup subnetwork (IG). When a packet is received from the intra-
group subnetwork, it may follow one of the following paths (see Fig. 5b):
– To an endnode attached to the current switch (IG2EN). Packets generated in
different groups are stored at the input port in the EVC (blue arrow in Fig. 5b).

– To a different external group attached to the switch (IG2EN). This is the second
hop performed by a packet as it only can change group once (green arrow in
Fig. 5b).

– From intergroup subnetwork (EG). When a packet is received from the inter-
group subnetwork, it may follow one of the following paths (Fig. 5c):
– To an endnode of the current switch (EG2EN). Note that in this case, the EVN
is not used (blue arrow in Fig. 5c).

– To a different switch of the same group (EG2IG). Packets arrive from another
group but their destinations are not attached to the arrival switch, i.e., this is

123

4506 P. Yébenes

Fig. 6 Congested input ports due to contention in an EVC, producing high-order HoL blocking

their penultimate hop. Once they reach the next switch, they are stored in the
EVC at the input port (red arrow in Fig. 5c).

In a congestion situation, these types of paths are likely to cause HoL blocking,
especially when a hotspot appears. As it is described in Sect. 2.2, packets are mapped
to the EVC at input ports when they move inside a group but they were generated at
other groups. If the EVC at an input port of a switch becomes full, packets generated
at other groups but requesting to reach that input port from switches of the same
group (red arrow in Fig. 5c) will block due to flow control. Consequently, congestion
spreads upstream as a group has only one connection with any other specific group.
Indeed, if the queue of an input port directly connected to the intergroup subnetwork
(EG) contains a packet addressed to a switch whose EVC is congested, all the packets
coming from the group connected to this input port (i.e., EG2IG and EG2EN flows)
cannot advance. Note that this happens even if these packets are not addressed to the
switch with the congested EVC, so they suffer high-order HoL blocking.

Figure 6 shows an example of the described situation. It depicts one group of a
Dragonfly network (a = 4, h = 2, p = 2) consisting of 9 groups, with two arrival
flows of packets at each input port of the intergroup subnetwork of switch 3 (S3).
These EG2IG flows are addressed to endnodes 0 and 1, so that the packet at the head
of each VC in these input ports is addressed to an endnode attached to switch 0 (S0),
sharing the same IG connection. However, as the EVC at the input port of S0 is full,
all the packets shown at the input ports of S3 cannot flow, even if they are addressed
to switches different to S0 (so all of them are affected by high-order HoL blocking).
Moreover, note that there are two groups unable to send packets to this group because
of this HoL blocking situation, specifically the two groups connected to S3, as each
one has only one connection to the group in Fig. 6.

On the other hand, Dragonfly topology also suffers low-order HoL blocking when
packets coming from other groups make their last hop and are stored in the EVC,
waiting for being sent to their destination endnode. As there is a single VC (i.e., the
EVC) for all these packets, which can be addressed to different endnodes, it may
happen that there is contention to reach a specific endnode, so packets addressed to
other endnodes are affected by HoL blocking. An example of this behavior is depicted
in Fig. 7: note that the EVCs have packets addressed to endnode 0, but they cannot
be delivered despite being free the port connecting endnode 0, as they are blocked by
packets addressed to endnode 1.

123

Straightforward solutions to reduce HoL blocking... 4507

Fig. 7 Low-order HoL blocking produced in the final hop of packets from different groups

It is worth pointing out that the effects described above can happen regardless the
specific Dragonfly interconnection pattern (see Sect. 2.1). Thus, all these intercon-
nection pattern configurations require to develop solutions to reduce both high- and
low-order HoL blocking.

4 Hierarchical two-level queuing (H2LQ)

In this section, we describe a straightforward queuing scheme that reduces the
HoL-blocking effect derived from congestion while the deadlock-freedom policy is
respected.We assume the use of input-queued (IQ) switches with buffers at input ports
being divided into several queues, each one of these queues being mapped to a virtual
channel (VC). Besides, VCs at switch ports are grouped in two virtual networks (VNs):
the standardVN and the escapeVN (EVN). Note that, as described in previous section,
HoL blocking must be reduced in both the standard VN and the EVN. Our approach
proposes to expand both VNs so that they consist of several VCs. That is why we
have called this technique Hierarchical Two-Level Queuing (H2LQ). H2LQ has been
specially designed for fully-connected Dragonfly topologies (see Sect. 2.1) which use
the MIN routing algorithm (Sect. 2.2), regardless the interconnection pattern.

4.1 Switch architecture

Figure 8 shows the switch architecture, based on the one proposed in [30], assumed in
the design of H2LQ: an input-queued (IQ) and pipelined, switch architecture similar
to those adopted in real products. For the sake of clarity, this example shows an

Fig. 8 Assumed input-queued
switch architecture with 2 ports

123

4508 P. Yébenes

unidirectional switch, butH2LQ is intended for bidirectional switcheswith anynumber
of ports. Specifically, for a given Dragonfly size, the number of ports required for each
switch is a + h + p − 1 (see Sect. 2). For instance, switches in a 1056-endnode
Dragonfly (a = 8, h = 4, p = 4) require 15 ports while in 26406-endnode Dragonfly
(a = 18, h = 9, p = 9), switches require 35 ports. The main components of the
architecture are the input buffers, the crossbar, the router, and the arbiter and VC
allocator.

Asmentioned before, input buffers are divided into virtual channels (VCs), grouped
in two disjoint sets of VCs or virtual networks (VNs): the standard VN and the escape
VN. We assume that there are n VCs for packets traveling in the standard VN and
m EVCs for packets in the EVN. The router performs the MIN routing algorithm
explained previously in Sect. 2.2. The arbiter and VC allocator implements the three-
phased arbitration described in [30] as well as the mapping policy described further
in Sect. 4.2. We also assume the Virtual Cut-Through. In the next section, we describe
the mapping policy of packets to VCs in both VNs.

4.2 Mapping packets to VCs in H2LQ

The aim of H2LQ is to reduce the HoL blocking affecting different traffic flows by
separating them into the two VNs: the standard VN and the EVN. The number of VCs
that each VN should configure is directly related with the Dragonfly parameters a and
p. Ideally, each buffer should implement a VCs for the standard VN and p VCs for the
EVN. However, this amount of VCs may not be available at the switches, especially
when the size of the network grows. For that reason, the number of VCs configured for
each VN has to be a divisor of a or p, respectively, in order to map the same number
of flows to each VC.

H2LQdefines that in the standardVN, packets aremapped toVCs according to their
destination switch, i.e., the switchwhere its destination node is attached, specifically as
indicated by Eq. 1. In the EVN, packets are mapped to VCs based on their destination
node, specifically as indicated by Eq. 2. Thereby, packet flows addressed to different
switches are stored separately as long as they remain in the standard VN. While in the
EVN, packet flows sent to different destinations do not share a VC.

VCSt_VN = Destination%(a × p)

p
%#VCsSt_VN (1)

VCEVN = Destination%#VCsEVN (2)

In Eq. 1, “VCSt_VN” is the VC in the standard VN where the packet will be stored
in the next switch using its “Destination” as a parameter, a and p are the Dragonfly
parameters, and “#VCsSt_VN” is the number of VCs configured in the standard VN. In
Eq. 2, “VCEVN” is the EVCwhere the packet will be stored in the next switch using its
“Destination” as a parameter, and “#VCsEVN” is the number of VCs inside the EVN.

As an example, a Dragonfly network configured with a = 8, h = 4, and p = 4
may implement 8 VCs at the standard VN and 4 VCs at the EVN (8 + 4). If 12 VCs
are not available at the input port of the switches, any combination of 8, 4, or 2 VCs

123

Straightforward solutions to reduce HoL blocking... 4509

Fig. 9 Several VCs prevent high-order HoL blocking in the standard VN

Fig. 10 Several EVCs reduce low-order HoL blocking produced in the EVN

could be used in the standard VN and 4, 2, or 1 at the EVN for instance 8 + 2, 4 + 1,
2 + 2, etc.

4.3 Advantages of the H2LQ mapping

Having several VCs in the standard VN reduces the high-order HoL blocking which
arises in the input ports of the switches connected to other groups as explained in Sect.
3.3 (and depicted in Fig. 6). Figure 9 shows the same scenario as Fig. 6, but this time
H2LQ is used. Notice that when we use H2LQwith 4 VCs in the standard VN, packets
addressed to different switches do not share queue. Consequently, despite the fact that
the input buffer of S0 is full, as packets addressed to that switch are stored in VC0,
packets stored in the remaining VCs (i.e., routed to other switches) can flow freely. If
VC0 at S3 gets full, congestion could still spread to other groups, but only packets
stored in VC0 will be affected.

On the other hand, as explained in Sect. 3.3, low-order HoL blocking may also
appear in the EVN. Figure 10 shows the same scenario as Fig. 7, but this time H2LQ
is used. Notice that in this case packets addressed to endnode 0 cannot be blocked
by packets requesting the port connecting endnode 1, as they are stored in a different
EVC. Thus, low-order HoL blocking is prevented.

Overall, combining theHoL-blocking reduction in bothVNs leverages significantly
the network performance, especially in hotspot situations, as the evaluation made in
the next section shows.

5 Evaluation

In this Section, we show experiment results of H2LQ, described in Sect. 4, carried out
by means of simulation. All the experiments have been performed with the simulator

123

4510 P. Yébenes

described in [32], based on the OMNeT++ framework [25], which has been adapted to
include Dragonfly topologies, different Dragonfly connection patterns, and their MIN
routing algorithm. We assume the switch architecture described in Sect. 4.1. Both
switch-to-switch and endnode-to-switch channels are made through serial full-duplex
pipelined links of 5 GB/s (40 Gbps) and 6 nanoseconds of link-propagation delay, i.e.,
a length of 1.2 meters and a delay of 5 ns/m. The propagation delay value corresponds
to the InfiniBand specification [7]. The flow-control policy is credit-based and packet
size (i.e., MTU) is 4096B. Buffers can store 64 packets, i.e., their size is 256 KB.

We have evaluated H2LQ compared to other queuing schemes from the state of
art which were designed just to reduce HoL blocking, but not to provide deadlock-
freedom. Therefore, in order to avoid deadlocks, we have provided these schemes
with an EVN to perform properly the MIN routing algorithm (see Sect. 2.2). Note
that this will improve the performance of some of them, as deadlock-freedom was not
one of their features. These queuing schemes are named according to the following
pattern: technique-M_N, where M is the number of VCs used in the main VN and
N is the number of EVCs used in the EVN. Note that if N is 1, there is no HoL-
blocking prevention within the EVN, but just deadlock-freedom. Specifically, the
modeled queuing schemes are the following:

– Deadlock Avoidance (DLA). This is the basic scheme which only uses two VCs.
One is used as a EVC so that this scheme does not prevent HoL blocking.

– Virtual Output Queues at switch level2 (VOQsw) [4]. The standard VN supports
at each input port as many VCs as ports are available in the switch, while the EVN
has one EVC. In the standard VN, packets are mapped to VCs according to their
requested output port at the switch.

– Destination-Based Buffer Management (DBBM) [23]. This scheme assigns a
VC of the standard VN to a packet according the next formula: Destination%
#VCs, where “Destination” is the packet destination and “#VCs”, the number of
VCs inside the standard VN. Note that as this technique uses EVCs in the EVN,
the mapping policy used in that VN is the one described for our proposal in Sect. 4,
so that DBBM gets some benefits in HoL-blocking reduction thanks to the use of
EVCs in the EVN.

– Hierarchical Two-Level Queuing (H2LQ). This is the proposal described in
Sect. 4.

In the next subsections, these queuing schemes are tested for each network con-
figuration using synthetic traffic patterns (e.g. uniform and hotspot traffic), as well as
communication patterns obtained from real applications.

5.1 Uniform traffic results

This section shows the evaluation of the different queuing schemes under the uniform
(or random) synthetic traffic pattern. This traffic pattern consists in generating packets
to random destinations in the network in a uniform way. The evaluated metrics are the

2 Note that the switch model that we use is based on an IQ-switch architecture where each input buffer is
divided into several logical queues sharing a single read port, as described in [4] and [31].

123

Straightforward solutions to reduce HoL blocking... 4511

 0

 1

 2

 3

 4

 5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

us
)

Normalized Accepted Traffic

DLA-1_1
VOQsw-35_1

H2LQ-9_1
H2LQ-9_3
DBBM-9_1
DBBM-9_3

 0

 1

 2

 3

 4

 5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

us
)

Normalized Accepted Traffic

DLA-1_1
VOQsw-35_1

H2LQ-9_1
H2LQ-9_3
DBBM-9_1
DBBM-9_3

 0

 1

 2

 3

 4

 5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

us
)

Normalized Accepted Traffic

DLA-1_1
VOQsw-35_1

H2LQ-9_1
H2LQ-9_3
DBBM-9_1
DBBM-9_3

(a) (b)

(c)

Fig. 11 Average packet latency versus normalized accepted traffic under uniform traffic, for different fully-
connected Dragonfly interconnection patterns in a Dragonfly network configured with a = 18, h = 9, p =
9. a Absolute. b Palmtree. c Circular

accepted traffic normalizedwith respect to the link bandwidth and the packet latency. In
the experiments, the generation rate of the endnodes is increased by 10% from 10%up
to 100% of the maximum theoretical performance.3 For each point of generation rate,
the network works during a million of nanoseconds and then, the metrics performance
are recorded. Three network configurations have been evaluated, each one with a
different interconnection pattern. In all of them, the Dragonfly topology parameters
are a = 18, h = 9, p = 9, so there are 26,406 endnodes and 2,934 switches with
35 ports. The obtained data of the absolute, palm tree, and circular-based patterns are
depicted in Fig. 11a–c respectively.

As it can be observed in Fig. 11, the uniform traffic results are very similar regardless
the used interconnection pattern. The worst performance is achieved by DLA-1_1,
as it does not provide any HoL-blocking prevention. On the other hand, VOQsw-
35_1, DBBM-9_1, and H2LQ-9_1 techniques, which do not use EVCs, achieve a
similar performance. VOQsw obtains better performance (i.e., smaller latency and

3 We assume that this value is the number_of _nodes × link_bandwidth.

123

4512 P. Yébenes

more accepted traffic) than the others at the cost of using more than three times the
number of VCs (35 VCs are used), which makes it unfeasible in the current switch
technology. Both, DBBM-9_1 and H2LQ-9_1 use the same amount of VCs which
means the proposed mapping of them behaves almost identically with this traffic
pattern. For the case of H2LQ-9_3 and DBBM-9_3, they obtain better performance
than the previous techniques thanks the use of several EVCs to preventHoLblocking in
the EVN. In this case, our proposal also slightly improves DBBM in all the considered
network configurations. Note that uniform traffic do not generate a significant amount
of HoL blocking, since the congestion trees last a small number of cycles. Note also
that DBBM takes advantage of our approach to use several EVCs to alleviate the HoL
blocking in the EVN.

Therefore, H2LQ achieves the highest performance/VC-per-port ratio. When we
use several VCs in the standard VN, the performance is increased by about 15% in
comparison with DLA-1_1. If several EVCs are used in the EVN, H2LQ performance
is increased by an additional 15%. Besides, if DBBM technique uses EVCs as our
proposal does, its performance is improved by an additional increment.

5.2 Hotspot traffic results

The hotspot traffic pattern consists in configuring a set of several nodes to send packets
to a single destination, known as hotspot. This situation generates a congestion tree
in the network, so that the HoL blocking arises and strongly jeopardizes the network
performance. This scenario is very a common situation in programs using parallel
libraries such as MPI, where a process invokes a gather function (i.e., some nodes
has to send traffic to the same node running the root MPI task), thus generating a
hotspot. Specifically, in our experiments 25% of the nodes send packets only to one
of four possible hotspot destinations, so that each hotspot destination receives traffic
from 6.25% of the nodes generating the hotspot. The remaining nodes (75%) generate
uniform traffic. The metric used in the evaluation is the throughput normalized with
respect the link bandwidth.Also, as for the uniformpattern, the generation rate of all the
endnodes (i.e., those generating uniform traffic and those generating hotspot traffic) is
increased by 10% from 10% up to 100% of themaximum possible load to be injected.
For each generation rate ratio, the network works during a million of nanoseconds and
then, the performance metrics are recorded. As in the previous subsection, we have
evaluated three network configurations with the mentioned interconnection patterns:
absolute, palm tree, and circular-based. The Dragonfly topology parameters are a =
18, h = 9, p = 9, thus the network connects 26,406 endnodes and 2,934 switches
with 35 ports.

Figure 12 shows that the obtained network performance is quite similar in the three
scenarios, regardless of the Dragonfly interconnection pattern. As expected, DLA-
1_1 obtains the worst performance because it is unable to reduce the HoL-blocking
effect. The best performance is obtained by VOQSW-35_1 at the cost of using too
many VCs. Both DBBM-9_3 and H2LQ-9_3 techniques obtain less performance than
VOQsw but requiring only a third of VCs. DBBM-9_1 always achieves about 15%
lower performance than the two previous techniques. By contrast, H2LQ-9_1 is able

123

Straightforward solutions to reduce HoL blocking... 4513

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Generated Traffic

DLA-1_1
VOQsw-35_1

H2LQ-9_1
H2LQ-9_3
DBBM-9_1
DBBM-9_3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Generated Traffic

DLA-1_1
VOQsw-35_1

H2LQ-9_1
H2LQ-9_3
DBBM-9_1
DBBM-9_3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Generated Traffic

DLA-1_1
VOQsw-35_1

H2LQ-9_1
H2LQ-9_3
DBBM-9_1
DBBM-9_3

(a) (b)

(c)

Fig. 12 Normalized throughput vs generated traffic for different fully-connectedDragonfly interconnection
patterns in a Dragonfly network configured with a = 18, h = 9, p = 9 under hotspot traffic. a Absolute.
b Palmtree. c Circular

to obtain a performance much closer to its version with EVCs in the EVN, showing
that the mapping of flows to VCs in the standard VN indicated by Sect. 4.2 is more
efficient to reduce HoL blocking than the DBBM mapping with just one EVC.

Therefore, H2LQhas been designed taking into account the dynamics of congestion
in Dragonfly networks, so that it efficiently deals with HoL blocking in congestion
situations. Indeed, our proposal achieves the best performance/ VC-per-port ratio as it
is able to keep the performance when no EVCs are configured. Besides, other queuing
schemes can benefit from the use of EVCs in the EVN, as DBBM does, increasing its
performance by a 15%. Note that, as it has been mentioned before DBBM does not
provide any additional mechanism for deadlock prevention in Dragonfly networks, so
that we have provided EVCs to it for performing a fair comparison.

5.3 Traces based on real traffic results

This Section shows the experiment results obtained by simulating the queuing schemes
mentioned before, under traffic traces obtained from two real applications: the

123

4514 P. Yébenes

Table 1 Evaluated configurations

Network Pattern Trace # Traces #Endnodes #Tasks

1 6a3h3p Absolute smtv 1 342 256

2 6a3h3p Palm Tree smtv 1 342 256

3 6a3h3p Circular-based smtv 1 342 256

4 6a3h3p Absolute graph500 1 342 256

5 6a3h3p Palm Tree graph500 1 342 256

6 6a3h3p Circular-based graph500 1 342 256

7 8a4h4p Absolute smtv 4 1056 1024

8 8a4h4p Palm Tree smtv 4 1056 1024

9 8a4h4p Circular-based smtv 4 1056 1024

10 8a4h4p Absolute graph500 4 1056 1024

11 8a4h4p Palm Tree graph500 4 1056 1024

12 8a4h4p Circular-based graph500 4 1056 1024

Graph500 benchmark [1] and the STMV test included in the NAMD scalable molec-
ular dynamics application [29]. The communication pattern of these MPI applications
has been modeled by means of the VEF traces suite [5] and it generates the VEF traffic
traces including the task dependencies (i.e., self-related traces). This framework also
provides the TraceLIB library which can be integrated with any third-party simula-
tor as long as it uses its simple API. In order to generate the VEF traces traffic into
our OMNeT++-based simulator, we have integrated TraceLIB with our simulator. We
have used 256-tasks traces from the repository at [2] both for the Graph500 and SMTV
applications.

Table 1 shows the evaluated Dragonfly configurations. Two Dragonfly network
topologies with different size have been evaluated: the first one has 342 endnodes
(a = 6, h = 3, p = 3) and the second one has 1056 endnodes (a = 8, h = 4, p = 4).
Each network is evaluated using the three different interconnection patterns. The net-
work configurations using the 342-endnode network only executes one trace, while
the configurations using the 1056-node network combine four traces at the same time.
These trace tasks are mapped to endnodes in a random way and, as there are more
endnodes than tasks, several endnodes are idle.4 The metric evaluated is the runtime
required to complete all the trace communications normalized against the execution
time of the DLA-1_1 technique, as this scheme does not provide any HoL-blocking
reduction. Therefore, we want to measure the impact of using different queuing
schemes in the application runtime.

In Fig. 13 it is shown the obtained data from simulating configuration #1, #2, and #3.
The SMTV communication pattern does not create significant network congestion, so
that under this traffic conditions, it is clear that configuring several VCs for reducing
HoL blocking has small impact on the reduction of the application runtime (about

4 Note that in real HPC clusters it is typical that a queuing-based scheduler is in charge of mapping jobs
to the available processing nodes, so that several applications can be run at the same time.

123

Straightforward solutions to reduce HoL blocking... 4515

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Absolute Palmtree Circular

N
or

m
al

iz
ed

 R
un

T
im

e

SMTV 256 task

DLA-1_1
VOQsw-11_1

H2LQ-6_1
H2LQ-6_3
DBBM-6_1
DBBM-6_3

Fig. 13 Normalized runtime of the communication pattern obtained from the execution of SMTV virus
benchmark in NAMD scalable molecular simulator in Dragonfly a = 6, h = 3, p = 3 with different
interconnection patterns

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Absolute Palmtree Circular

N
or

m
al

iz
ed

 R
un

T
im

e

Graph500 256 task

DLA-1_1
VOQsw-11_1

H2LQ-6_1
H2LQ-6_3
DBBM-6_1
DBBM-6_3

Fig. 14 Normalized runtime of the 256-task communication pattern obtained from Graph500 benchmark
in Dragonfly a = 6, h = 3, p = 3 with different interconnection patterns

3–4%). However, this trace has been used to test and validate the consistency of the
simulation model.

Figure 14 depicts the results of configurations #4, #5, and #6 of Table 1. The
obtained results for the three different Dragonfly interconnection patterns for these
configurations are barely the same which confirm that no matter what of the connec-
tion pattern is used to cable the Dragonfly. Specifically, VOQsw-11_1, H2LQ-6_1,
and DBBM-6_1 techniques, which only use VCs in the standard VN, achieve less
improvement in the runtime than H2LQ-6_3 and DBBM-6_3, as they configure sev-
eral EVCs. VOQsw-11_1 reduces about 7% the runtime with respect to to DLA-1_1,
while H2LQ-6_1 or DBBM-6_1 improve it about 10%. On the other hand, H2LQ-6_3
and DBBM-6_3 are able to reduce the runtime about 14%.

Figure 15 depicts the results from configuration #7, #8, and #9, i.e., Dragonflies of
1056 endnodes. As it was described before, the SMTV trace is not able to generate a
significant network congestion. Therefore, only between 3 and 4% of improvement in
the runtime is obtained, regardless of the used technique for preventing HoL blocking,

123

4516 P. Yébenes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Absolute Palmtree Circular

N
or

m
al

iz
ed

 R
un

T
im

e

SMTV 1024 task

DLA-1_1
VOQsw-15_1

H2LQ-8_1
H2LQ-8_4
DBBM-8_1
DBBM-8_4

Fig. 15 Normalized runtime of the communication pattern obtained from the execution of SMTV virus
benchmark in NAMD scalable molecular simulator in Dragonfly a = 8, h = 4, p = 4 with different
interconnection patterns

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Absolute Palmtree Circular

N
or

m
al

iz
ed

 R
un

T
im

e

Graph500 1024 task

DLA-1_1
VOQsw-15_1

H2LQ-8_1
H2LQ-8_4
DBBM-8_1
DBBM-8_4

Fig. 16 Normalized runtime of the communication pattern obtained from Graph500 benchmark in Drag-
onfly a = 8, h = 4, p = 4 with different interconnection patterns

but we have used it just to verify the consistency of our simulation model when the
Dragonfly size increases.

Figure 16 shows the normalized runtime from the traces of configuration #10, #11,
and #12. As these scenarios are a combination of four graph500 traces, the results are
similar to the obtained for configuration #4, #5, and #6. Although the represented data
is different for each configuration, the results are barely the same. These differences
are due to the random mapping of tasks to nodes, as the traffic behavior changes. The
techniques that obtain less improvement (between 3 and 7%) are those which do not
prevent HoL blocking in the EVN, i.e., VOQsw-15_1 , H2LQ-8_1, and DBBM-8_1.
However, H2LQ-8_4 and DBBM-8_4 achieve the best runtime reducing the DLA-1_1
one about 10–12%.

Summingup, using an appropriate queuing scheme topreventHoLblocking reduces
the runtime of the evaluated communication patterns obtained from real applications,
regardless the Dragonfly interconnection pattern. Although using several VCs in the
standard VN decrease the required time, the most efficient techniques are those which

123

Straightforward solutions to reduce HoL blocking... 4517

also prevent HoL blocking in the EVN, as our proposal does, which reduce even more
the execution time.

6 Conclusions

Nowadays, the Dragonfly family of topologies has become very popular for inter-
connecting processing and storage nodes of HPC systems and data centers, due to
their good properties for high bisection bandwidth, low latency, low diameter, path
diversity, etc. However, the Head-of-Line (HoL) blocking derived from congestion
situations may decrease their performance. This paper explains the technique know
asHierarchical Two-Level Queuing (H2LQ), which prevents the HoL blocking effect.
H2LQ is designed specially for fully-connected Dragonfly topologies, regardless of
the fully-connected interconnection pattern used for inter-group or intra-group sub-
networks. Also, H2LQ assumes the use of the Dragonfly minimal routing algorithm
as well as the use of an escape virtual network for avoiding deadlocks. The benefits
provided by H2LQ come not only from using a clever mapping of packets to virtual
channels to prevent HoL blocking in the standard virtual network, but also from imple-
menting an efficient VC-mapping policy of traffic flows to VCs in order to prevent this
effect in the escape virtual network. Other techniques implementing this idea would
take advantage of the benefits provided by H2LQ to reduce HoL blocking.

Furthermore, we have evaluated H2LQ through simulation experiments under cer-
tain traffic scenarios by using synthetic traffic and communication patterns extracted
from real applications. From this evaluation experiments, we can conclude that H2LQ
obtains successful results compared with other solutions for reducing HoL blocking,
regardless of the fully-connected pattern used in the Dragonfly topology. In addition,
H2LQ achieves a high scalability and it is able to keep the network performance by
using an affordable amount of VCs. Besides, thanks to this idea of theH2LQ approach,
other queuing schemes may be improved by using several VCs in the escape network.

References

1. The Graph 500 List. www.graph500.org
2. VEF traces: An easy way to model MPI traffic in network simulators. http://www.i3a.uclm.es/

VEFtraces/
3. Alversons B, Froese E, Kaplan L, Roweth D (2012) Cray XC Series Network. Tech. rep. Cray Inc,
4. Anderson T, Owicki S, Saxe J, Thacker C (1993) High-Speed Switch Scheduling for Local-Area

Networks. ACM Transactions on Computer Systems 11(4):319–352
5. Andujar FJ, Villar JA, Sanchez JL, Alfaro FJ, Escudero-Sahuquillo J (2015) VEFTraces: A Framework

forModellingMPITraffic in InterconnectionNetworkSimulators. In:ClusterComputing (CLUSTER),
2015 IEEE International Conference on, pp. 841–848. doi:10.1109/CLUSTER.2015.141

6. Arimilli B, Arimilli R, Chung V, Clark S, Denzel W, Drerup B, Hoefler T, Joyner J, Lewis J, Li J, Ni N,
Rajamony R (2010) The PERCS High-Performance Interconnect. In: High Performance Interconnects
(HOTI), 2010 IEEE 18th Annual Symposium on, pp. 75–82. doi:10.1109/HOTI.2010.16

7. Association IT (2007) InfiniBand Architecture Specification. http://www.infinibandta.org
8. Camarero C, Vallejo E, Beivide R (2014) Topological Characterization of Hamming and Dragonfly

Networks and Its Implications on Routing. ACMTrans. Archit. CodeOptim. 11(4):39:1–39:25. doi:10.
1145/2677038

123

www.graph500.org
http://www.i3a.uclm.es/VEFtraces/
http://www.i3a.uclm.es/VEFtraces/
http://dx.doi.org/10.1109/CLUSTER.2015.141
http://dx.doi.org/10.1109/HOTI.2010.16
http://www.infinibandta.org
http://dx.doi.org/10.1145/2677038
http://dx.doi.org/10.1145/2677038

4518 P. Yébenes

9. Dally W (1992) Virtual-Channel Flow Control. IEEE Trans. on Parallel and Distributed Systems
3(2):194–205

10. Dally W, Carvey P, Dennison L (1998) Architecture of the Avici terabit switch/router. In: 6th Hot
Interconnects, pp. 41–50

11. Dally WJ, Towles B (2003) Principles and Practices of Interconnection Networks. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA

12. Escudero-Sahuquillo J, García PJ, Quiles FJ, Flich J, Duato J (2011) OBQA: Smart and cost-
efficient queue scheme for Head-of-Line blocking elimination in fat-trees. J. Parallel Distrib. Comput.
71(11):1460–1472

13. Escudero-Sahuquillo J, Garcia PJ, Quiles FJ, Reinemo SA, Skeie T, Lysne O, Duato J (2014) A
New Proposal to Deal with Congestion in InfiniBand-based Fat-trees. J. Parallel Distrib. Comput.
74(1):1802–1819

14. Escudero-Sahuquillo J, Gran E, Garcia-Garcia P, Flich J, Skeie T, Lysne O, Quiles F, Duato J (2014)
Efficient and Cost-Effective Hybrid Congestion Control for HPC Interconnection Networks. Parallel
and Distributed Systems, IEEE Transactions on PP(99):1–1. doi:10.1109/TPDS.2014.2307851

15. Garcia P, Quiles F, Flich J, Duato J, Johnson I, Naven F (2006) Efficient, Scalable Congestion Man-
agement for Interconnection Networks. Micro, IEEE 26(5):52–66

16. Gomez C, Gilabert F, Gomez M, Lopez P, Duato J (2007) Deterministic versus Adaptive Routing in
Fat-Trees. In: Workshop CAC in conjunction with the IPDPS, p. 235

17. Guay WL, Bogdanski B, Reinemo SA, Lysne O, Skeie T (2011) vFtree - A Fat-Tree
Routing Algorithm Using Virtual Lanes to Alleviate Congestion. In: Proc. of IPDPS, pp.
197–208

18. Hastings E, Rincon-Cruz D, Spehlmann M, Meyers S, Xu A, Bunde DP, Leung VJ (2015) Comparing
Global Link Arrangements for Dragonfly Networks. In: Cluster Computing (CLUSTER), 2015 IEEE
International Conference on, pp. 361–370. doi:10.1109/CLUSTER.2015.57

19. JurczykM, Schwederski T (1996) Phenomenon of Higher Order Head-of-Line Blocking in Multistage
Interconnection Networks under Nonuniform Traffic Patterns. IEICE Transactions on Information and
Systems E79–D(8):1124–1129

20. Karol MJ, Hluchyj MG, Morgan SP (1987) Input versus output queuing on a space-division packet
switch. IEEE Transactions on Communications. COM–35:1347–1356

21. Katevenis M, Serpanos D, Spyridakis E (1998) Credit-flow-controlled ATM for MP interconnection:
The ATLAS I single-chip ATM switch. In: High-Performance Computer Architecture, 1998. Proceed-
ings., 1998 Fourth International Symposium on, pp. 47–56

22. Kim J, Dally WJ, Scott S, Abts D (2008) Technology-Driven, Highly-Scalable Dragonfly Topology.
SIGARCH Comput. Archit. News 36(3):77–88

23. Nachiondo T, Flich J, Duato J (2010) Buffer Management Strategies to Reduce HoL Blocking. Parallel
and Distributed Systems, IEEE Transactions on 21(6):739–753. doi:10.1109/TPDS.2009.63

24. Olesinski W, Eberle H, Gura N (2009) Scalable alternatives to virtual output queueing. In: Proc. IEEE
ICC, pp. 1–6

25. OpenSim Ltd: OMNeT++ Discrete Event Simulator. http://omnetpp.org/
26. Peir JK, Lee YH (1993) Look-ahead routing switches for multistage interconnection networks. Journal

of Parallel and Distributed Computing 19(1):1–10. doi:10.1006/jpdc.1993.1085
27. Penaranda R, Gomez C, Gomez M, Lopez P, Duato J (2012) A New Family of Hybrid Topologies for

Large-Scale Interconnection Networks. In: Network Computing and Applications (NCA), 2012 11th
IEEE International Symposium on, pp. 220–227

28. Pfister G, Gusat M, Denzel W, Craddock D, Ni N, Rooney W, Engbersen T, Luijten R, Krishnamurthy
R, Duato J (2005) Solving Hot Spot Contention Using InfiniBand Architecture Congestion Control.
In: Proc. of Int. Workshop HPI-DC

29. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L,
Schulten K (2005) Scalable molecular dynamics with NAMD. Journal of Computational Chemistry
26(16):1781–1802. doi:10.1002/jcc.20289

30. Pinkston TM, Duato J (2006) Appendix E. In: Elsevier (ed.) Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers

31. Tamir Y, Frazier G (1992) Dynamically-Allocated Multi-Queue Buffers for VLSI Communication
Switches. IEEE Trans. on Computers

123

http://dx.doi.org/10.1109/TPDS.2014.2307851
http://dx.doi.org/10.1109/CLUSTER.2015.57
http://dx.doi.org/10.1109/TPDS.2009.63
http://omnetpp.org/
http://dx.doi.org/10.1006/jpdc.1993.1085
http://dx.doi.org/10.1002/jcc.20289

Straightforward solutions to reduce HoL blocking... 4519

32. Yebenes P, Escudero-Sahuquillo J, Garcia P, Quiles F (2013) Towards Modeling Interconnection Net-
works of Exascale Systems with OMNet++. In: Parallel, Distributed and Network-Based Processing.
doi:10.1109/PDP.2013.36

33. Yebenes Segura P, Escudero-Sahuquillo J, Gomez Requena C, Garcia P, Quiles F, Duato J (2013) BBQ:
A Straightforward Queuing Scheme to Reduce HoL-Blocking in High-Performance Hybrid Networks.
In: Euro-Par 2013 Parallel Processing, vol. 8097, pp. 699–712

34. Zahavi E, Johnson G, Kerbyson DJ, Lang M (2010) Optimized InfiniBandTM fat-tree routing for shift
all-to-all communication patterns. Journal of CCPE 22(2):217–231

123

http://dx.doi.org/10.1109/PDP.2013.36

	Straightforward solutions to reduce HoL blocking in different Dragonfly fully-connected interconnection patterns
	Abstract
	1 Motivation
	2 The Dragonfly topology
	2.1 Interconnection patterns
	2.2 Routing algorithm

	3 Congestion: problems and solutions
	3.1 Congestion derived problems
	3.2 Solutions to congestion
	3.3 Analysis of congestion dynamics in Dragonfly networks

	4 Hierarchical two-level queuing (H2LQ)
	4.1 Switch architecture
	4.2 Mapping packets to VCs in H2LQ
	4.3 Advantages of the H2LQ mapping

	5 Evaluation
	5.1 Uniform traffic results
	5.2 Hotspot traffic results
	5.3 Traces based on real traffic results

	6 Conclusions
	References

