
J Supercomput (2016) 72:4418–4437
DOI 10.1007/s11227-016-1755-2

The BXI routing architecture for exascale
supercomputer

Pierre Vignéras1 · Jean-Noël Quintin1

Published online: 24 May 2016
© Springer Science+Business Media New York 2016

Abstract BXI, Bull eXascale Interconnect, is the new interconnection network devel-
oped by Atos for high-performance computing. It has been designed to meet the
requirements of exascale supercomputers. At such scale, faults have to be expected
and dealt with transparently so that applications remain unaffected by them. BXI fea-
tures various mechanisms for this purpose, one of which is based on a clear separation
between two modes of routing tables computation: offline mode used during bring-up
and online mode used to deal with link failures and recoveries. This new architecture
is presented along with several offline and online routing algorithms and their actual
performance: the full routing tables for a 64k-node fat-tree can be computed in a few
minutes in offline mode; and the online mode can withstand numerous inter-router
link failures without any noticeable impact on running applications.

Keywords Fabric management · Routing · Fault-tolerant routing · BXI · Interconnect
management · High-performance computing

This BXI development has been undertaken under a cooperation between CEA and Atos. The goal of this
cooperation is to co-design extreme computing solutions. Atos thanks CEA for all their inputs that were
very valuable for this research.
This research was partly funded by a grant of Programme des Investissments d’Avenir.
BXI development was also part of PERFCLOUD, the French FSN (Fond pour la Société Numérique)
cooperative project that associates academic and industrial partners to design and provide building blocks
for new generations of HPC data-centers.

B Pierre Vignéras
pierre.vigneras@atos.net

Jean-Noël Quintin
jean-noel.quintin@atos.net

1 Campus Ter@tec, 2 rue de la piquetterie, 91680 Bruyères-le-Châtel, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1755-2&domain=pdf

The BXI routing architecture for exascale supercomputer 4419

1 Introduction

High-performance computing workloads must scale to extreme levels of parallelism
with applications using tens of thousands of nodes and dozens or hundreds of threads
on each node. BXI, Bull eXascale Interconnect, is the new interconnection network
developed by Atos and designed to meet these requirements. The BXI interconnect
is based on two ASICs: a network interface controller (NIC) and a 48-port switch.
The BXI switch is a 48-port crossbar featuring per-port destination-based determin-
istic routing and adaptive routing. BXI technology also contains various features at
hardware levels (NIC and switch) to ensure that faults are unnoticed by applications
if routing tables are modified in a given time frame—10 s currently, including noti-
fication, computation and upload of modifications. This value is a trade-off between
resiliency and actual failure detection latency: increasing this timeout might help
improving resiliency for some failures, but can also lead a job to halt for too long
before detecting there is no way to bypass a failure. A detailed overview of the BXI
technology can be found in [1].

To use this infrastructure, routing tables must be initially computed and loaded into
the different BXI switches through an out-of-band network. Each table defines how
to reach an end-node (NID for Node IDentifier) based on its destination address and
the switch input port. The computation of these routing tables is not trivial, since,
regardless of topology, it must guarantee the absence of:

– Deadlock messages can no longer move in the network due to lack of available
resources;

– Livelock messages are constantly moving in the network but never reach their
final destination—as within a loop;

– Dead-end messages reach an unusable port (nonexistent, not connected, or down).

The routing tables must be quickly computed in order to keep the system operational
without interrupting running applications. While a few seconds delay is acceptable,
standard algorithms require dozens of minutes when applied to exascale system topolo-
gies with tens of thousands of nodes. Given the size of these systems, component
failures1 might be expected on a regular basis. The naive approach where all routing
tables are re-computed from scratch for each failure is not acceptable at such scale.
The two main reasons are:

– the computation time exceeds a timeout: faults are therefore not hidden to appli-
cations (soft real-time requirement);

– the modification of all routing tables impacts all running applications even when
only a small part of the platform is concerned (minimum impact requirement).

This document presents our routing strategy for BXI exascale supercomputers. The
state of the art is first reviewed in Sect. 2. The major problems we address are then
detailed in Sect. 3. Our solution is described in Sect. 4 along with some results. Finally,
we conclude in Sect. 5 and explain the directions for future developments.

1 The term “failures” must be understood from a fabric management point of view. Hardware failures are
of course seen as such, but also human mistakes and maintenance operations.

123

4420 P. Vignéras, J.-N. Quintin

2 Related works

There is an abundant literature on supercomputing interconnect topologies and
their related routing algorithms [2,3]. In the recent past, topologies designed for
high-radix switches have been proposed: fat-trees [4–7], flattened-butterfly [8,9],
dragonfly [10,11] or slimfly [12], are such examples. However, to our knowledge
fault management is rarely addressed in the literature for topology-specific routing
algorithms. Most of the time, a link or switch fault is considered as a whole topol-
ogy change, triggering routing tables re-computation from scratch and requiring their
complete upload. This option is not practical anymore for exascale supercomputers
mostly because of computational complexities in time as explained in Sect. 3. When
the topology-specific routing algorithm cannot be used anymore on the degraded topol-
ogy, the computation switches to a topology-agnostic routing algorithm [13–16]. In
such a case, the routing tables are also computed from scratch and uploaded; such
an operation is far too heavy to meet our soft real-time and low impact requirements.
Degraded topologies must therefore be supported as far as possible for a given routing
algorithm.

The shortest path computation is the basis of most topology-agnostic routing algo-
rithms [17]. Recent results in the dynamic solving of All-Pairs Shortest Paths Problem
(APSP) [18–20], can help dealing with failures: a slight modification of the topol-
ogy can be performed in O(f (n) + n2log n) (for most dynamic APSP solutions),
and the re-computation of routing tables can use the fast query time in O(1) (for all
dynamic APSP solutions). However, for exascale topologies, the corresponding graph
and memory consumption associated with dynamic APSP solutions makes their appli-
cation unusable in practice.

Fault-tolerant topology-agnostic routing algorithms have been proposed [21–24].
Such solutions do not meet our requirements, since they support only one fault or are
too slow for exascale topologies. Moreover, they often focus on the support of irregular
topologies, producing routing tables that may be of lower quality than specific routing
algorithms.

Recently, the Quasi-Fat-Tree topology has been proposed [25] along with a
fault-tolerant routing algorithm in closed-form allowing for an efficient parallel
implementation. This is an elegant solution to the problem but only available for
quasi-fat-tree topologies, whereas our solution proposes an efficient general architec-
ture suitable to any topology.

3 Major issues

Computing routing tables for a topology containing N destinations (NID) requires
at least �(N 2) steps. Indeed, for each destination, a route must be found to reach
any of the other N − 1 destinations. That means, for targeted exascale topologies,
with 64k NIDs, a minimum of 4 billion routes must be computed. Soft real-time
requirement imposes a 5-s constraint to routing tables computation giving 5 other
seconds for notification and upload. Therefore, a rate of 860M routes per second must
be achieved.

123

The BXI routing architecture for exascale supercomputer 4421

Fig. 1 Number of routes in a fat-trees with adaptive routing. Switch labeling for this example will be
described in Sect. 4.1.2

For comparison purposes, on Curie,2 a fat-tree with 5739 nodes, the Infiniband
subnet manager (opensm) computes the routing tables in 14 s achieving a rate of
2.3M of routes/s. Another similar result is given in [25]: the ftree opensm routing
algorithm computed the routing tables of a fat-tree with 34,992 nodes in 478 s giving
a rate of 2.5M routes/s. This is 400 times slower than our objective.

Furthermore, with BXI-adaptive routing feature, a much larger number of routes
must be computed as shown by Fig. 1 representing a fat-tree. The number of routes
to compute depends on the source–destination pair; it increases significantly with the
nodes distance: there is a single route from A to B through switch 0.0.0, 4 routes (red
dashed-lines) from B to C and 8 (purple thick-lines) from D to E. The total number
of computed routes is therefore significantly higher than N 2. On a l-level full fat-tree
made of radix-k switches, with k/2 uplinks at each level i, i < l, the total number of
routes for a given pair of source–destination can be as high as (k/2)l . In the case of a
64 k nodes 4-level BXI fat-tree, for a single source–destination pair with a maximum
distance, that means (48/2)4 > 300k routes to consider.

From another perspective, if S is the total number of switches in the topology, the
routing component must:

– assign integers between 0 and 47 (each switch has 48 ports in BXI) to all S ·48 · N
entries of deterministic routing tables (which are 1 byte each);

– set each 48 bits (6 bytes) of 48 · S · (N/8) = 6SN entries of adaptive tables (1
entry for a group of 8 consecutive NIDs, hence N/8 entries per switch port).

Consequently, for a BXI topology with N = 62,208 NID and S = 9504 switches, the
routing algorithm must fulfill 28.3G deterministic entries and 3.5G adaptive entries
for a total of about 84 · S · N = 49G bytes.

Keeping our 5-s constraint (soft real-time requirement), an ideal processor clocked
at 3 GHz must compute 49 GB/(5 s ·3 GHz) = 3.3 bytes per clock cycle. This perfor-
mance is close to the limit achievable with modern processors in various benchmarks,3

especially with non-vectorized instructions. This basically means a brute-force generic

2 Curie is an instance of the previous petaflopic generation of Bull supercomputer. It was ranked 9th in the
Top500 list of June 2012: http://www.top500.org/system/177818.
3 https://gmplib.org/~tege/x86-timing.

123

http://www.top500.org/system/177818
https://gmplib.org/~tege/x86-timing

4422 P. Vignéras, J.-N. Quintin

solution to the initial problem of real-time routing tables computation is not a good
approach anymore.

4 Solution

The main idea of our proposal relies on a clear separation between two distinct modes
of operation: offline mode and online mode. In order to evaluate our solution, a Bull
R428 server with 4 Intel Xeon CPUs E5-4640 (8 cores) clocked at 2.40 GHz, 512 GB
of RAM and a single disk was used.

4.1 Offline mode

The offline mode is used mainly during bring-up phases (installation, extension,
maintenance) but also for testing purposes and offline analysis. Routing tables are
computed from a nominal topology, where all equipments are considered up and run-
ning (even equipments expected to be installed afterwards). Those routing tables are
usually uploaded after a validation phase: checking that neither deadlock, livelock nor
dead-end are induced by these routing tables. Moreover, a quality check can also be
performed according to some criteria such as load balancing, communication patterns,
and so on. Since it is performed offline, this computation has no impact on any part of
the running supercomputer until the output is uploaded, and there is no stringent limit
on the time required for the computation.

A given offline routing algorithm is a trade-off between genericity—it provides valid
routing tables for any topology—and performance—the computed routing tables are
of good overall quality. Implementing an offline routing algorithm is easy to do thanks
to a well-defined API. BXI already implements several offline routing algorithms
shortly described below.

4.1.1 Topology-agnostic offline routing algorithms

A routing algorithm is topology-agnostic if it does not depend on the actual topology
layout or addressing scheme for its routing decision. Those algorithms target two kinds
of topologies:

– graph-based topologies with no specific layout;
– degraded specific topologies based on well-defined topology classes such as torus,

mesh, hypercube, pgft, hyperx, dragonfly among others, but with some differ-
ences that make them unsuitable for their related specific routing algorithms (either
because the routing algorithm cannot route those degraded topologies, or for per-
formance reasons).

Note however, that some topology-agnostic routing algorithms might not be deadlock-
free meaning that for some topologies, their computed routes can lead to the deadlock
of some fabric part where no more messages can be neither sent nor received from
some switches.

123

The BXI routing architecture for exascale supercomputer 4423

Topology-agnostic offline routing algorithms currently implemented in BXI are
shortly described below.

MinHop is based on the Dijkstra algorithm [26] to find shortest paths between all pairs
of source/destination, it selects one random minimal route as the deterministic route
for such a pair, and all minimal routes for their adaptive routes. It is topology-agnostic
but not deadlock-free. It can therefore be used on any topology where minimal routing
does not lead to a deadlock (see [27]). This is the case for most topologies seen as
pseudo-fat-trees but that cannot be expressed as PGFTs.

UP*/DOWN* [28] is given a vertex in the graph called the root, from which a spanning
tree is built and restrictions are inserted in such a way that all messages from any given
leaf must follow a valid path: going up towards the root before going down towards
its destination leaf. However, it is not required to reach the root in order to turn down:
as soon as a valid path is available to reach the final destination it can be used.

Since a spanning tree has been built, all leaves can be reached unless the graph itself
is not connected. Since messages always move up then down and never the reverse
the algorithm is deadlock-free and can be used with any topology.

The spanning tree is used to define restrictions: each edge of the topology graph is
marked as either uplink or downlink. Note that an uplink for a given vertex is a downlink
for the vertex at the other end. Uplinks are preferable because they allow more path
diversity: a downlink can follow an uplink. The spanning-tree is therefore computed
with a breadth-first search in order to increase the number of uplinks leveraging the
adaptive feature of BXI.

By default the current implementation uses only minimal valid paths. As a side
effect, when applied on a fat-tree with a leaf as the root of the spanning tree, all
valid paths are “natural” routes of the fat-tree. Therefore, the computed routing tables
becomes statistically equivalent to both minhop and pr1tp. As counter intuitive as
it seems to be, this root selection gives the best result when applying the up*/down*
algorithm on a fat-tree. The actual formal reasons behind this statement is beyond the
scope of this paper.

4.1.2 Topology-specific offline routing algorithms

A routing algorithm is topology-specific if it depends on the actual topology lay-
out and/or addressing scheme for its routing decision. All topology-specific routing
algorithms are deadlock-free when applied to their targeted topology. Of course a
topology-specific routing algorithm usually does not work on a topology that is not
in its targeted class. For example, applying a PGFT-specific routing algorithm on a
Torus topology will not work in three distinct ways:

– the routing algorithm will detect it does not support the given topology and will
refuse the production of routing tables;

– the routing algorithm is forced to continue anyway, and the topology does not
contain the required data (specific information about the topology such as switch

123

4424 P. Vignéras, J.-N. Quintin

upports in a fat-tree). In this case the routing algorithm will refuse the production
of routing tables;

– the routing algorithm is forced to continue anyway and the required data are avail-
able. In this case, some or all routing tables might well be produced but the behavior
of the fabric after those routing tables have been uploaded to their related switches
is undefined.

Topology-specific offline routing algorithms currently implemented in BXI are shortly
described below.

Pr1ts (PGFT Random 1 Table per Switch) is designed for a wide set of fat-trees (any
k-ary n-tree [6], XGFT [5] or PGFT [7] actually). It is based on random [6,29]: it
basically selects one switch randomly among the set of Nearest Common Ancestor
(NCA) for a given source–destination pair. In a fat-tree, only two directions are possible
for a given message: up or down. pr1ts relies on the specific addressing scheme in
order to decide:

– each switch is given a topological address which is a tuple (level, dl , dl−1, . . . ,

d1, d0);
– a switch at level l is connected to all switches at level l + 1 that have all their

digits in common excepting digit at level l that can be different. For example, in
Fig. 1, switch (1, 1, 3) is connected to all switches at level 2 that has the following
address: (2, ∗, 3). Note that it is also connected downward to all switches with the
following address (0, 1, ∗).

Therefore, determining if a message must go up or down from a given switch is
done thanks to a comparison between the current switch and the destination leaf:
a message must go down when the current topological address and the destination
address share the same prefix up to their level difference. After this comparison, 1
port is selected randomly among all the available ports for the deterministic route.
All available ports are selected for adaptive routes. pr1ts computes only 1 table
per switch, and assign the same routing table to all ports of the same switch. This
leads to very fast computation. On some communication patterns, it can provide better
performance than d-mod-k or s-mod-k [30].

Pr1tp (PGFT Random 1 Table per Port) is similar to pr1ts, it computes however
one routing table per port leading deterministic routes to be more spread out over the
whole topology than with pr1ts. According to the communication pattern it can
offer better or worse performance that pr1ts. It can also be used on a wide set of
fat-trees.

D-mod-K [30] is designed for Real Life Fat Trees [7]—a subset of PGFTs with several
constraints4—and guarantees non-blocking traffic for shift permutations on them. As
with pr1ts and pr1tp, the algorithm is entirely based on the addressing scheme.
For each switch, it applies a simple formula to decide how to reach a given destination
address. This formula spreads the traffic deterministically over the whole topology in

4 In particular, the number of connected ports of each switch must be the same, top switches included.

123

The BXI routing architecture for exascale supercomputer 4425

a perfect load balanced way. It also ensures that contention due to the reaching of a
same destination from different sources happens only during the upgoing path, never
on the downgoing path. Note that d-mod-k computes 1 routing table per switch, and
assign it to all ports of the same switch. This is in contrast to s-mod-k.

S-mod-K [5,30] is similar to d-mod-k but the formula is based on the source address
instead of the destination address. Therefore, it distributes sources to top-level switches
of a fat-tree. Thus, contention due to the reaching of a same destination from different
sources happens during the downgoing path, never on the upgoing path. Since routing
tables are destination based, the implementation of this algorithm requires 1 table per
port. Depending on the communication pattern, it can offer better or worse performance
than d-mod-k.

4.1.3 Offline mode computation time experimental results

Even if the offline mode is not time-bounded from a functional perspective, it remains
softly time-bounded from a user perspective. According to time and space complexities
discussed in Sect. 3, a naive implementation leads to unreasonable execution time
(dozens of minutes). This problem is also described in [7,25] and proposed solutions
consist in using a closed-form routing tables computation, allowing for an efficient
parallel implementation but limited to few topology/routing algorithm combinations.

Offline routing algorithms for BXI are implemented using a big set of purely soft-
ware optimization techniques: lock-less multi-threaded design, thread binding, NUMA
memory binding. Profiling shows the process is largely I/O bounded: the design has
been changed to reduce drastically the number of system calls—using mmap() and
an asynchronous logging library for example. These improvements make the offline
mode scalable up to the maximum of available cores.

Results are presented in Fig. 2 for a fat-tree containing 57,600 NIDs, 9600 switches
and 153,600 inter-switch links. The average time of 60 executions is given. In the
best case, 4 s only are required to compute the routing tables producing 84 · S ·

Fig. 2 Execution time in seconds of various BXI offline routing algorithms

123

4426 P. Vignéras, J.-N. Quintin

N = 46G bytes. Therefore rates of 829M routes/s5 and 4.8 bytes per clock cycle
are achieved. This results from the speedup of our parallel implementation of offline
routing algorithms. However, as shown in the figure, most of the time is taken by
input/output operations: topology loading (in red) and BXI archive creation (in green).
Considering all steps gives 22M routes/s and 0.12 bytes per clock cycle for the best
case. Though ten times faster than opensm, this might seem low compared to objectives
given in Sect. 3. Nevertheless, since offline, only the end-user perspective must be taken
into consideration: around 3 min are required in all cases to compute and to store the
whole set of deterministic and adaptive routing tables for such big topologies on a
single disk. This is considered reasonable.

4.1.4 Offline mode routing algorithms performance comparisons

The performance of a given routing algorithm depends on several factors such as
topology, communication pattern, message size, adaptive routing, among others. In
the following experiment, a 3-level full fat-tree formally defined by

PGFT(3; 24, 12, 4; 1, 12, 4; 1, 2, 2)

holding 1152 nodes is used with the N-pair communication pattern which is a subset
of shift all-to-all described in [31,32]. This communication pattern has been selected
in our initial study because it is found in several important collective communication
implementations. N-pair is defined by the following scheme: the topology is cut in
two halves such that communication occurs between a pair of nodes of each half.
Formally, nodes are indexed from 0 to N − 1 and node i communicate with node
N/2 + i with 0 ≤ i < N/2 and vice-versa. Traffic therefore always reaches top
switches for this communication pattern preventing congestion-less bias due to local-
only traffic such as with a pattern where each node communicates with its immediate
neighbor. The simulator used in this experiment is an home-made product called
CoSIN (Composition and Simulation of Network), that models the BXI switches at
transaction level in SystemC. At the end of a simulation session, CoSIN produces
various metrics including the total simulation time. As Transaction Level Modeling
adopts an approximated time, the time unit is expressed as an abstract “cycle” time.
This metric is relevant to compare overall performance of different routing algorithms.

For a given offline routing algorithms, routing tables are computed, injected into
CoSIN which then starts the simulation of the N-pair communication pattern. This is
reproduced 15 times for each routing algorithm. The average total simulation time in
TLM abstract cycle is then used to compare the performance of routing algorithms.

Figure 3 presents results when 80 % of message are 120 bytes, all 20 % others are
64k bytes. As expected, d-mod-k and s-mod-k which are specifically designed
for such a pattern on such a topology provide the best performance. Notice that their
performance are almost identical (0.02 % difference). This conforms to the result given
in [30] where both algorithms are proven to be equivalent on such a pattern.

5 The actual rate is much higher since only deterministic routes are considered in this rate computation.

123

The BXI routing architecture for exascale supercomputer 4427

Fig. 3 Simulation time for the N-pair communication pattern with 80 % of 120 bytes and 20 % of 64k
messages on a 1152 3-level fat-tree

Moreover, there is no significant difference between all others. The reason holds
in the way routes are spread out. Except d-mod-k and s-mod-k, all others use a
random selection among valid routes. For minhop, valid routes are all minimal routes
which are “natural” routes in a fat-tree (up towards the nearest common ancestor, then
down). For up*/down*, as explained in Sect. 4.1.1, selecting a leaf switch as the
root of the spanning tree leads all valid paths to be “natural” routes of the fat-tree.
For pr1ts and pr1tp, valid routes are—by design—“natural” routes in a fat-tree.
Therefore, routing tables computed by minhop, up*/down*, pr1ts and pr1tp
are statistically equivalent.

Adaptive routing improves the overall performance for most routing algorithms on
this communication pattern (between 6.5 and 9.6 %). The reason why it does not have
any impact on neither s-mod-k nor d-mod-k holds in the absence of congestion.
The impact of adaptive routing in fat-tree-specific routing algorithms has already been
discussed [33,34]. In BXI, a message is candidate for adaptive routing only if in-order
guarantee is not required and if its size is above a customizable threshold (320 bytes).

Figure 4 presents the result when 100 % of messages are 321 bytes, that is one byte
more than the threshold above which messages are candidate for adaptive routing.
Again,d-mod-k and s-mod-k exhibit the best result with no significant difference.
However, adaptive routing improves performance by a significant factor for minhop
(29 %), up*/down* (28 %), pr1ts (32 %) and pr1tp (29 %). The performance
improvement for d-mod-k and s-mod-k is not significant because of the absence
of congestion.

4.2 Online mode

The online mode is used while the system is up and running. This mode deals with
faults and recoveries, computing small routing tables modifications while guaranteeing
the absence of deadlock, livelock and dead-end. Since it is online, the computation
of the routing table modifications must be completed in less than 5 s in order to limit
the impact of the fault on the jobs using the faulty link. Note that the BXI switch

123

4428 P. Vignéras, J.-N. Quintin

Fig. 4 Simulation time for the N-pair communication pattern with 100 % of 321 bytes messages on a 1152
3-level fat-tree

adaptive routing feature is targeted towards improving communication performance
as shown in [34,35], not fault management. The set of routing table modifications
must also be kept to a minimum to limit the impact on jobs not using the faulty link.
Moreover, any node must be able to communicate with any other node in the topology
unless the topology graph is disconnected. Note that this last property is not possible
for all online routing algorithms: a highly degraded fat-tree for example, might be
routable by agnostic routing algorithms only such as minhop. Consider for example
the case where on the fat-tree shown in Fig. 1, uplinks 0.0.0–1.0.x with x ∈ [1, 3] and
uplinks 0.0.3–1.0.y with y ∈ [0, 2] are all faulty. Minimal routes from B to D are given
by the following path 0.0.0; {2.0.0, 2.1.0}; 1.1.0; 0.1.0; 1.1.3; {2.0.3, 2.1.3}; 1.0.3;
0.0.3. Such paths cannot be computed by a fat-tree-specific routing algorithm, but are
provided by minhop. Note however that minhop is not deadlock-free whereas any fat-
tree-specific routing algorithm is by design. Therefore, any online routing algorithm
raises an error when it detects such a situation (as discussed in the introduction,
switching to a new routing algorithm is not an option).

4.2.1 Architecture

In online mode, the Routing component must react to events sent by any fabric
equipment. For this purpose, the Backbone component acts as a middleware bus: it
receives topology updates from other components and publishes them to theRouting
component shown in Fig. 5.

Fig. 5 The Routing component architecture

123

The BXI routing architecture for exascale supercomputer 4429

The Routing component is actually made of different parts which can be distrib-
uted between several management hosts:

– Computerd: it starts from a bxiarchive that includes routing tables previously
written to a storage device by the offline mode. It then receives updates from
Backbone and computes the required modifications of routing tables called
rtmods before publishing them to subscribers.

– Writerd: it also starts from a bxiarchive and subscribes to all routing tables
modifications published by Computerd. It applies all received rtmods to
its own memory model of the actual topology and writes down the result
to the storage device, making a new bxiarchive (only new data are created,
unmodified data are hard linked to reduce storage space). Note that in BXI, an
archive is produced each time modifications are taken into consideration by the
BXI Fabric Management. The set of archives allows for various analyses
such as post-mortem debugging, study of the timeline of events, fault handling
optimizations, …

– Metricsd: it also starts from a bxiarchive and also subscribes to all routing tables
modifications published by Computerd. It also applies all rtmods received to
its own memory model of the actual topology. It then computes various metrics
on the result (such as link load balancing, number of sources and destinations for
each route traversing each port, …), and provides its feedbacks to Computerd.
This may help the online routing algorithm adapt its internal parameters to provide
better rtmods according to some criteria measured my Metricsd. This is an
ongoing work not presented in this paper.

– Uploaderd: its role is to transform rtmods format into uploadable routing
tables modifications format, and to upload them to the concerned switches using
the SNMP protocol. Traffic is not stopped during the upload. A short discussion
on deadlock-free dynamic reconfiguration is given in Sect. 4.2.3. In the new Bull
eXascale platform, a “cell” is composed of three cabinets with up to 288 nodes.
In such a cell, all switches are not directly available through out-of-band SNMP
protocol for various reasons.6 Therefore, a given Uploaderd acts as a proxy for
the set of switches it manages, given their shared topological address prefix. Using
this prefix, it subscribes to a subset of Backbone updates. Thus, an Uploaderd
receives only rtmods related to the switches it is concerned with, thus limiting
the amount of data received and managed.

As an example, using the notation defined in [7], the fat-tree formally described by
PGFT(4; 24, 12, 15, 15; 1, 12, 24, 5; 1, 2, 1, 3) contains:

– 64,800 NIDs, 11,160 switches and 194,400 inter-switch links;7

– 12 × 15 × 15 = 2700 switches at level 1, each connected to 24 nodes and 12 L2
switches with two links;

6 For any two cells, switches at same relative location are assigned same private non-routed IP address for
out-of-band communication. This ease delivery, bring-up and also optimize the out-of-band management
network. More details in [1].
7 Only inter-switch link faults can be dealt with by an online routing algorithm.

123

4430 P. Vignéras, J.-N. Quintin

– 12 × 15 × 15 = 2700 switches at level 2, each connected to 12 L1 switches and
24 L3 switches with one link;

– 12 × 24 × 15 = 4320 switches at level 3, each connected to 15 L2 switches and
5 L4 switches with three links;

– 12 × 24 × 5 = 1440 switches at level 4, each connected to 15 L3 switches.

For such a topology, the set of Uploaderd is defined by the following schema:

– 15 × 15 = 225 instances for the management of groups of 24 L1/L2 switches;
– 24 × 15 = 360 instances for the management of groups of 12 L3 switches;
– 5 instances for the management of groups of 288 L4 switches.

Thanks to the high-performance zeromq8 socket library, this architecture scales up to
several hundreds of Uploaderd: 225 + 360 + 5 = 590 in this extreme case. For
other topologies, the layout of Uploaderd follows the same principle of hierarchical
layout.

Note that the online architecture follows a pipeline design: Computerd always
receives a batch of topology updates consisting of link failures and link recoveries.
A specific message received from the Backbone triggers the actual computation
on the whole set of updates. During that time, new updates are buffered. As soon as
Computerd has published the computed rtmods, it starts working on next buffered
updates. This way, simultaneous failures and failure happening during failure man-
agement are dealt with in a consistent manner.

BXI features a separate management network that is used for communication
between all routing components such as Backbone, Computerd, Writerd,
Uploaderd, Metricsd and all switches. Therefore, the time requires to react to
fabric events does not depend on the fabric status itself (congestion, failures, and so
on).

4.2.2 Online routing algorithms

An online routing algorithm is run by Computerd to react on minor modifications in
the fabric such as failure and recovery of ports, links and switches. It updates routing
tables so each pair of NIDs is given at least one valid route. Those tables updates are
immediately uploaded to their related switches so the whole fabric recovers its state as
fast as possible. These new tables are also dumped to a new bxiarchive by Writerd.

Note thatminormodifications are not considered topology changes: the in-memory
model of the topology does not see any objects addition or removal. This contrast with
major modifications such as port, link or switch addition (nodes apart) that is not dealt
with by online routing algorithms. For such cases, the topology must be changed and
validated before hand using a specific well-defined workflow.

A formal description of the two BXI online routing algorithms described shortly
below is given in [36].

ftrnd_diff is based on the fat-tree addressing scheme to bypass a failed port and re-
balance routes on port recovery. It defines the concept of twin switches: two switches

8 http://zeromq.org/.

123

http://zeromq.org/

The BXI routing architecture for exascale supercomputer 4431

are twins if they are connected to the same set of upper-level switches. This property
is formally defined by the fat-tree addressing scheme—twins share the same address
suffix of length the switch level in the fat-tree. As an example, in Fig. 5, switch 1.0.2
and 1.1.2 are twins as they share the same suffix ‘2’. Note that there are no twin at
first and last levels.

When a link fails between any two switch Sa and Sb, an alternative link between Sa
and Sb is looked for. On some fat-trees (e.g., PGFTs), such an alternative exists and
the failure is dealt with in a straightforward manner. However, if such an alternative
is not found, two cases must be distinguished:

– the failed port is an upport: any other upport leading to a usable twin can be selected;
if such an upport does not exist because all upports are either faulty or lead to a
faulty twin, the whole switch must be bypassed in order to reach some leaves
(according to the current routing tables). Bypassing a switch means modifying the
routing tables of all switches below it.

– The failed port is a downport: there is no alternative and since in a fat-tree, there
is only a single downpath (from switch to switch), the whole switch must be
bypassed. The only way to bypass a switch from the upside, is to bypass all its
twins, that is to find uppaths that do not cross twins for all impacted leaves.

When a port is recovered, a check is first made to determine for each leaf l in the
topology, if it was already reachable before the recovery. In the positive case, a simple
rebalancing of routes is performed on the switch s owning the recovered port. In the
negative case, l becomes reachable after this recovery, the related switch s can be used
again to reach it and two cases must be distinguished:

– the recovered port is an upport: switches below s are threaded recursively in order
to allow the reaching of l through s;

– the recovered port is a downport: routing tables on all twins of s must be modified
in order to allow the reaching of l through s.

bsta_diff is based on the up*/down* offline topology-agnostic deadlock-free algo-
rithm. It keeps this same property while remaining online. It recomputes deadlock-free
modifications of existing routing tables in order to either bypass port failures or to rebal-
ance routes on port recoveries. Basically, when a port fails, the shortest path towards
all leaves is recomputed from the switch which handles the failure. The algorithm
works in three steps:

– Propagation since a port has failed, its distance towards several leaves is set to
infinity, and this is propagated towards the whole topology;

– Recomputation for each leaf in the topology, its shortest paths is recomputed taking
restrictions into consideration;

– Selection new routes are selected according to the new shortest paths, and routing
tables updated accordingly.

Note that the root switch selected for the spanning-tree computation and used for
the setup of restrictions, is not considered as a special case by bsta_diff. If the root
switch fails, all restrictions remain as they were initially computed, only distances are
updated.

123

4432 P. Vignéras, J.-N. Quintin

4.2.3 Transient fabric state

While uploading new routing tables, the fabric is for a limited time into a transient
state where some switches have been updated while others will soon. In the general
case, this might lead to deadlock [13].

In the specific case of fat-trees, fat-tree-specific offline and online routing algorithms
are deadlock-free by design: a message always move up towards the NCA and then
moves down towards its final destination.

In the case of our bsta_diff topology-agnostic online routing algorithm, routing
tables modifications never change restrictions previously computed and set-up in the
whole topology (cf. Sect. 4.1.1). Therefore, the same applies: messages in the fabric
always move up the logical tree and then down, thus never reach—by design—a
deadlock situation.

Both online routing algorithms are transitively deadlock-free: the routing tables
updates computed and uploaded by our online routing algorithms are guaranteed to
not introduce any deadlock as long as the original routing tables—computed by an
offline routing algorithm—is itself deadlock-free. This property is formally defined
in [36].

4.2.4 Online mode experimental results

To evaluate the online architecture presented in Sect. 4.2.1, the following experiment
has been designed and evaluated:

– a random link fault is generated, and the related trigger is sent to the Backbone;
– Backbone publishes the trigger to all subscribers (onlyComputerd in our case);
– Computerd handles the fault with the computation of routing tables modifica-

tions (rtmods);
– Computerd then publishes all rtmods to subscribers;
– Writerd writes down received rtmods into a new bxiarchive.

The topology used is the 64,800-node fat-tree defined in the previous section. Note that
it has two links between two L1/L2 connected switches, only one interlink between
L2/L3 connected switches and three interlinks between L3/L4 switches. The impact
of the number of links connecting a pair of switches on the computation of rtmods
is discussed below.

For our experiment, first, we simulated 48k random link failures representing 25 %
of the total number of inter-switch links, which is much more than expected in pro-
duction use. Even with such a degraded fabric, the system is still able to route all the
traffic correctly. The 48k missing links are then recovered and re-inserted in the fabric.

The offline and online routing algorithms are pr1tp (cf. Sect. 4.1.2), and
ftrnd_diff (cf. Sect. 4.2.2), respectively. Of course, the presented results depend
on the actual pair of offline/online routing algorithms chosen. However, the results
presented here provide enough information to confirm the interest of the online archi-
tecture we propose. Other experiments with different combinations of offline/online
routing algorithms are under development.

123

The BXI routing architecture for exascale supercomputer 4433

0 10000 20000 30000 40000 50000

0
20

0
40

0
60

0
80

0
10

00
12

00

Fault number

T
im

e
in

 m
ill

is
ec

on
ds

Fault between level 1 and 2
Fault between level 2 and 3
Fault between level 3 and 4

0 10000 20000 30000 40000 50000

0
20

0
40

0
60

0
80

0
10

00
12

00

Recovery number

T
im

e
in

 m
ill

is
ec

on
ds

Recovery between level 1 and 2
Recovery between level 2 and 3
Recovery between level 3 and 4

Fig. 6 Processing time for each fault (left) and recovery (right). x-axis represents somewhat a discrete
timeline

Figure 6 presents the processing time for each fault and recovery: that is the time
between the reception of the trigger by Computerd and the reception of all rtmods
by Writerd. The processing time therefore includes both the computation time
of Computerd and the sending time between Computerd and Writerd. The
different points are colored according to the level of the failing/recovering link.

Globally, there is a tendency towards a reduction in the processing time for fault
handling. As faults occur, there are fewer possibilities for alternative routes, reducing
the number of rtmods to process. As expected, the exact opposite behavior is shown
for recoveries: the processing time increases with the number of newly available paths.

L3/L4 faults are the easiest to deal with in our example, and they exhibit the best
processing time. Note that several points for L3/L4 faults cost more than 100 ms
(starting at around fault#8000), whereas most are closer to 60 ms. This is due to the
number of interlinks between L3 and L4 switches: since three links connect them, when
one link fails, dispatching the routes to the other two is fast and straightforward and
impacts as few as 2 switches only, thus limiting the number of rtmods to compute.
However, when no usable link remains between these two, many other switches must
be impacted and the number of rtmods is much higher. This is also the reason why
an L1/L2 link fault can cost around 80 ms in some cases and close to 1180 ms in
others. Since there are 2 links between L1 and L2 switches instead of 3 between L3
and L4 ones, the worst case happens more often. Moreover, when there is no usable
link between two L1/L2 switches, the impacted switches are all 2700 L1 switches.
This case reaches the maximum number of impacted switches by the algorithm. Since
the chosen topology provides a single link between L2 and L3 switches, this is always
the most complex case: more than two switches are always impacted.

In Fig. 7, right-most values represent the maximum number of rtmods produced,
which happens when first L1/L2 faults are encountered. Afterwards, if some links are
already unusable, there is no rtmod to compute for their related ports. The same
applies to (137k rtmods, ~60 ms) which is the maximum number of L3/L4 faults
and also corresponds to first times such faults are seen.

123

4434 P. Vignéras, J.-N. Quintin

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
10

0
20

0
30

0
40

0

Number of modified routing table entries

T
im

e
in

 m
ill

is
ec

on
ds

Fault between level 1 and 2
Fault between level 3 and 4

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
10

0
20

0
30

0
40

0

Number of modified routing table entries

T
im

e
in

 m
ill

is
ec

on
ds

Recovery between level 1 and 2
Recovery between level 3 and 4

Fig. 7 Processing time for a given amount of rtmods produced when only two switches are impacted
on fault (left) and recovery (right). L2/L3 link failure involves more than two switches, hence they do not
appear in figure

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
20

0
40

0
60

0
80

0
10

00
12

00

Number of modified routing table entries

T
im

e
in

 m
ill

is
ec

on
ds

Fault between level 1 and 2
Fault between level 2 and 3
Fault between level 3 and 4

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
20

0
40

0
60

0
80

0
10

00
12

00

Number of modified routing table entries

T
im

e
in

 m
ill

is
ec

on
ds

Recovery between level 1 and 2
Recovery between level 2 and 3
Recovery between level 3 and 4

Fig. 8 Processing time for a given amount of rtmods produced when more than two switches are impacted
for fault (left) and recovery (right)

Figure 8 presents the processing time for a given number of rtmods when more
than two switches are impacted. The processing time depends on the level: it can take
up to 1200 ms to deal with one worst-case L1/L2 fault while it takes only 140 ms to
deal with an L3/L4 one.

Handling recoveries should exhibit a similar behavior: the number of rtmods is
expected to be roughly the same on fault handling than on recoveries. This is not the
case as shown in Fig. 7 where 15,000 rtmods maximum is computed for L3/L4 fault
handling but at least 21,000 rtmods for recovery handling. Our algorithm computed
more rtmods for recoveries than required. The problem has been identified and the
correction is under development.

The BXI offline routing tables checker has been used at 10, 20 and 25 % of faults,
and 10, 20 and 25 % of recoveries in order to check the validity of the computed
routing tables ensuring the absence of deadlock, livelock and dead-end.

123

The BXI routing architecture for exascale supercomputer 4435

Checking the overall quality of the new routing tables is a challenge we are currently
working on. Studying other topologies than fat-tree—thanks to BXI topology-agnostic
online routing algorithms—is also an ongoing study.

5 Conclusion and future works

For the exascale topology size targeted by BXI technology, the complete computation
of all routing tables (offline mode) usually requires dozen of minutes. This is far too
long to overcome link failures without interrupting running applications. The main
contribution of this paper is to present a radically new approach based on a clear
separation of concern for the computation of routing tables:

– Offline computation tables are computed without real-time constraint and archived
for analysis and validation before being uploaded at production start-up. Several
algorithms are available, both topology-agnostic and fat-tree-specific ones. Their
behavior on the N-pairs communication pattern have been validated on a transac-
tion level simulator.

– Online computation only routing tables modifications needed to bypass faults or
to deal with recoveries are computed with soft real-time constraint, uploaded and
archived, while still remaining (transitively) deadlock-free.

As a result, the BXI routing offline mode can compute all routing tables of a 64k nodes
full fat-tree in less than 4 min on commodity hardware while the online mode can deal
with at least 25 % of faults and recoveries transparently.

The BXI routing component architecture can be adapted to any other interconnect
technology as it does dot depend on it. The minimal requirements are:

– Ability to compute full routing tables from a given topology (offline mode) and
to upload them to all switches; this can be seen as quite basic, but performing this
computation for big topologies in reasonable time frame (couples of minutes) can
be challenging.

– Availability of link failure/recovery notification to a central component
(Backbone); this notification system can be in-band as with Infiniband tech-
nology or out-of-band (using a separate management network) as with BXI
technology;

– Capability of switches to receive routing tables modifications instead of full routing
tables (rtmods); this upload can also be inband of out-of-band.

BXI provides several offline routing algorithms and two transitively deadlock-free [36]
online routing algorithms. We assume and expect more will be proposed in the next
future either to provide better overall routing quality and/or to support new topologies.

Next short term follow-up is to make several experiments with other combinations
of topologies, offline and online routing algorithms along with the injection of simulta-
neous faults and recoveries.Metricsd implementation is a real challenge due to time
complexity: producing metrics on an exascale topology can take a lot of time (several
hours); representing these metrics is also a challenge in itself because of the amount of
available data. Finally, the injection of Metricsd results into Computerd forming

123

4436 P. Vignéras, J.-N. Quintin

a control loop has not been studied yet. It is a big and interesting challenge for the
next future.

Acknowledgments We are thankful to the Portals team at Sandia Nat. Lab. for their unconditional support,
particularly: Ron Brightwell, Brian Barrett (now at Amazon) and Ryan Grant. We also acknowledge the
passionate discussions we had with Keith Underwood from Intel during the early stages of this project. We
also would like to thank our colleagues, Jean-Pierre Panziera, Ben Bratu, Anne-Marie Fourel and Pascale
Bernier-Bruna for their reviews and valuable comments.

References

1. Derradji S, Palfer-Sollier T, Panziera J-P, Poudes A, Wellenreiter F (2015) The bxi interconnect archi-
tecture. In: 2015 IEEE 23th annual symposium on high-performance interconnects (HOTI)

2. Agarwal A (1991) Limits on interconnection network performance. IEEE transactions on parallel
and distributed systems, vol 2, pp 398–412 (online). http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.45.8845

3. Duato J, Yalamanchili S, Lionel N (2002) Interconnection networks: an engineering approach. Morgan
Kaufmann Publishers Inc., San Francisco

4. Leiserson CE (Oct. 1985) Fat-trees: universal networks for hardware-efficient supercomputing. IEEE
Trans Comput 34(10):892–901 (online). http://dl.acm.org/citation.cfm?id=4492.4495

5. Ohring S, Ibel M, Das S, Kumar M (1995) On generalized fat trees. In: Proceedings of 9th international
parallel processing symposium

6. Petrini F, Vanneschi M (1997) k-ary n-trees: high performance networks for massively parallel archi-
tectures. In: Proceedings 11th international parallel processing symposium

7. Zahavi E (2010) D-Mod-K routing providing non-blocking traffic for shift permutations on real life
fat trees. Technical Report CCIT Report, Tech. Rep., 2010. (online). http://webee.eedev.technion.ac.
il/wp-content/uploads/2014/08/publication_574

8. Kim J, Dally WJ, Abts D (2007) Flattened butterfly: a cost-efficient topology for high-radix networks.
SIGARCH Comput Archit News 35(2):126–137. doi:10.1145/1273440.1250679

9. Ahn JH, Binkert N, Davis A, McLaren M, Schreiber RS (2009) Hyperx: Topology, routing, and
packaging of efficient large-scale networks. In: Proceedings of the conference on high performance
computing networking, storage and analysis, ser. SC ’09. ACM, New York, pp 41:1–41:11 (online).
doi:10.1145/1654059.1654101

10. Kim J, Dally WJ, Scott S, Abts D (2008) Technology-driven, highly-scalable dragonfly topology.
SIGARCH Comput Archit News 36(3):77–88. doi:10.1145/1394608.1382129

11. Kim J, Dally W, Scott S, Abts D (2009) Cost-efficient dragonfly topology for large-scale systems.
IEEE Micro 29(1):33–40. doi:10.1109/MM.2009.5

12. Besta M, Hoefler T (2014) Slim fly: a cost effective low-diameter network topology. In: Proceedings
of the international conference for high performance computing, networking, storage and analysis, ser.
SC ’14. IEEE Press, Piscataway, pp 348–359. (online). doi:10.1109/SC.2014.34

13. Duato J (1997) A theory of fault-tolerant routing in wormhole networks. IEEE Trans Parallel Distrib
Syst 8:790–802

14. Martínez JC, Flich J, Robles A, López P, Duato J (2003) Supporting fully adaptive routing in infiniband
networks. In: Proceedings of the 17th international symposium on parallel and distributed processing,
ser. IPDPS ’03. IEEE Computer Society, Washington, DC, p 44.1 (online). http://dl.acm.org/citation.
cfm?id=838237.838493

15. Skeie T, Lysne O, Flich J, López P, Robles A, Duato J (2004) LASH-TOR: a generic transition-oriented
routing algorithm. Proc Int Conf Parallel Distrib Syst ICPADS 10:595–604

16. Lysne O, Skeie T, Reinemo SA, Theiss IR (2006) Layered routing in irregular networks. IEEE Trans
Parallel Distrib Syst 17:51–65

17. Flich J, Skeie T, Mejia A, Lysne O, Lopez P, Robles A, Duato J, Koibuchi M, Rokicki T, Sancho JC
(2012) A survey and evaluation of topology-agnostic deterministic routing algorithms. IEEE Trans
Parallel Distrib Syst 23(3):405–425

18. Cherkassky BV, Goldberg AV, Radzik T (1996) Shortest paths algorithms: theory and experimental
evaluation, pp 129–174

123

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.8845
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.8845
http://dl.acm.org/citation.cfm?id=4492.4495
http://webee.eedev.technion.ac.il/wp-content/uploads/2014/08/publication_574
http://webee.eedev.technion.ac.il/wp-content/uploads/2014/08/publication_574
http://dx.doi.org/10.1145/1273440.1250679
http://dx.doi.org/10.1145/1654059.1654101
http://dx.doi.org/10.1145/1394608.1382129
http://dx.doi.org/10.1109/MM.2009.5
http://dx.doi.org/10.1109/SC.2014.34
http://dl.acm.org/citation.cfm?id=838237.838493
http://dl.acm.org/citation.cfm?id=838237.838493

The BXI routing architecture for exascale supercomputer 4437

19. Chen G, Pang M, Wang J (2007) Calculating shortest path on edge-based data structure of graph. In:
Proceedings of 2nd workshop on digital media and its application in museum and heritage, DMAMH
2007, pp 416–421

20. Demetrescu C, Italiano GF (2006) Experimental analysis of dynamic all pairs shortest. ACM Trans
Algorithms 2:578–601

21. Theiss Ir, Lysne O (2006) FRoots: a fault tolerant and topology-flexible routing technique. IEEE Trans
Parallel Distrib Syst 17:1136–1150

22. Mejia A, Flich J, Duato J, Reinemo SA, Skeie T (2006) “Segment-based routing: an efficient fault-
tolerant routing algorithm for meshes and tori. In: 20th International parallel and distributed processing
symposium, IPDPS 2006, vol 2006

23. Flich J, Mejia A, Lopez P, Duato J (2007) Region-based routing: An efficient routing mechanism to
tackle unreliable hardware in network on chips. In: Proceedings of NOCS 2007: first international
symposium on networks-on-chip, pp 183–194

24. Sem-Jacobsen FO, Lysne O (2008) Fault tolerance with shortest paths in regular and irregular networks.
IPDPS Miami 2008. In: Proceedings of the 22nd IEEE international parallel and distributed processing
symposium, program and CD-ROM, no. 1

25. Zahavi E, Keslassy I, Kolodny A (2014) Quasi fat trees for HPC clouds and their fault-resilient closed-
form routing. In: 2014 IEEE 22nd annual symposium on high-performance interconnects (HOTI).
IEEE, pp 41–48

26. Dijkstra EW (1971) A short introduction to the art of programming. Technische Hogeschool Eindhoven
Eindhoven, vol 4

27. Schwiebert L, Jayasimha DN (1996) A necessary and sufficient condition for deadlock-free wormhole
routing. J Parallel Distrib Comput 32:103–117

28. Schroeder MD, Birrell AD, Burrows M, Murray H, Needham RM, Rodeheffer TL, Satterthwaite EH,
Thacker CP (1991) Autonet: a high-speed, self-configuring local area network using point-to-point
links. IEEE J Select Areas Commun 9(8):1318–1335

29. Greenberg RI, Leiserson CE (1985) Randomized routing on fat-trees. 26th annual symposium on
foundations of computer science (sfcs 1985)

30. Rodriguez G, Minkenberg C, Beivide R, Luijten RP, Labarta J, Valero M (2009) Oblivious routing
schemes in extended generalized fat tree networks. In: IEEE international conference on cluster com-
puting and workshops, 2009. CLUSTER’09. IEEE, pp 1–8

31. Kerbyson DJ, Lang M, Johnson G (October 2006) PAL Roadrunner Report 2: application specific
optimization of infiniband networks. Tech Rep

32. Zahavi E (2012) Fat-tree routing and node ordering providing contention free traffic for MPI global
collectives. J Parallel Distrib Comput 72(11):1423–1432. Communication Architectures for Scalable
Systems (online). http://www.sciencedirect.com/science/article/pii/S0743731512000305

33. Gómez C, Gilabert F, Gómez ME, López P, Duato J (2007) Deterministic versus adaptive routing in
fat-trees. In: Proceedings of workshop on communication architecture on clusters (CAC07)

34. Kim J, Dally WJ, Abts D (2006) Adaptive routing in high-radix clos network. In: Proceedings of the
2006 ACM/IEEE conference on supercomputing, ser. SC ’06. ACM, New York (online). doi:10.1145/
1188455.1188552

35. Underwood KD, Borch E (May 2011) A unified algorithm for both randomized deterministic and
adaptive routing in torus networks. IEEE international symposium on parallel and distributed process-
ing workshops and Phd forum, pp 723–732 (online). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6008843

36. Jean-Noël Q, Pierre V (2013) Transitively deadlock-free routing algorithms. In: Proceedings of the
2nd IEEE international workshop on high-performance interconnection networks in the exascale and
big-data era, Barcelona

123

http://www.sciencedirect.com/science/article/pii/S0743731512000305
http://dx.doi.org/10.1145/1188455.1188552
http://dx.doi.org/10.1145/1188455.1188552
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6008843
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6008843

	The BXI routing architecture for exascale supercomputer
	Abstract
	1 Introduction
	2 Related works
	3 Major issues
	4 Solution
	4.1 Offline mode
	4.1.1 Topology-agnostic offline routing algorithms
	4.1.2 Topology-specific offline routing algorithms
	4.1.3 Offline mode computation time experimental results
	4.1.4 Offline mode routing algorithms performance comparisons

	4.2 Online mode
	4.2.1 Architecture
	4.2.2 Online routing algorithms
	4.2.3 Transient fabric state
	4.2.4 Online mode experimental results

	5 Conclusion and future works
	Acknowledgments
	References

