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Abstract Future exascale high-performance computing (HPC) systems will be con-
structed from VLSI devices that will be less reliable than those used today, and faults
will become the norm, not the exception. This will pose significant problems for sys-
tem designers and programmers, who for half-a-century have enjoyed an execution
model that assumed correct behaviour by the underlying computing system. The mean
time to failure of the system scales inversely to the number of components in the sys-
tem and, therefore, faults and resultant system level failures will increase, as systems
scale in terms of the number of processor cores and memory modules used. However,
every error detected need not cause catastrophic failure. Many HPC applications are
inherently fault resilient. Yet it is the application programmers who have this knowl-
edge but lack mechanisms to convey it to the system. In this paper, we present new
Resilience Oriented Language Extensions (Rolex) which facilitate the incorporation
of fault resilience as an intrinsic property of the application code. We describe the
syntax and semantics of the language extensions as well as the implementation of the
supporting compiler infrastructure and runtime system. Our experiments show that
an approach that leverages the programmer’s insight to reason about the context and
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significance of faults to the application outcome significantly improves the probability
that an application runs to a successful conclusion.

Keywords Resilience · Exascale · Programming models · Runtime systems · Fault
tolerance

1 Introduction

By the end of this decade, exascale high-performance computing (HPC) systems
promise to accelerate the pace of scientific discovery in a broad range of disciplines
including climate and environmental modelling, chemistry and materials, high energy
and nuclear physics, nanotechnology, astrophysics and biology. These systems will
enable the solution of vastly more accurate predictive models and the analysis of
massive data sets [1].

Among the difficult challenges in designing and operating future exascale-class
systems, guaranteeing reliability of operation in the presence of increasingly frequent
faults and errors will be critical. Various studies [10,18] have suggested that the path
to higher capability machines will require an exponential increase in the number of
CPU cores and memory modules to drive performance. For an exascale-class super-
computer, its sheer scale is a challenge to the system’s ability to tolerate faults and
maintain service. Furthermore, the reliability of individual components is projected
to decrease as Moore’s law enables shrinking transistor geometries [11].

In today’s HPC systems, we enjoy a model of execution in which the application
presumes correct behaviour by the underlying fabric of hardware and system soft-
ware, i.e., the execution environment. Some errors are masked by hardware-based
mechanisms, and the error events that cannot be handled by the system layers usually
result in fatal crash. This is usually catastrophic for the application processes run-
ning on the system. Therefore, most HPC systems deal with anomalous events only
when they result in catastrophic failure through a process of checkpoint and rollback
recovery (C/R). However, for the projected fault rates in future exascale-class HPC
systems relying solely on such mechanisms will lead to frequent application failures
or incorrect results.

Many of the scientific applications that run on these systems contain features that
allow the effect of certain faults and errors to be tolerated or mitigated at the appli-
cation level through algorithmic methods. Various algorithm-based fault tolerance
(ABFT) [5,14] support application-level error detection and correction. Therefore,
not all faults and errors need to result in a catastrophic crash. Programmers of scien-
tific applications, through their domain expertise and familiarity with the application
codes, gained through code optimization efforts, are usually well-positioned to under-
stand such application-level fault-resilience features. However, they lack convenient
mechanisms to express such knowledge to the system. We believe that with modest
extensions to existing programming model the application-level knowledge may be
leveraged by the execution environment to enable HPC applications to continue run-
ning towards successful completion despite the presence of certain faults and errors in
the system. In this paper we investigate whether simple language-level extensions in
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concert with a compiler infrastructure and a runtime inference framework can enhance
the ability of HPC applications to manage the effects of faults and errors in their state.
WeproposeRolex, a set ofResilience-OrientedLanguageExtensions that captureHPC
programmers’ knowledge of the fault-tolerance features of the program code and their
expectations of application outcomes. By making resilience essential to the program-
ming model, the execution environment can use this application-level knowledge to
reason about the significance of the errors to the correctness of the application’s out-
come. We define the syntax of the resilience-oriented language extensions, describe
their fault-resilience semantics and their integration with a compiler infrastructure
and runtime inference system. We also describe our experience of applying Rolex to
several common HPC application codes and evaluate the application resilience using
accelerated fault injection experiments.

The remainder of this paper is organized as follows: Sect. 2 explains the basis
of our approach on how capturing programmer knowledge through simple language
extensionsmay be used tomanage the applications fault resilience. Section 3 describes
the design goals and philosophies behind the Rolex extensions and Sect. 4 presents
their syntax and semantics and several motivating examples which demonstrate the
viability of applying these language extensions in the context of real HPC applications.
Section 5 elaborates the role of the compiler and runtime inference engine. Section
6 presents the evaluation results for fault injection experiments and also studies the
impact on application performance. Section 7 surveys related programming model-
based resilience approaches.

2 Leveraging programmer knowledge for fault resilience

The HPC workload consists of scientific computations, many of which are naturally
tolerant to data errors. Their algorithmic behaviour might simply filter the occasional
incorrect value, as is the case with many numerical iterative algorithms, or they might
rely on pseudorandom processes, as is the case with Monte-Carlo techniques. Several
applications that use numerical analysis methods can tolerate limited loss in floating
point precision. In certain applications, the impact of errors in the data or computa-
tion can even be trivially healed through simple algorithmic methods. For example,
parity and checksums can be applied to specific data structures or procedure execu-
tions to detect the presence of data corruptions within the application’s address space.
However, part of the variable state, especially that which affects program control flow
and pointer arithmetic, is very sensitive to errors. Therefore, for certain parts of the
program state, the notion of correctness may be defined within the bounds of certain
rounding error, while for others it may require precise bit reproducible correctness
[26].

HPC application programmers are well-positioned to understand the application’s
fault-tolerance features because they tend to be experts in their respective scientific
domains due to their familiarity with the program code structure. We believe that
given appropriate interfaces to express their fault tolerance knowledge, programmers
can contribute to enhancing the execution environment’s management of the appli-
cation resilience. Through programming model features we may be able to support
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Fig. 1 Themes of programmer knowledge to enhance application resilience

fault-tolerance capabilities, namely error detection, containment and recovery at the
application level. Such programmingmodel-basedmechanisms provide a fine-grained
model of reliability in which individual data variables and program statements may be
tuned for relaxed or strict reliability and seek to prevent application failure for every
possible error instance in the system.

Broadly, the knowledge that programmers can express falls into threemajor themes.
These are illustrated in Fig. 1 along with plausible solutions and described below:

• Tolerance A programmer may choose to tolerate limited loss in floating precision
for certain programvalues, or allow occasional perturbations of certain data values.
The programmermay also be aware of regions of computation that employ iterative
refinement, such that errors which cause anomalous intermediate results may be
absorbed without affecting the correctness of the final outcome.

• Robustness Certain data structures and computation, notably those related to the
program control flow and pointer arithmetic need bit-level correctness. The pro-
grammer may identify application-level constructs that require stronger checks.
The error detection and correction may be accomplished by maintaining redun-
dant copies and using masking mechanisms to guarantee deterministic program
behaviour.

• Amelioration A variety of algorithmic techniques exist that not only detect but
also heal the effect of errors in data structures. Such techniques maintain redun-
dant information, such as checksums, to recover erroneous values. They may also
use value re-initialization to repair variable state. Certain computations even allow
compensating erroneous values by interpolating neighbouring values. The pro-
grammer may be able to provide the appropriate methods to ameliorate program
state.

Programming model extensions designed to enable the execution environment to
capture application-level features on each of these themes of knowledge supports
a fault-aware execution environment that can provide error resilient operation for
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HPC application processes without compromising the application performance, or the
productivity of programmers.

3 Design of the resilience oriented language extensions

3.1 Goals for resilience-oriented language extensions

In designing the language extensions, we sought to capture each of the flavours of
knowledge described in Sect. 2, and in the process, also enable each of the aspects
of fault management, namely detection, containment and recovery. Broadly, our goals
for the resilience-aware programming model extensions are

1. It is our goal to retain the familiarity of current programming paradigms. We aim
to adopt a simple syntax that permits embedding resilience capabilities within
existing programming language features.

2. We seek tominimize the timeand effort requiredbyprogrammers to learn and adopt
the language extensions; therefore, these resilience-oriented language extensions
must provide a concise and elegant syntax and include a small set of new language
keywords for expressing the resilience features.

3. We also seek a fair division of work between the language extensions and the
compiler and runtime framework, such that the programmer does not need to be
exposed to the complexity of the HPC execution environment, yet is provided with
sufficient abstractions to be able to concisely convey fault management knowledge
related to application-level constructs.

4. Recognizing that HPC programmers are very reluctant to trade off their perfor-
mance, which is usually achieved by investingmuch time and effort in hand-tuning
the code, we seek to ensure that the resilience-oriented language extensions and
compiler transformations do not drastically affect the code structure.

5. As HPC systems become increasingly heterogeneous and topologically complex
in pursuit of higher performance, they need to harness a variety of novel parallel
programming frameworks. Yet the applications seek to retain the well-understood
foundation of the Message Passing Interface (MPI) as well as certain well-tuned
productivity libraries such as BLAS and LAPACK written in C and FORTRAN.
It is also our goal to ensure that resilience-oriented language extensions integrate
seamlessly with these language features and library frameworks.

3.2 Description of syntactic structure of Rolex

Based on these objectives we have designed programming language extensions that
include a collection of features that extends the base language aswell as compiler direc-
tives and runtime library routines that enable the execution environment to manage the
application’s error resilience. Rolex is designed to affect the following aspects of the
program state [20]: (i) the computational environment, which includes the data needed
to perform the computation, i.e., the program code, environment variables etc.; (ii) the
static data, which represents the data that is computed once in the initialization phase
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of the application and is unchanged thereafter; (iii) the dynamic data, which includes
all the data whose value may change during the computation. Rolex extends the C,
C++ language with constructs that provide application-level error detection, error con-
tainment and recovery strategies for each of these aspects of the program state. These
extensions fully comply with the syntactic structure of the base language grammar and
complement the existing language features. Some Rolex constructs serve as directives
for the compiler to automatically generate code that supports fault resilience, whereas
the Rolex routines support application-level resilience through the runtime environ-
ment.

3.2.1 Type qualifiers

Rolex extends the declaration ability of C/C++ to allow type qualifiers that enable
attaching a specific resilience attribute to functions, data variables and other objects.
The programmer specifies, through explicit association, an error detection and/or tol-
erance feature for specific identifiers in the program code. The syntactic structure for
the use of resilience type qualifiers is

<rolex -error -management -qualifier > variable -declaration;

The formal rules that extend the C/C++ grammar to include the resilience-oriented
type qualifiers are described in Appendix in Listing 1. Through these qualifiers, the
programmer explicitly specifies how the program variables are managed, when the
associated object value is deemed to be in erroneous state. The error detection and
correction capabilities are handled through bit manipulation on the low-level repre-
sentation of the objects.

3.2.2 Directives

Rolex directives enable the application programmer to impose rules for fault-tolerant
execution of a region of the program code. In C/C++, #pragma directives specify
program behaviour. The syntactic structure of an executable Rolex directive and the
code region is

#pragma rolex <error -management -directive > [clause [[,] clause ]...
]

new -line {
/* binding region: structured blk*/
}

The binding region determines the scope of the execution context that is equipped
with resilience capabilities. The bound region is a structured block, which is defined
as an C/C++ executable statement, which may be a compound statement but has a
single point of entry at the top and single point of exit at the bottom. The compound
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statement is enclosed within a pair of { and }. The point of entry cannot be the target
of a branch and the point of exit cannot be a branch out. No branch is allowed from
within the structured block, except for program exit. Instances of the structured block
may be compound statements including iteration statements, selection statements, or
try blocks.

We also provide declarative directives that may be associated with function decla-
rations and definitions:

#pragma rolex declare <error -management -directive > [clause[[,]
clause ]...] new -line
/* C/C++ function definition or declaration */

These directives are not associated with the immediate execution of the application
code but enable the compiler to create multiple versions of the specified C/C++ func-
tion, at least one of which includes resilience capabilities. The Listing 2 in Appendix
shows the grammar rules for the extensions based on the resilience-oriented directives.

3.2.3 Runtime library routines

Certain aspects of the resiliency of the execution environment can be controlled
through runtime library routines. Also, some of the existing standard library calls may
be extended to provide resilience capabilities. For example, the memory management
library calls are equipped with error detection, correction and recovery capabilities on
the allocated memory blocks. The routine identifier is suffixed with the fault manage-
ment capability:

return_type var = rolex_libraryfunc_capabilitity (‘arguments ’);

These routines are external C functions whose identifiers are prefixed with a rolex
keyword.

3.2.4 Rolex keywords

We introduce a set of keywords that are distinct from the existing set of C/C++ reserved
keywords to support resilience semantics on the C/C++ constructs. The Rolex direc-
tives and routines are identified by the rolex keyword. Additionally, the keywords
tolerant, robust, heal are used as qualifiers in type declarations. The key-
words recover-rollback and recover-rollforward are used to associate
a recovery behaviour to a structured code block following a directive while the key-
word robust is used to specify redundancy in state or computation. Additionally,
there are clauses that support management of variable state and permit specification
of the strength of redundancy in the context of Rolex constructs.
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4 Rolex: syntax and semantics

This section provides more complete lexical syntax (i.e., how these extensions may be
embedded in real programs) based on the syntactic structure from the previous section.
The extensions support each of the previously described themes of knowledge, i.e.,
tolerance, robustness and amelioration. We also explain the semantics (i.e., what each
extension means), how Rolex features affect program structure and their relationship
to the runtime system. We also provide motivating examples that demonstrate how
each Rolex feature enables fault resilience in real scientific application codes.

4.1 Tolerance-based extensions

The tolerance language extensions are used to specify data variables or code block
executions that support error elision i.e., ignore the presence of a corruption in program
state and continue execution with the confidence that the algorithm can absorb the
error or mask it through localized recovery. The extensions also enable applications to
continue execution with imprecise but not unreasonable state through value coercion
[15]. The extensions assume that error detection is provided by the hardware or system
software and that the error notification is communicated to the runtime system via an
interrupt mechanism.

For errors detected that happen to be mapped to locations that have been explicitly
specified as tolerant using Rolex, the runtime system reacts to an error notification by
allowing an application execution to continue despite the corruption in its state. For
instances of errors that are mapped to locations on which tolerance is not specified,
the runtime terminates the application execution, as is the standard behaviour for
unrecoverable errors.

4.1.1 Type qualifiers

Syntax

The tolerant type qualifier can be applied to primitive as well as compound data
structures. These qualifiers can be applied to declaration of global variables and local
automatic variables and may include static and dynamic program state. The syntax for
the type qualifiers variable declarations is

tolerant(PRECISION =...) float low_precision_32;

tolerant(PRECISION =...) double low_precision_64;

tolerant unsigned int rgb[X_RES ][Y_RES ];

tolerant (MAXIMUS = 1023) unsigned int counter;

For floating point variables, the qualifier contains an additional specifier for pre-
cision. For integer values, the qualifier contains an additional specifier for maximum
value.
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Fig. 2 IEEE 754 floating point representation

Fig. 3 Unsigned integer (32-bit) representation

Semantics

With these type qualifiers, error elision is achieved through coercion of the object
value. For floating point objects, bit perturbation errors on the sign and exponent
bits fundamentally alter the variable value, and the application is usually intolerant
to such errors (shown in green in Fig. 2). However, bit perturbations in the lower
significand/mantissa bits may be ignored by the runtime and result in a truncation error
in the value of the floating point variable (shown in grey in Fig. 2). The PRECISION
construct specifies the minimum floating point precision that the programmer expects,
i.e., it indicates the amount of precision loss the programmer is willing to tolerate.

For an integer variable whose maximum value is known apriori, only the lower
significant bits in the bit representation are intolerant; i.e., these bits cannot accept bit
perturbations without altering the value of the variable (shown in green in Fig. 3). The
upper significant bits are unused and are meant to always remain ‘0’ (for unsigned
integers in the binary representation). When these bits are perturbed, the error may
be masked by simply resetting these bits. This knowledge may be explicitly conveyed
through the MAXIMUS construct in the type qualifier.

The runtime responds to notifications that indicate the presence of an error which
is mapped to a tolerant qualified data variable by manipulating the bit representation
to coerce the data values into lower precision or mask the anomalous bits and allows
the application execution to resume. These type qualifiers offer the program variables
with error containment and limited recovery capabilities bymasking perturbations and
keeping their the values within permissible range of correctness.

4.1.2 Directives

Syntax

The tolerance directives provide limited localized recovery capability from errors in
the computation for the programmer-defined code regions. When the detected error
maps to code sections, i.e., instruction memory of the application address space, or to
the variables manipulated by the code region, the tolerance directive offers roll-back
and roll-forward capabilities for the affected structured code block. The syntax of the
tolerance roll-forward and roll-back directives is
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#pragma rolex recover -rollback share ( variable_list ) private (
variable_list ) { /* code block */ }

#pragma rolex recover -rollforward share ( variable_list ) private
(

variable_list ) { /* code block */ }

In order for the program state to remain consistent upon roll-forward/roll-back, the
variable state must be the same as that during initial entry into the code block. There-
fore, we provide optional share and private clauses that list the variables that
need to be preserved and restored.

Thedeclare directives instruct the compiler to generate versions of the associated
functions with retry or ignore capabilities. The syntax (shown below) contains an
optional fallback clause to specify a default function return value.

#pragma rolex declare resilient ignore fallback ()
/* function definition or declaration */
#pragma rolex declare resilient retry fallback ()
/* function definition or declaration */

Semantics

When the runtime is informed of the presence of an error that is mapped to the instruc-
tion memory of the tolerant structured code block, or to one of the data structure
variables specified in the data clauses, the structured block is re-entered (the execu-
tion is rolled back) or the remaining code block is skipped (the execution is rolled
forward). The initiation of roll-forward or roll-back may cause the data variable state
to become inconsistent. Therefore, prior to original entry into the structured code
block, the variables specified in the share clause are saved. Upon roll-forward or
roll-back recovery, this variable state is restored to the previously preserved values.
The variables in the private clause are not restored and are treated much like local
automatic variables declared inside a function. The declare directives allow the qual-
ified execution to be retried, or it may be discarded with the function caller receiving
a default fallback value. The tolerance directives offer error containment by limiting
the scope of error to the computation contained in the block following the direc-
tive. Additionally, these directives also support compensation-based recovery of the
application’s variable state and localized recovery of erroneous computation through
roll-forward/roll-back semantics.

4.1.3 Runtime library routines

Syntax

The Rolex tolerant routine extends the functionality provided by malloc(). It accepts
an additional parameter of type rolex_precision to specify the MAXIMUS and
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PRECISION for individual primitive types (when the routine is used to allocate arrays
of primitive integer or floating point type). The API format is

float* intermediate_sol_array = (float *) rolex_malloc_tolerant (
N * sizeof (float), NULL );

float* molecule_position = (float *) rolex_malloc_tolerant ( N *
sizeof (float), (rolex_precision) (6) ); /* PRECISION = 6 */

unsigned int* true_color_pixel_buffer =
(unsigned int*) rolex_malloc_tolerant ( N * N * sizeof (unsigned
int), (rolex_precision) (16 ,777 ,216) ); /* MAXIMUS = 16 ,777 ,216

*/

Semantics

Much like the standard librarymalloc, therolex_malloc_tolerant() allocates
a block of memory whose address bounds are registered with the runtime system.
Since such error-tolerant memory is explicitly requested, the runtime supports error
elision i.e., it ignores the notifications of any errors detected on this memory block and
allows the application execution to resume. For compound data structures composed
of floating point or integer primitive types, the argument of rolex_precision
type supports elision through value coercion, i.e., it allows the application to respond
to error notifications by resuming the execution after ensuring the individual floating
point or integer data values meet the precision or maximum values specified in the
PRECISION or MAXIMUS constructs.

4.1.4 Examples

Scientific modelling entails representation of continuous problems in terms of finite
precision values which incurs some discretization error. Certain data structures in
these applications may accept bit perturbations that result in round-off errors without
affecting the validity of the simulation. Numerical analysis algorithms, such as the
conjugate gradient method and the generalized minimal residual method (GMRES),
progressively improve an initial approximate solution and terminate only when the
solution is below a certain error norm. Direct methods such as Gaussian elimination
and the QR factorization method terminate in a finite number of steps, but still yield
an approximate solution. Limited loss in floating point precision in the intermediate
solution state may be absorbed without impacting the correctness of the final solution.

Molecular dynamics (MD) simulations can maintain the numerical stability with
limited loss in floating point precision for various constant energy and constant tem-
perature simulations. The deviations in the force calculations are often small enough
that the particle trajectories are almost identical in terms of numerical stability as
full precision calculations. In large-scale simulations the loss in precision in lower
significant floating point bits results in a negligible difference in the coordinates of
the simulations over millions of time steps [29]. The Hartree-Fock method, used in
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computational chemistry codes, contains structures such as the Fock matrix, density
matrix, matrix exponential and orbital transformation matrix, which can tolerate bit
perturbations in the lower significant mantissa bits in the mantissa of floating point
representation [9]. Such structures may be tolerant type qualified or allocated using
rolex_malloc_tolerant(). Similarly, visualization applications allow arbi-
trary bit flips on integer type pixel values because the graphics rendering pipeline
often accounts for incorrect pixel attributes.

Algorithms that permit selective reliability may utilize directives to specify fault
tolerant behaviour for application phases. The FT-GMRES algorithm [13] uses inner–
outer iterations where the inner solver step preconditions the outer iteration. The inner
solver step may be treated as an unreliable phase since it is allowed to return an
incorrect solution without affecting the outer solver step. Similarly, neutron transport
(NT) simulation codes use theMonte Carlo method and wemay leverage its stochastic
nature alongwith the fact that the simulation of every particle is independent. The code
regions that create and simulate individual particles may be included in the structured
block following tolerant directives, which allows the simulation to selectively discard
the particles that experienced errors.

4.2 Robustness-based extensions

The robustness language extensions are used to specify data variables or code blocks
that are critical to the application correctness and as such could benefit from error
detection and correction at the application level. These include the application code
sections (i.e., instruction memory), pointer variables, array index references as well
as variables that affect control flow decisions. These aspects of the program state
require bit-precise correctness to make a deterministic assertion on the correctness
of the application outcome, even if it runs to completion in the presence of program
state corruptions (but without raising any exceptions or abnormal behaviour). The
robustness of these aspects of the program state may be guaranteed by the use of
redundancy. This entails replicating part of the variable state, or specific portions of
the program code execution, or at times both. The replicated part of the program state
is compared to check for the presence of errors in the application’s address space, or to
filter errors through majority voting. Through these Rolex extensions the redundancy
is selectively applied only on the sensitive data variables and computation whose
correctness is critical to produce a correct application outcome.

4.2.1 Type qualifiers

Syntax

The robust type qualifier may be applied to declarations of primitive as well as
compound data structures. The syntax for the robust type qualifier, which includes a
strength clause, is
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robust (CORRECT) int* csr_matrix[row_offsets ];

robust (DETECT) int* graph_edge_list[N];

Semantics

The type qualifier serves as a directive to the compiler, which performs source-
to-source translation to duplicate or triplicate the variable declaration. For pointer
variables, this amounts to creating aliases to the object being referenced. The com-
piler also duplicates/triplicates the statements in the program source that operate on
the robust qualified variables as well as inserts statements that compare the redundant
variable values and report any mismatch among the replicas to the runtime system.
The qualifiers enable error detection and correction capabilities on the robust qualified
objects and implicitly on their computation through statement-level DMR or TMR.

4.2.2 Directives

Syntax

The robust directives provide application-level detection/correction for specific
regions of computation, whose scope is defined by the structured code block fol-
lowing the directive. The declarative robust directives may be applied to functions.
The syntax for the directives is

#pragma rolex robust detect share ( variable_list ) private (
variable_list ) compare ( variable_list ) { /* code block */ }

#pragma rolex robust correct share ( variable_list ) private (
variable_list ) compare ( variable_list ) { /* code block */ }

#pragma rolex declare resilient robust (detect) fallback ()
/* function definition or declaration */

The directives contain a strength clause, which specifies whether DMR or
TMR is required for the structured block. The data management clauses share and
private specify the data-sharing attributes for the variables listed in the respective
clauses. The compare clause is used to specify the list of variables produced by the
structured blocks that need to be compared/majority voted on to detect/correct an error
in the computation. The fallback clause is used to return a default value to the function
caller when the redundant execution of the function detects an error but is unable to
conclusively vote on a correct value.

Semantics

When the compiler encounters the robust directive, it outlines the application code
contained in the structured code block. It inserts statements that enable the redundant
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execution of the outlined code block by duplicating or triplicating the call to the
outlined function and statements to compare the outputs of the structured block. The
compiler also selectively replicates the variables in the data scoping clauses. Each
redundant code block instance owns a separate replicated copy of private variables,
whereas a single copy of share scoped data is accessed by all redundant code block
copieswith the programmer responsible for synchronized access. The robust directives
provide error containment by limiting scope to computation contained in the structured
block in addition to the detection and correction capabilities.

4.2.3 Runtime library routines

Syntax

The robust version of the memory allocation routine supports redundancy-based error
detection and/or correction for the dynamically allocated memory on the heap section
of the application address space. The routine prototypes are

float* problem_matrix = (float *) rolex_malloc_robust ( N *
sizeof (float), STRENGTH );

void rolex_validate_robust ( void * problem_matrix);

Semantics

The rolex_malloc_robust() enables the programmer to request redundant
copies of thememory block. The STRENGTHmacro specifies the number of copies of
the memory block. The pointer references to the replicated memory are also replicated
at the source level, as well as any program statements that manipulate thememory. The
rolex_validate_robust() routine initiates comparison andmajority voting of
the memory block.

4.2.4 Examples

Scientific applications employ data structures that heavily use pointer references and
these are known to be highly sensitive to memory failures [4]. Even single-bit upsets in
pointer variables lead to invalid references, causing segmentation faults. Linear alge-
bra methods, particularly those based on sparse problems, use structured formats such
as dictionary of keys (DOK), list of lists (LIL), coordinate list (COO), compressed
sparse row (CSR)or compressed sparse column (CSC) to refer to the non-zero elements
(NNZ) of the sparse matrix. The bit precise correctness of such addressing structures
and their computations is critical to application correctness. Using the robust qual-
ifiers and memory management routines for such variable state prevents potential
error states arising due to bit corruptions since they are detected, or even corrected,
before they lead to application failure due to invalid references. These robustness-based
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extensions may serve application-level variables that affect the program control flow,
such as loop condition and if-else condition variables, which also demand bit-precise
correctness.

The robust directives may be applied to application phases whose reliability is
critical to the application outcome. Inmolecular dynamics simulations, the correctness
of the pairwise force calculation between the particles is critical for maintaining the
numerical stability of the simulation. The directives may serve to provide in-situ
detection and correction for these application phases, by leveraging the anti-symmetric
property of the forces (for particles i and j, Fi j = −F j i ) [27]. Linear solver methods,
such as the FT-GMRES algorithm [13] and the self-stabilizing conjugate gradient
method [23], permit partitioning of the algorithm into reliable and unreliable phases.
In such a selective reliability model of execution, the correctness of the reliable phases
can be guaranteed through the redundancy-based error detection/correction semantics
provided by the Rolex robust directives.

4.3 Amelioration-based extensions

The amelioration-based language extensions are used to specify how data variables or
code block executions may be repaired during program execution. The knowledge is
based on algorithmic features of the application that allow the mitigation of the effects
of errors on the program state. Thesemethods compensate for the presence of errors by
either maintaining encoding information on the variables, or by reconstructing incor-
rect values by interpolating from neighbouring values. The amelioration approaches
[17] may cause limited information loss, which may be acceptable to the user, but they
seek to keep the application running towards solution rather than allow an error result
in catastrophic failure of the application.

4.3.1 Type qualifiers

Syntax

The heal type qualifier enables amelioration through the association of a routine that
may be invoked to repair anomalies in the annotated data structure. The healmay be
applied to declarations of primitive as well as compound data structures. The syntax
for the qualifier is

heal (recovery_func ()) float* matrix_A[N][N];

Semantics

The reference to the recovery function specified in the heal qualifier for the identifier in
the type declaration ismaintained by the runtime system.When the runtime receives an
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error notification for the heal qualified object, it invokes an event handler function with
the recovery function pointer as argument. If the recovery function is able to repair the
data structure, the runtime resumes the application process. The type qualifier provides
error containment and recovery capabilities for the qualified object.

4.3.2 Directives

Syntax

The amelioration-based directives provide limited localized recovery for regions of
computation that are contained in the structured block following the directive and the
associated data structures. The syntax for the amelioration directives is

#pragma rolex recover -rollback reinitialize ( variable_list ) {
/* code block * }

#pragma rolex recover -rollforward reinitialize ( variable_list )
{

/* code block * }

#pragma rolex recover -rollback ameliorate ( recovery_func () ) {
/* code block */ }

#pragma rolex recover -rollforward ameliorate ( recovery_func () )
{

/* code block */ }

These directives permit more flexible recovery of the variable state in addition to
the roll-forward and roll-back capabilities. The list in the reinitialize and
ameliorate clauses include variable identifiers, an expression list, or a user-defined
recovery_func().

Semantics

When the error notification to the runtime systemfinds that the error location ismapped
to the program code contained in the structured block, or on the data variables manip-
ulated by the statements in the block, the runtime initiates the recovery. This entails
restoring the variable state for the variable identifiers specified in thereinitialize
clause. When the recovery of variable state needs to be more nuanced, the runtime
invokes a recovery function through an event handler. The runtime also affects a roll-
back (re-entry of the code block) or a roll-forward (resume execution at the end of the
code block). The amelioration directives support error containment as well as flexible
recovery of the computation and variable state.

4.3.3 Runtime library routines

Syntax

The library routines for memory allocation that support fault amelioration have the
following APIs:

123



4678 S. Hukerikar, R. F. Lucas

float* problem_matrix = (float *) rolex_malloc_repairable ( N *
sizeof (float), checksum_func_pointer );

void rolex_ameliorate_heal ( void* problem_matrix );

The rolex_malloc_repairable() routine accepts a size argument and a
pointer reference to a user-defined recovery function, which is registered with the run-
time systemwhen the memory block is allocated. The routine rolex_ameliorate
_heal() for the invocation of the recovery method only requires a reference to the
memory block.

Semantics

When an error is detected on the memory block, the runtime invokes the recovery
function through an event handler routine. When the recovery function is able to heal
the memory block, the runtime allows the application execution to resume. In case the
recovery function is unable to correct the error, the runtime gracefully terminates the
application process. The runtime library routine rolex_ameliorate_heal()
may be inserted in the application code to explicitly invoke the recovery function.

4.3.4 Examples

Linear algebramethods that use densematrix structuresmaymaintain redundant infor-
mation using checksum schemes to detect and correct perturbations. The checksum
approach for amelioration is useful for a variety of matrix-based operations including
matrix–matrix multiplication, Cholesky, LU and QR factorization methods. Sparse
matrix-based problems, low overhead error detection and correction are possible by
leveraging the structural properties of the matrix (diagonal, banded diagonal, block
diagonal) using techniques such as approximate random (AR) checking and approxi-
mate clustered (AC) checking [24]. These algorithm-basedmethodsmay be associated
with the memory allocated for the matrix data structures using the Rolex amelioration
type qualifier or memory allocation routine.

Linear solvers based on iterative methods may be recovered from errors by replay-
ing iterations. The amelioration directives support such recovery through roll-forward
and roll-back semantics and clauses to re-initialize or repair the variable state, which
enables any incorrect iterations to be discarded and keeps an iterative solver on the
path to correct completion. Such partial recomputation techniques have been demon-
strated to be viable error recovery methods for various linear algebra methods [25].
Recovery may also be possible through lossy methods. For example, errors in the
intermediate solution of Krylov subspace solvers may be recovered using interpola-
tion of neighbouring error-free values. The least-squares linear interpolation method
has been demonstrated to be effective while maintaining the monotonic decrease in
the residual norm [2]. In the Hartree–Fock algorithm, heuristic knowledge is used to
develop bounds for the data values. For the orthonormalization vector, density matrix,
matrix exponential and orbital transformation structures, exact bounds conditions are
known whereas data values for which sharp bounds are not known, such as the Fock
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matrix, a heuristic bound may be defined [9]. Error states in data values are amelio-
rated by replacing them with reasonable values within these heuristic bounds. The
Rolex amelioration constructs allow such knowledge to be conveniently embedded in
the application code.

5 Compiler and runtime support for Rolex

5.1 Compiler infrastructure

The compiler infrastructure is a key intermediary that propagates the fault-resilience
knowledge expressed by the programmer to the generated target code and runtime
system. We have developed a compiler front-end, based on the ROSE compiler
infrastructure [22], which parses the qualifiers and directives to generate code that
is equipped with the resilience capabilities specified by the Rolex constructs. The
front-end parses the resilience knowledge into a profile file that is used by the runtime
system. The front-end also performs source-to-source code transformations, which
entails insertion of statements (using base language (C/C++) constructs) that permit
the application to manage error states during execution in collaboration with Rolex
runtime library (RTL) routines. A native C/C++ compiler may still be used to generate
code for the target platform. The two-stage compilation process enables incorporat-
ing the resilience oriented transformations in the front-end while leveraging standard
C/C++ compiler infrastructures to generate the target platform code. The modular
approach permits selective compilation of resilience features through the use of com-
piler flags or, even bypassing the front-end compilation phase altogether.

The front-end compiler parses all the Rolex qualified declarations in the program
code in a single pass. For tolerant qualified objects, the compiler produces detec-
tion and correction masks based on the bit-level representation of the object type,
which are included in the resilience profile file. For the robust qualified objects, the
Rolex front-end duplicates/triplicates the declarations of the variables. It also traverses
the uniform abstract syntax tree (AST) to discover the statements that perform opera-
tions on the robust qualified variables and inserts identical redundant statements for
the replicated object copies and statements for comparison of the replicated variable
values. For the heal type qualifier, a call to a RTL routine is added to register the
recovery routine as a callback handler function.

The front-end compiler pass also processes Rolex directives: it creates computa-
tional blocks for which the error detection, containment and correction behaviour is
explicitly defined. The front-end outlines the statement list in the structured block that
follows the Rolex directive into a new function. The original code block is replaced
with a call to the outlined function. The front-end inserts calls to Rolex RTL routines,
which affect roll-forward and roll-back semantics as well as support data scoping,
preservation and restoration, prior to and after the call to the outlined function. The
compiler also adds internal control variables (ICV), which are initialized and manip-
ulated by the runtime to control the behaviour of the outlined function.
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5.2 Runtime inference system

In order to support a resilient execution environment, the runtime system manages the
outcome of the error states in the application process. The runtime system maintains a
resilience knowledge base, called theDynamic ResilienceMap (DRM), which contains
the list of Rolex annotated data structures, their address offset in the address space and
error-management strategies. The rules for error detection, containment and recovery
strategies are those inferred from the Rolex annotations in the program source and
parsed by the compiler into the profile file. These are populated into the DRM at the
commencement of the application process execution. DRM entries are also dynam-
ically added, removed and modified through the runtime library routines during the
application execution. The runtime also provides an interface to the compiler front-
end, which consists of RTL routines that are visible only to the compiler framework.
The calls to these routines are associated with the outlined structured blocks. Table 1
summarizes the Rolex RTL routines and their capabilities.

When the runtime is notified of the presence of an error state in the application
address space, it queries the DRM to find the specific application-level construct that is
in error state.Basedon the application construct in error state and the errormanagement
knowledge available in the DRM, the runtime invokes the appropriate RTL routines
that seek to compensate for the perturbations in the variable state and rolls back or rolls
forward the execution, if required. When the runtime is able to account for the error
states, it allows the application process to resume execution in partially/fully restored

Table 1 Rolex runtime library routines

Rolex library routine Capability

__rolex_initialize() Initialization of runtime, allocation and
population of the DRM

__rolex_finalize() Clean up of DRM and termination of
runtime system

__rolex_preserve_state() Preserve program’s current state and
environment

__rolex_restore_state() Restore previously saved program state

__rolex_jmp_fwd() Jump to pre-defined forward reference point
and resume execution

__rolex_jmp_back() Jump to pre-defined previous reference point
and resume execution

__rolex_create_checkpoint() Save state of variables listed in args

__rolex_restore_checkpoint() Restore state of variables from maintained
copy in runtime

__rolex_copy() Duplicate the variable arg in the runtime

__rolex_register() Register program object in the DRM and
default response

__rolex_deregister() Deregister program object from DRM

__rolex_compare() Compare memory of arg pointers
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computational state. The runtime actions are inferred by traversing the decision tree
in Fig. 4, which is constructed using the Rolex annotations on the various program
constructs. The traversal provides the runtime with definite rules to manage specific
error states that may arise during the application program execution. When no error
management knowledge is available for an application-level construct in the DRM,
the runtime gracefully terminates the application process.

5.3 Workflow of a resilient execution environment

With the incorporation of Rolex, we allow several changes to the programming model
and the execution environment, which are captured by Fig. 5. When HPC application
codes are annotated with the Rolex qualifiers and pragma directives, the compiler
parses these extensions and introduces source-level transformations in the C/C++
application program code. The restructuring of the application source code to incorpo-
rate Rolex-driven resiliency features introduces additional declarations of redundant
variables, outlining of blocks of code and creation of additional functions and the
installation of handler functions. Therefore, the program control flow and function
call graph may be different from that intended by the application programmer, yet
these modifications are transparent to the user. Additionally, when the application
program is executed, we include a pre-execution stage where the linkages of the
application-level constructs from the compiled binary are discovered through a binary
disassembly library. During this phase the DRM is also populated with the address
offsets and error-handling actions.

In the current HPC execution models, the presence of a hardware-detected error
causes a machine check exception which raises an interrupt to the operating system.
When the error state is uncorrectable, the kernel enters panic mode which leads to
node shutdown. Therefore, all errors lead to failure and these are dealt with in failstop
manner. With the support of the Rolex-based programming model, our execution
environment includes a runtime inference system. The runtime is linked with the
application code. The operating system contains a kernel module that intercepts the
interrupts and passes them into the user space, i.e., to the runtime system through the
signaling mechanism. The runtime contains a signal handler that contains the logic to
query the DRM and to determine the best recourse for dealing with the error state. The
runtime’s RTL interface offers a well-defined API to augment the DRM knowledge
base, which enables the runtime to affect error detection, containment and masking
on application constructs. When the error state can be tolerated or ameliorated, the
runtime allows the application execution to resume using the knowledge in the DRM.
When no knowledge can be inferred, the runtime terminates the application, as is the
norm for unrecoverable errors in current systems. Since the error-handling component
of the runtime system is interrupt-driven, the runtime system does not add significant
overhead to the application performance during error free execution.

The Rolex-based programming model makes the HPC applications fault-aware as
well as fault-tolerant by imposing strict and relaxed reliability different on regions of
the application state. Rolex enables an execution model in which there is an active
interchange of error information between layers of the system stack. This prevents each
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Fig. 5 Overview of application compilation and execution with Rolex

error instance from causing a fatal application crash by reasoning about the signifi-
cance of the error using the programmer’s knowledge on the application’s correctness
expectations.

6 Experimental evaluation

6.1 Accelerated fault injection experiments

In order to experimentally evaluate the benefits of usingRolex to describe the resilience
properties of scientific application codes, we perform a set of accelerated fault injec-
tion tests. We use dynamic software-based fault injections into application processes
and observe their impact on the application’s outcome—whether Rolex enables the
application to run to completion and whether the results produced are within reason-
able bounds of a correct answer. For each application code, we use five fault injection
rates: 1 fault/15 min, 1 fault/10 min, 1 fault/5 min, 1 fault/2 min and 1 fault/1 min.
By adjusting the input problem sizes, the execution time of each application run is
adjusted to be greater than 20 min; this ensures that the application process execu-
tion experiences at most 1, 2, 4, 10 and 20 faults/run. With the fault rates that we
have selected, the effective mean-time-to-error of the application process is set to 15,
10, 5, 2 and 1 min(s). In comparison to the fault rates observed on production HPC
systems today these error rates are extremely high. These rates are also significantly
higher than most reasonable projections for exascale-class systems based on tech-
nology roadmaps. However, these experimental fault rates were chosen to validate
the dependability of the application processes and the efficacy of a Rolex-based pro-
gramming environment. They also provide insights into the precise behaviour of the
application in the presence of faults. Also, several error modes that are unseen today
might emerge in future systems and these accelerated tests serve as stress tests for
such scenarios.

Since some of the extensions only support tolerance and amelioration semantics,
they rely on hardware-based detection mechanisms. Other Rolex features provide
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implicit error detection. Therefore, the type of the fault injected, i.e., whether it results
in a detected memory error or a silent data corruption, depends on the type of Rolex
extension being evaluated.We have developed a flexible software-based fault injection
framework that simulates the different error behaviours. The fault injection framework
is non-intrusive, i.e., it runs independently from the application process and does not
require modification of the application program code, or compiler-based insertion
of additional instructions. It simulates a hardware interrupt by passing a signal to
the application process. The fault injection framework maintains a mapping of the
address space of the application process and the offsets for the various application-
level constructs and can inject faults into any region of the active address space. The
fault site selection may be random or may target specific application constructs. The
faults injection entails flipping the bits at the selected fault site in the application
address space.

We evaluate the application resilience of the scientific codes by opportunistically
annotating their source with the Rolex-type qualifiers, directives and runtime library
routines to suit the inherent resilience properties of the code. The code is compiledwith
our ROSE-based front-end compiler and then with the GCC compiler infrastructure
and is linked with the Rolex runtime library. The application binaries are executed in
a Linux-based cluster environment. For each fault injection rate, the application run
is performed 10,000 times each with randomly selected fault injection sites.

6.1.1 Enabling tolerance using Rolex extensions

Rolex extensions for error tolerance support elision semantics or provide value coer-
cion, but seek to keep the application process running towards completion. Since
these extensions depend on hardware-based detection mechanisms, the injected faults
simulate system memory errors that manifest themselves as ECC SECDED errors
(detected but unrecoverable by hardware-based ECC), whose notification is passed
into the runtime system. Based on the location of the error, there are only two possible
outcomes: compensation for the presence of the error (through error elision, masking
the affected bits of the variables, or roll-forward/roll-back of the execution), or termi-
nation of the application to prevent further corruption. We simulate SECDED errors
by raising a signal when the fault injection framework perturbs bits in the address
space. We demonstrate error tolerance through Rolex for the following three codes:

• HPCC Random access The benchmark was originally designed to model a
vectorized application and allows the same address to appear twice in a gath-
er/scatter operation and, therefore, fails to guarantee sequential consistency.
Due to this property, the benchmark is explicitly tolerant to the presence of
errors in its HPCC Table array. The computational kernel performs repeated
pseudorandom updates. We allocate the HPCC Table array structure using the
rolex_malloc_tolerant() runtime library routine to support error elision
semantics on the memory region corresponding to the HPCC Table.

• 3D rendering application The application converts a 3D model of a scene into
a 2D screen representation. The final rendered scene is written to a frame buffer
which is declared as a 2-D array in our test code. In order to ignore the presence of
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Fig. 6 Evaluation of tolerance Rolex extensions: accelerated fault injection results

perturbations in the frame buffer, we qualify its declaration with the tolerant
type qualifier. For these application runs, the measure of correct completion is an
execution that completes and renders the scene in which fewer than 5% of pixel
values are perturbed beyond a local characteristic threshold value.

• Molecular dynamics simulation This simulation is based on time-stepping algo-
rithm and contains floating-point array structures for the particle position, velocity
and acceleration. These are calculated every time interval and it has been demon-
strated that coercing these vectors into lower precision does not affect the stability
of the simulation over a large number of time steps. We qualify their declara-
tion with the tolerant type qualifier and use the PRECISION construct to apply
relaxed precision for the lower 26 bits of themantissa (when declared using double-
precision type). We monitor the properties of the complete system, including total
energy and pressure, to determine the validity of a simulation run.

Figure 6 summarizes the results of these fault injection experiments. These results
show the percentage of the total application runs that complete correctly despite the
injected errors versus those that end fatally. In the Random Access benchmark, the
memory footprint of the computational kernel that performs the pseudorandomupdates
is extremely small in comparison to the HPCC_Table array, which occupies 50% of
the system memory and allocated with the tolerant version of the malloc routine.
Therefore, upto 99% of the execution runs converge—even for an error rate as high as
1 fault/min. Similar resiliency features are demonstrated by the 3D rendering applica-
tion in which the dominant portion of the active memory footprint is the integer type
frame buffer array, which is declared with the tolerant qualifier. For the molecu-
lar dynamics simulations, the only resilience property exposed through Rolex is the
relaxed precision on the position, velocity and acceleration arrays. This supports error
tolerance on only a limited fraction of the total active address space. Accordingly, as
many as 85% of the application runs converge correctly for a fault rate of 1 fault/5
min; the survival rate drops rapidly in the presence of higher fault rates. The “failed”
simulations include runs that terminate abnormally as well as completed runs in which
with total energy and/or pressure of the system diverges outside ±5% of a fault-free
run.
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6.1.2 Enabling robustness using Rolex extensions

The Rolex extensions for robustness provide error detection and correction seman-
tics through the use of redundancy. Since application-level error detection is often
implicitly supported for such robust annotated application constructs, we make no
assumptions about hardware-level detection and notification mechanisms. For these
experiments, the fault injection framework simulates silent data corruptions (SDC).
For these injections, the target application process is intercepted and bit-flip perturba-
tions are introduced at the fault site. No notification is raised to the runtime system,
and the fault injection framework allows the application process to resume execution.
We consider four possible outcomes of a bit corruption injected in the application
address space:

• Silent data corruptions that are detected using the redundancy injected into the
application code.

• Benign faults that remain in the program state until the conclusion of the execution,
but do not affect the correctness of the outcome.

• Undetected faults in the application state cause errors but these fall outside the
coverage provided by the Rolex constructs.

• Application crash that occurs when the injected perturbation affects part of pro-
gram state mapped to the computational environment.

For the fault injection runs, we observe the propagation of the fault after injection until
the application completes, or terminates. We apply the robustness extensions on the
following two codes using Rolex:

• Graph500 breadth-first-search This unstructured, integer-oriented benchmark is
based on the graph abstraction and the code contains several pointer references
that represent the graph edges and vertices. The correctness of these pointers is
critical to the successful completion of an application run since any perturbations
on these lead to usually lead to illegal address accesses and a fatal crash of the
application process.We qualify all the pointer declarations for the graph edges and
vertices with the robust qualifier in the Graph500 Breadth-First-Search (Kernel 2)
code [16].

• Algebraic multigrid solver Each multigrid iteration of the linear solver, referred
to as a “V-cycle,” consists of smoothing, restriction and interpolation stages dur-
ing which the algorithm starts with a fine grid, restricts to a coarser grid and
then interpolates to a fine grid again. The intermediate solution grids are known
to tolerate errors at the cost of needing additional V-cycles to converge to the
correct solution. However, the algorithm is also sensitive to pointer variable
corruptions. We apply the robust qualifier for each pointer variable declara-
tion in code. Additionally, we allocate the intermediate solution grids using the
rolex_malloc_tolerant() routine.

The Fig. 7 illustrates the distribution of the application outcomes for each fault
injected. The Graph500 BFS algorithm contains a large number of pointer-related
computations to traverse the graph edges. It is possible to detect and correct the cor-
ruptions in the pointer arithmetic for almost 50% of all corruptions injected for a fault
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Fig. 7 Evaluation of robustness Rolex extensions: accelerated fault injection results

interval of 15 min. Since the number of visits for each vertex is fixed in the BFS algo-
rithm, the memory for these vertices and their pointers are not used as the application
progresses. Silent corruptions on these regions of the application address space are
benign. Other parts of the computational environment as well as the graph vertex data
elements contain no error management knowledge. When the injected faults hit these
regions the application fails. Therefore, a majority of injected faults are fatal to the
application at fault intervals of 1 and 2 since the Rolex fault coverage only protects the
pointer variable state. The AMG code demonstrates a different resilience behaviour
since the address space dedicated to the inherently resilient intermediate solution grids
is a significant part of the total address space. Therefore, although the Rolex constructs
only provide coverage for the pointer variables, a majority of the injected silent faults
still turn out benign since the resulting error in the intermediate state is refined by the
iterative nature of the algorithm.

6.1.3 Enabling amelioration using Rolex extensions

The Rolex extensions for amelioration enable recovery of the application’s variable
or computational state using well-known algorithm-based fault tolerance methods.
The extensions must be supported by hardware-based detection mechanisms. Since
these extensions associate a recovery function with a data structure or computation,
there are only two possible outcomes for each fault detected: the application state is
repaired by the recovery function, which permits the application execution to resume
or, the applicationmust terminate since the recovery function is insufficient to repair the
corruption.Wedemonstrate fault amelioration usingRolex constructs for the following
codes:

• Matrix-matrix multiplication In the DGEMM code, calculating row and
column-wise checksums is a well-known solution to detect and correct cor-
ruptions in the matrix. We define functions that maintain the row and col-
umn checksums for the operand matrices whose reference is passed to the
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Fig. 8 Evaluation of amelioration Rolex extensions: accelerated fault injection results

rolex_malloc_repairable() library routine. If the matrix declaration is
static the recovery function may be included in a heal type qualifier.

• Conjugate gradient solver For the CG solver, the matrix is allocated by the library
routine rolex_malloc_repairable(). The pointer to a function that main-
tains checksums of the matrix is passed to this routine. Additionally, we leverage
the iterative property of the CG algorithm by including the CG iteration step in the
#pragma rolex roll-forward amelioration directive and associate the
checksum routine with the directive. This allows faulty iterations to be discarded
and validating the correctness of the operand matrix upon roll-forward.

• Self-stabilizing conjugate gradient The self-stabilizing version of CG offers a
correction step that restores the stability of the algorithm when it is affected by
errors. This correction step is included in a recovery function whose reference
is included in the ameliorate clause of a directive. The CG iteration steps
are included in the amelioration directive #pragma rolex roll-back. The
roll-back capability allows the most recent faulty CG iteration to be discarded and
the recovery to be invoked.

Figure 8 summarizes the results of these experiments. For the DGEMM code, the
checksum-based amelioration is applicable for only the static state in the applica-
tion address space, i.e., the operand matrices that are initialized at the beginning and
whose values do not change throughout the execution. We have not applied any Rolex
construct on the dynamic state, i.e., the result matrix. With this fault coverage, 75%
of all executions converge correctly for the fault rate that injects an error every 15
min, but only 27% complete correctly at the accelerated rate of 1 error/min in which
case as many as 20 unrecoverable errors are injected into the process state. The inclu-
sion of Rolex constructs to the CG solver yields a better resilience characteristic than
DGEMM for similar fault intervals. This is because in addition to the checksum-based
error detection/correction on the operandmatrices, the iterative nature of the algorithm
permits incorrect computation to be recovered. Due to the enhanced address space fault
coverage through Rolex in CG codes the application demonstrates a better completion
rate than DGEMM, even at higher fault rates. The SS–CG contains a correction step
that is designed to restore the stability of the algorithm. This permits relaxation of
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the reliability requirements for the CG iterations. Therefore, a larger percentage of
executions of the SS–CG converge correctly, in comparison to CG, for similar fault
rates.

6.2 Performance evaluation

We evaluate the overhead of embedding the resilience knowledge using Rolex for each
of the application codes. With the introduction of Rolex constructs in the applications’
source code, the overhead is introduced by compiler-inserted statements as well as
runtime library routines. Additionally, the response to each type of error depends on
its context i.e., its location in the address space and the knowledge available in the
runtime’s DRM. Therefore, we evaluate the performance impact by comparing the
workload efficiency which is the ratio of the ideal time-to-solution on a fault-free
execution run to the actual running time in the presence of faults:

Efficiency = tfault-free
tactual-in-presence-faults

(1)

The difference between tfault-free and tactual-with-faults is the overhead associated with
dealing with faults by the Rolex runtime system. This includes the time for fault
detection, diagnosis and applying any recovery and compensation. We compile each
application code to two different binary versions: a binary with Rolex, compiled using
our front-end source-to-source compiler followed by a regular GCC compiler; and a
version using only a GCC compiler. The binary version without Rolex is executed
in a fault-free environment to measure the baseline execution time. The version con-
taining Rolex is subjected to fault injection for which we measure the application’s
time to solution for runs that survive all the faults and reach correct completion. The
execution times for each fault are averaged for the fraction of the 10,000 application
runs that complete correctly. This allows examination of the overhead incurred by
the compiler-based transformations as well as the overhead incurred by the runtime
inference system.

The results for the workload efficiency are summarized in Fig. 9. The overhead
to manage errors in HPCC Random Access and the 3D rendering application are low
because the runtime tolerates errors through elision and the size of the DRM is very
small. Therefore, even for extremely high fault rates, the overhead is about 15%. For
the molecular dynamics simulation, the error tolerance is supported through value
coercion on the position, velocity and acceleration vectors and this operation incurs
a higher overhead than error elision. Consequently, the overhead for the largest fault
interval is 4% and as much as 19% for the smallest fault interval. The robustness-
based constructs introduce redundancy through compiler-based transformations into
the application source. However, since we only annotate the pointer variables in both
the Graph500 BFS and AMG codes, there is a fixed overhead cost of about 10%
attributed to the redundant statements. The lower efficiency at higher fault rates may
be attributed to the overhead in notifying the runtime system. The amelioration-based
Rolex constructs demonstrate a significantly higher overhead compared to the toler-
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Fig. 9 Performance evaluation of Rolex: workload efficiencies

ance and robustness extensions. However, much of this overhead may be attributed to
the algorithmic amelioration functions rather than compiler and runtime overheads.
The SS–CG offers the best efficiency among the codes that use the amelioration
constructs since it requires only a stabilization step. The checksum operations are
computationally expensive operations and, therefore, the efficiency of the DGEMM
and CG codes are lower, particularly at higher fault rates when the checksum functions
are invoked frequently.

7 Related work

HPC programmers have historically borne the burden of exploiting novel features
in system architectures and execution models in the pursuit of performance. They
usually rely on various extensions to high-level programming languages with the
support of compilation techniques and runtime libraries. For example, the OpenMP [3]
standard emerged to support sharedmemorymultiprocessing programming in C, C++,
and Fortran through a set of directives, library routines and environment variables.
Similarly, Berkeley’s UPC effort [7] also extends the C language with constructs that
present the programmer with a single global partitioned global address space as the
program runs on shared or distributed memory parallel systems. The Co-array Fortran
(CAF) [21] began as an extension of Fortran 95/2003 (and became part of the Fortran
2008 standard) to support the PGAS model for Fortran programs. NVIDIA’s CUDA
was derived from Brook [6] which extended the C language with data-parallelism-
oriented constructs that enabled the use of the graphics processing units (GPU) as
streaming co-processors.
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The support for fault tolerance capabilities through programming models-based
approaches has been recently proposed and evaluated. Programming constructs, called
containment domains [8], provide the application programmer with mechanisms to
delineate computation that have transactional semantics. Upon execution of the code
block, the results of the computation are checked for correctness and if the block’s exe-
cution condition is not met, the results are discarded and the blockmay be re-executed.
Similarly, language-level support for idempotent regions [19] enables application
programmers to specify “relax” blocks in C/C++ programs, which may be freely re-
executedwithout checkpointed state or side effects. The FaultTM scheme [28] requires
an application programmer to define vulnerable sections of code which are executed
by duplicate thread contexts. The original and the backup thread are executed as an
atomic transaction, and their respective result values are compared before committing
the result. The Global View Resilience (GVR) project [12] provides annotations to
create multiple snapshot versions of the application data, which enables recovery from
failures by restoring the application state to a previous snapshot version.

8 Conclusion

This paper presented a set of Resiliency-Oriented Language Extensions (Rolex) for
expressing the error resilience properties of scientific HPC application codes at the
language level. They are developed as extensions to existing programming languages
such that they may succinctly capture a programmer’s knowledge on the fault toler-
ance features of the application through type qualifiers, directives and library routines.
The semantics of the language extensions enable application-level error detection,
containment and masking. We have presented concrete examples of widely used sci-
entific computational kernels in which encoding the resilience knowledge using Rolex
enhances the application’s error resilience.We described the compiler transformations
that leverage the language extensions to incorporate further error resilience features
in the application codes. These transformations are enabled by a front-end source-to-
source compiler infrastructure. We described the compiler-runtime interface and the
design and implementation of the runtime inference system.We demonstrated that the
combination of the language-level programming model extensions, which are tightly
integrated with the compiler infrastructure and runtime system, provides an execution
environment that facilitates cross-layer efforts for error detection, masking and recov-
ery. For HPC applications, this translates to the survival of more errors and, therefore,
a longer mean-time-to-failure.

Appendix: Rolex grammar

This appendix shows the extensions to the base language grammar for C and C++ to
support Rolex.
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Rules for resilience type qualifiers

Listing 1 Rules for resilience type qualifiers

declaration_specifiers : storage_class_specifier
| storage_class_specifier declaration_specifiers
| type_specifier
| type_specifier declaration_specifiers
| type_qualifier
| type_qualifier declaration_specifiers
’;’

storage_class_specifier : TYPEDEF | EXTERN | STATIC | AUTO |
REGISTER ’;’

type_specifier : VOID | CHAR | SHORT | INT | LONG | FLOAT |
DOUBLE |

SIGNED | UNSIGNED
| struct/union_specifier | enum_specifier | TYPE_NAME
’;’

type_qualifier : CONST
| VOLATILE
| resilience_type_qualifier
’;’

resilience_type_qualifier : TOLERANT
| TOLERANT ’(’ tolerance_limit ’)’
| ROBUST ’(’ robust_strength ’)’
| HEAL ’(’ function_declaration ’)’
’;’

tolerance_limit : PRECISION ’=’ CONSTANT
| MAXIMUS ’=’ CONSTANT

robust_strength: DETECT | CORRECT

Rules for resilience directives

The redundancy directives enable error detection and/or correction for the computation
contained in a structured block. The strength clause indicates whether dual or triple
modular redundant execution must be applied. The recovery directives offer error
containment since any fault that is activated leading to error state during the execution
of the structured block is not allowed to propagate outside the block. Error recovery
is performed by rolling forward or rolling back execution of the structured block. The
roll-forward and roll-back semantics on the structured code blocks require explicit
specification of the data scoping to comply with the C/C++ memory consistency
model. The rules for the data management and scoping clauses are also shown in
Listing 2. The clauses permit the variable state to be restored when execution is rolled
forward or back. For the redundancy directives, the data clauses ensure that there
are no races on the shared data. The declarative clauses in Rolex enable the creation
of multiple versions of the associated function to support retry, ignore or redundant
execution for the statements in the function body.
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Listing 2 Rules for resilience directives

statement -list: statement | resilience -directive | statement -list
statement | statement -list resilience -directive

statement : labeled_statement | compound_statement |
expression_statement | selection_statement | iteration_statement

|
jump_statement | resilience -construct | declaration -definition |
function -statement ’;’

resilience -construct: rolex -redundancy -construct |
rolex -recovery -construct | rolex -declare -construct

rolex -redundancy -construct: redundancy -directive structured -block

rolex -recovery -construct: recovery -directive structured -block

rolex -declare -construct: declare -directive function -statement

structured -block: statement

recovery -directive :# pragma rolex recover -rollback
recovery -data -clause(opt) new -line #pragma rolex recover -

rollforward
recovery -data -clause(opt) new -line

redundancy -directive: #pragma rolex robust robust -strength -clause
redundancy -data -clause(opt) new -line

declare -directive: #pragma rolex declare resilient
declare -resilience -clause failsafe -data -clause(opt) new -line

robust -strength -clause: DETECT | CORRECT

recovery -data -clause: data -default -clause | data -private -clause |
data -share -clause | data -reinitialize -clause |
data -ameliorate -clause

redundancy -data -clause: data -default -clause | data -private -
clause |

data -share -clause | data -compare -clause

failsafe -data -clause: fallback ’(’ variable -list ’)’

data -default -clause: default ’(’ shared ’)’ | default ’(’ none ’)
’

data -private -clause: private ’(’ variable -list ’)’

data -share -clause: share ’(’ variable -list ’)’

data -reinitialize -clause: reinitialize ’(’ variable -list ’)’

data -ameliorate -clause: ameliorate ’(’ function_declaration ’)’

data -compare -clause: compare ’(’ variable -list ’)’

declare -resilient -clause: retry | ignore | robust ’(’
robust_strength ’)’
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