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Abstract The travelling salesman problem (TSP) is a well-known NP-hard problem.
It is difficult to efficiently find the solution of TSP even with the large number of
gene instances. Evolutionary approaches such as genetic algorithm have been widely
applied to explore the huge search space of TSP. However, the feasibility constraints of
TSPmake it difficult to devise an effective crossover method. In this paper, we propose
an improved constructive crossover for TSP. As the performance of graphics process-
ing units (GPUs) rapidly improves, GPU-based acceleration is increasingly required
for complex computation problems. Unfortunately, the constructive crossover meth-
ods cannot be easily implemented in a parallel fashion because each gene element of
offspring is dependent on the previous element in the gene string. In this paper, we
propose a more effective method with which large number of genes can evolve effec-
tively by exploiting the parallel computing power of GPUs and an effective parallel
approach to genetic TSP where crossover methods cannot be easily implemented in
parallel fashion.
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1 Introduction

The travelling salesman problem (TSP) is a well-known optimization problem where
the objective is to find the lowest cost of a tour path that passes all the nodes exactly
once and returns back to the starting node. Although it seems simple, this optimization
problem is known as ‘NP-complete’. In other words, TSP has a huge search space,
and it can be impossible to find the optimal solution [14,16]. Therefore, various kinds
of genetic algorithms have been employed to solve this problem [6,11].

Evolutionary method is a heuristic search algorithm based on the rules of evolution
like natural selection and natural genetics [4,10]. Briefly described, genetic algorithms
employ selection, crossover, andmutation to improve the solutionswhich are expressed
as genes. In this process, the crossover plays themost important role in producing better
genes out of the current gene pool. However, the traditional crossover methods cannot
be used for evolutionary approaches to TSP because simple exchange of substrings
of genes easily violates the feasibility constraints. To avoid this problem, researchers
have proposed various crossover methods which always generate feasible offsprings
[5,9,17].

Among those crossovermethods, ‘sequential constructive crossover (SCX)’ showed
the best convergence compared to previousmethods [1]. There are a few disadvantages
when SCX is employed. First, the SCX searches only in one direction and does not
take into account the circular properties of TSP tours. Another disadvantage of SCX
is that the offsprings are likely to be similar to the better solution between two parents.
This is inevitable because the construction process of SCX is greedy. The greedy
aspect of SCX makes the gene pool rapidly converge to local minima and reduce the
diversity in the gene pool. To improve the performance of the constructive crossover,
bidirectional circular SCX (BCSCX) was proposed [15]. Although BCSCX improves
the convergence speed, it still suffers from rapid assimilation of genes to a certain
local minima.

In this paper, we propose an improved crossover that maintains the diversity of
genes. Thismethod produces offspringswhich equally inherit from two parents. Since,
the parents alternatingly play roles in determining the city sequence of offsprings, the
method is named ‘alternating recommendation crossover (ARX)’.

Evolutionary methods like the ones above search better when the gene population
is large and genes are diverse. Therefore, it is necessary to use a large amount of
genes [8]. This means that the necessary computation tasks also must increase along
with the size and number of genes. This is a typical ‘data parallelism’, and GPUs
are suitable for such problems. However, the constructive crossovers such as SCX,
BCSCX, and ARX cannot be easily performed in a parallel fashion. In this paper, we
propose efficient parallel computing techniques for constructive crossovers to solve
large-scale TSPs in an efficient way.

2 Evolutionary approach to the travelling salesman problem

In this section, the difficulties in designing crossover methods for genetic approaches
to TSP will be explained. Furthermore, we will introduce crossover methods suitable
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for TSP. The proposed methods satisfy the constraints of TSP and unconditionally
produce feasible offsprings. The basic idea is to construct a feasible offspring from
the sequences of parent genes. Although the proposed method successfully generates
feasible offspring, it can produce only one offspring with two parents, and the property
of the offspring gene tends to depend more on one parent with better fitness. To avoid
such limitations, we also propose another crossover method which can produce two
offsprings and the offsprings are evenly influenced by two parents.

2.1 Gene representation and crossover for feasible offsprings

A TSP solver based on genetic algorithm requires a proper gene representation for
feasible solutions. The sequence of cities in accordance with a feasible tour can be
used as a gene representation.

The solutionsmust allow all nodes to be visited only once and theremust be nomiss-
ing nodes. In conventional crossovermethods, an offspring is generated by exchanging
some parts of parent’s chromosomes. However, such a conventional crossover may
easily produce duplicate nodes and missing nodes.

Crossover operators such as ‘edge recombination crossover (ERX)’, ‘generalized
n-point crossover (GNX)’ and ‘sequential constructive crossover (SCX)’ have been
proposed to guarantee the feasibility of offsprings, SCX showed better fitness conver-
gence than othermethods. SCXcrossovermethod guarantees the validity of offsprings’
chromosomes and conserves the merits of parents. This method tries to reduce the
local distance between the adjacent nodes in the offspring by sequentially scanning
the chromosomes of parents. The algorithm can be described as follows [1]:

1. Set the starting node 0 to be the current city p.
2. Find the two unvisited node a and b, respectively, from the chromosome of each

parent by sequentially searching the first unvisited nodes (legitimate nodes) after
the current city p. If the search fails, select any unvisited node from the city
permutation template such as 〈1, 2, . . . , n〉.

3. Compare the distances from p to a (dpa) and to b (dpb). If dpa is less than dpb,
add a to the offspring chromosome and set a to be the current node. Otherwise, b
is added and set to be the current node. Then go back to step 2.

2.2 Improved SCX with bidirectional and circular search

To improve the performance of SCX, bidirectional circular SCX (BCSCX) was pro-
posed. Thismethod can search the next possible ‘legitimate’ nodes in the chromosomes
of parents in two directions and the chromosome is regarded as circular data with no
ends [15].

The BCSCX operator searches legitimate nodes in two directions. In other words,
it chooses the two candidate nodes to be added to the chromosomes of offspring both
before and after the currently visited node from chromosomes of each parent.

For example, assume that an uncompleted chromosome sequence 〈1, 5〉 has been
inherited from two parents during the crossover operation. Then the current node is
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city 5. If, within the chromosome sequence of one parent, city 3 is the closest unvisited
node (‘closest’ in the aspect of the location in the sequence string) among the nodes
after the current node (city 5), and city 2 is the closest unvisited node before the current
node in the sequence of one parent. The proposed BCSCX takes both nodes (cities 3
and 2) as ‘legitimate candidate nodes.’ Two more candidates are taken from the other
parent in the same way. Let us assume that the candidates from the other parent are
city 2 and city 6. The candidates for the next node in the offspring’s chromosome right
after city 5 are the union of the candidate sets (i.e. cities 2, 3, and 6), and they are
tested similarly as SCX. In this method, offspring is constructed in a greedy way so
that the offspring is very similar to the better gene when the gap between the fitness
values of the parents is huge.

SCX does not assume that chromosome strings are circularly concatenated. There-
fore, if the last node of the chromosome string is the current node p, no candidate
legitimate nodes can be obtained. To avoid this problem, SCX employed a pre-defined
template.

For example, assume that the chromosome of a parent is 〈1, 3, 7, 6, 2, 4, 5〉 and
that of the other is 〈1, 5, 7, 2, 6, 3, 4〉, and currently constructed partial chromosome
of the offspring is 〈1, 5〉. The original SCX then fails to find the legitimate node
from the first parent, and the first unvisited node (in this case, city 2) from the template
〈1, 2, 3, 4, 5, 6, 7〉will be selected as the legitimate node.However, ourmethod regards
the chromosomes as circular data, and jumps to the first character so that city 3 will be
selected as the legitimate node. It seems like a matter of course that BCSCX converges
better than SCX because the tour routes are circular by nature.

2.3 Efficient search for legitimate nodes

Constructive crossovers such as SCX construct the chromosomes of offsprings by
selecting the best node from the ‘legitimate’ candidates, and the feasibility of the
offspring chromosome is guaranteed by the ‘legitimacy’ of the candidate nodes. How-
ever, the performance of the crossover largely depends on how to search the legitimate
nodes. Moreover, the method proposed in this paper searches the legitimate nodes in
two directions, and the performance of this search process affects the overall perfor-
mance of the system.

The overall performance of an evolutionary TSP solver depends on three major
factors: (1) k, the number of iterations needed for convergence to a reasonable solution,
(2) m, the population of genes, and (3) n, the number of cities. If we denote the cost
of the legitimate node search for constructing a child chromosome as search(n), the
performance of the system can be expressed as O(km · search(n)). When a naïve
approach such as sequential search is applied, it is obvious that search(n) is O(n2)
and the overall performance will be O(kmn2).

Since the genes converge to similar genesmore as the number of iterations increases,
the backward search used in the method proposed in this paper inevitably requires
O(n2) searches for the construction of one chromosome.

To resolve this problem, we employed forward and backward jump indices. The
jump indices can be described as in Fig. 1. In this figure, the visited nodes are shaded
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Fig. 1 Example of jump indices
and their modification

1 2 4 3 7 5 6 9 8 10

1 2 4 3 7 5 6 9 8 10

forward index: 2

forward index: 1

backward index: 1

backward index: 3

After node 8 is selected

Table 1 The initial setting of parent chromosome before bidirectional constructive crossover

i 0 1 2 3 4 · · · n − 1

χi 1 Arbitrary city permutation with (2, 3, . . . , n)

f χ
i 1 1 1 1 1 · · · 2

bχ
i 1 2 1 1 1 · · · 1

Visited Yes No No No No · · · No

and themost recently visited node has a thick border. The legitimate nodes are searched
from this node, and the indices make it possible to search them in O(1) time.

If we consider the first chromosome state, the first five cities of offspring chromo-
somes have been determined, and the last city is 6. The candidates for the next city
are city 8 and city 5. Therefore, the forward jump index is 2, and the backward one is
1. If the city 8 is selected as the next city, the jump indices have to be updated. The
forward and backward indices of city 8, for example, become 1 and 3.

Because the solution routes of TSP must return to the starting node, we assumed
all the feasible chromosomes start from city 1. Let us denote the chromosome satis-
fying this constraints as χ , and the i th city in the chromosome as χi . The forward and
backward jump indices to find legitimate nodes fromχi are denoted f χ

i and bχ
i , respec-

tively. The information in the chromosomes of each parent before the construction of
offspring chromosomes can be initialized as shown in Table 1.

Based on the circular property of the TSP solution, the indices restart from 0 when
they become larger than n − 1 (i.e. i mod n). Similarly, the indices come down from
n − 1 when they become less than 0. Let us denote index i satisfying this constraint
as 〈i〉n . The node 0 (i.e. χ0) is always 1. The forward and backward indices of all
nodes are initialized as 1 except for the forward one of node n − 1, and backward one
of node 1 because χ0 will be automatically inherited to an offspring’s chromosomes
and regarded as already visited node. Because BCSCX takes four possible legitimate
nodes from two parent chromosomes, there is no guarantee that χ1 or χn−1 will be
selected as the next node. If a node χi is selected as the next visiting city, only two
indices f χ

〈i−bχ
i 〉n and b

χ

〈i+ f χ
i 〉n in the chromosome must be updated. The update can be

done as follows:

f χ

〈i−bχ
i 〉n ← f χ

〈i−bχ
i 〉n + f χ

i (1)

bχ

〈i+ f χ
i 〉n ← bχ

〈i+ f χ
i 〉n + bχ

i
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With the assistance of the indices managed as shown in Eq. 1, the total search
for legitimate nodes during the whole construction of offspring chromosomes can be
done in O(n). Therefore, the overall system performance is O(kmn), and we have
only to improve the convergence speed to reduce k when devising a better constructive
crossover method.

2.4 Alternating recommendation crossover: ARX

The most important drawback of SCX and BCSCX is that an offspring is biased to a
better parent. This is inevitable because of the greedy aspect of SCX and BCSCX in
the construction of offspring genes by selecting the best unvisited node at every step.
The greedy property makes the gene pool rapidly lose its diversity, and the evolution
process easily becomes stagnant at local minima.

To avoid this problem,we propose amethod thatmaintains the diversity of the genes
by alleviating the greediness of the aforementioned crossover method and making off-
springs inherit from parents with the equivalent importance. The proposed crossover
was named alternating recommendation crossover (ARX) because the parents alter-
natingly take privilege to determine the gene sequence of offsprings. Each parent can
recommend the legitimate nodes as in the BCSCX only when it is given the privilege.
Therefore, the parents equally play roles in constructing the offspring gene sequence.

The actual crossover method is shown in Fig. 2. Two parents are denoted α and β,
and two points where the recommendation privilege is switched are determined. The
points are randomly selected for the gene pool to experience various biases to parents
in the crossover process. The crossover produces two offsprings (child α and child β).
In the construction of one offspring, parent α recommends the legitimate nodes until
the first crossover point A, and parent β takes over the privilege after that point. At the
next crossover point marked as B, the privilege is again switched to parent α. In the
construction of child β, the recommendation is performed in the reverse manner. As
shown in the figure, ARXcan produce two different offspringswhile SCX andBCSCX
can produce only one offspring at each crossover. The substrings recommended by
parent α and β are denoted Rα and Rβ , respectively.

parent α

parent β

crossover point A

child α

child β

Rα : recommended by parent α

Rβ : recommended by parent β

Rα

Rα

Rα

Rβ

Rβ

Rβ

crossover point B

Fig. 2 Offspring construction of ARX
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ARX canmaintain the diversity of genes compared to SCX andBCSCX. The fitness
improvement of ARX is not as rapid when compared to other constructive crossover
methods because it equally takes into account the features of less fit parents. However,
the diversity of the gene pool enables the genetic evolution to escape from the local
minima more easily than the previous constructive crossover methods, and to find the
better solution in the long term.

3 GPU acceleration

Graphics processing units (GPUs) were initially devised to transform a large amount
of geometric data. Therefore, GPUs are parallel processors that perform simple and
similar tasks to large data, and they are suitable for various ‘data parallel’ problems
[7]. As the performance improvement of GPUs outperform traditional CPUs, various
computation problems that are suitable to be processed by SIMD (single instruction
multiple data) algorithms, such as molecular dynamics are being successfully acceler-
ated with GPUs [2,3,18]. Moreover, GPU resources are relatively cheaper than CPUs
so that more and more high-performance computing problems are accepting GPU-
based parallel computing [19].

However, there are some limitations in GPU computing. First, GPUs do not allow
dynamic memory allocation during tasks. As a consequence, the necessary memory
for a task should be determined in advance. Moreover, memory lock is not efficiently
supported. One of the most important limitations is that the communication between
CPUs and GPUs is still too expensive. Therefore, the CPU–GPU communication
becomes the bottleneck of the overall computation [13].

Despite the limitations, the many-core parallel processing is useful for problems
dealing with large amounts of data. In this section, we present our methods to exploit
parallel processing ability and to overcome limitations to implement an efficient
genetic algorithm for large-scale travelling salesman problems.

3.1 Parallel computation of fitness values of genes

A single gene describes a tour visiting all the cities. The fitness of the gene is the sum
of distances between every adjacent city pairs in the gene sequence. Let us denote the
city in the i th place of the sequence by ci , and the distance between two cities ci and
c j by d(ci , c j ). ϕx , the fitness of a gene x , can be computed as follows:

ϕx = 1/
n∑

i=1

d(ci , c(i+1)modn) (2)

It seems that we can create n threads of which index τ ranges from 1 to n to perform
a task using parallel computation d(cτ , c(τ+1)modn). However, each thread τ accumu-
lates its computation result to the same variable ϕx which should be synchronized.
The synchronization nullifies efficiency obtained by the parallel processing. To solve
this problem, we create threads in accordance with the number of genes. Suppose we
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have m genes, the range of τ is then [1, m]. In the i th execution of n-sized loop, each
thread τ performs d(ci , c(i+1)modn) for τ th gene, and adds the result to ϕτ . The fitness
values then can be computed in an asynchronous way.

3.2 Efficient competition

Evolution is achieved by selecting better genes to produce offsprings. Each gene com-
petes with others to survive. To implement an efficient genetic method, it is important
to knowwhich two genes are selected and compared to one another. Random selection
of competing pairs in GPU implementation is not recommended because GPU does
not efficiently support memory lock.

To make genes compete with each other without any need for synchronization,
each gene has its fixed rival in accordance with its location in the gene pool. After the
competition, the location of the winner is also fixed to not request synchronization.

Supposewehavem genes in the pool, each gene can be indexed by the integer i in the
range of [0,m−1]. For a gene j ranging from 0 to �m/2�, gene j +�m/2� is coupled
to be compared, and the winner gene is stored at the location j . This competition
process does not require any synchronization and can be efficiently performed in a
parallel fashion.

3.3 Efficient parallel crossovers

Crossover methods also cannot be performed by random selection of gene pairs
because of the same reason mentioned in the previous subsection describing the
implementation of parallel competition. Moreover, the constructive crossover can-
not be easily implemented with parallel tasks because the feasibility constraints make
it impossible to independently determine each gene element in a single gene. Tra-
ditional crossover where some corresponding subsequences of two parent genes are
simply exchanged and other such tasks can be performed in parallel without any
difficulties. However, the constructive crossover methods can determine the kth ele-
ment in the offspring gene sequence only after the k − 1th element has been already
determined. Therefore, efficient parallel crossover has two requirements: (1) asynchro-
nous crossover pairing and offspring reproduction, and (2) parallel implementation of
crossover.

For parents to be asynchronously coupled, we also fix the partner for each gene.
During the competition process, we have m/2 elite genes in the first half of the gene
pool as shown in the Fig. 4. For each elite gene which has even-number index i
ranging from 0 to �m/2�, the next gene i + 1 is coupled to produce an offspring .
Their offspring is computed and stored at the location i/2+�m/2� as shown in Fig. 3.
BCSCXproduces only one offspring from two parents. Therefore, onlym/4 offsprings
are produced as shown in Fig. 4. However, ARX can produce two offsprings from two
parents. Therefore, one of the offsprings is stored at i/2 + �m/2�, and the other is
stored at i/2 + �3m/4�.

As mentioned, the constructive crossover cannot be parallelly implemented. To
solve this problem, we create threads in accordance with the number of genes m and
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0 m
2jg j + m

2

competition

winners

winner(j, j + m
2 )

garbage data

parallel computation is possible

Generation g

Generation g + 1

jg+1

Fig. 3 Offspring construction of ARX

Elite genes of previous generation

· · ·

BCSCX Offsprings

crossover 1

crossover 2

m
2 elites m

4 children

Elite genes of previous generation

· · ·

ARX Offsprings

crossover-AB 1

crossover AB 2

m
2 elites m

4 children m
4 children

crossover-BA 1

crossover-BA 2

BCSCX

ARX

Fig. 4 Parallel crossover without synchronization

each thread independently determines only one element of its offspring gene sequence.
In other words, a parallel task is denoted by ξ(k, p1, p2, c)where ξ is a crossover task,
k is the location in the offspring sequence to be determined, p1 and p2 are the gene
indices of parents, and c is the location for the offspring in the gene pool. Therefore,
the parallel crossover can be performed as shown in Algorithm 1.

Algorithm 1: Thread execution for parallel crossover
Data: n: number of cities, m: number of genes
begin

for each index (k: 1 · · · n) do
for each thread(τ : 1 · · · �m/2�) do

do ξ(k, τ, τ + 1, τ + �m/2�)
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3.4 Intergroup gene exchange

The effect of parallel crossover becomes significant when the size of the gene popula-
tion is large enough in relation to the number of cities. However, simply increasing the
population size does not accelerate convergence even though it results in proportional
increase of computational burden. The stagnation in fitness improvement despite the
increased number of genes is because of the rapid decline in gene diversity. To main-
tain the diversity, we divided the gene pool into several groups and genes competing
with each other and produce offsprings within the specific groups they belong to.

To accelerate the convergence, the best gene of each group is periodically trans-
ferred to another group. The groups of genes which are interchanged are randomly
selected. The intergroup gene exchange can be easily implemented with n threads that
transfer only one element assigned to them. The communication between groups must
slightly increase the computational burden. However, the fitness convergence will be
accelerated by the diversity of genes.

4 Experiments

The experiments were performed on a system running on Ubuntu Linux OS with Intel
Xeon 3.25 GHz CPU and NVIDIA GTX 980 GPU, and the test data were obtained
from TSP data site maintained by University of Waterloo, and they are found at [20].
The project is available in a public repository (https://github.com/dknife/Proj15A_
TSP).

The convergence trends of BCSCX and ARXwere measured as shown in Fig. 5. In
this experiment, test data contain 237 cities (xqg237), and 2048 genes were randomly
generated. After 150 generations, each crossover method plotted the convergence
trends shown in the figure. Although every run of genetic approach shows different
convergence, they were not very different from those shown in the figure. Therefore,
the graphs shown can be regarded as typical convergence trends of BCSCX and ARX.
The horizontal axis represents the number of generations, and the vertical axis the
error ε of the found solution with the cost cb compared to the known optimal solution
with the cost of co. The error was measured as follows:

ε = (cb − co)/co (3)

As shown in Fig. 5, ARX shows slower convergence than BCSCX because BCSCX
greedily selects the best one among the four candidates recommended by two parents.
Although, the greedy approach rapidly converges in the early stage of the evolution,
it does not produce the better solution in the long term. The crossover based on this
strategy makes the gene pool homogeneous, and no more effective search will be
performed after a local minima is found. This can be easily observed by checking the
vertical lines under the graphs. The vertical lines are drawn when the gene pool finds a
gene which is better than any other genes produced in the previous generations. After
the BCSCX quickly finds a gene with little fitness, the record breaking search becomes
infrequent. However, ARX, although slow, continuously updates the fitness record. For
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Fig. 5 Convergence trends (150 generations) of a BCSCX (ε = 0.07) b ARX (ε = 0.11)

Fig. 6 Convergence trends (150 generations) of hybrid crossover

Table 2 Fitness convergence comparison

131 cities (xqf131) 662 cities (xql662)

Gen. to reach ε = 0.1 ε after 100 gen. Gen. to reach ε = 0.1 ε after 100 gen.

BCSCX 35.54 0.041 71.21 0.057

ARX 67.45 0.008 532.42 0.058

hybrid 26.40 0.019 54.23 0.021

mutation, we randomly selected a small fraction of genes and also randomly chose
edge pairs in each selected gene. The selected edge pair e1(v1, v2) and e2(v3, v4) was
then modified as e′

1(v1, v3) and e′
2(v2, v4) and the subsequence v2 · · · v3 is reversed

to maintain the feasibility.
To exploit the advantages of BCSCX and ARX, we implemented a hybrid method

that uses both crossover methods. In the hybrid method, half of the offsprings are
generated with BCSCX and the rest of them are generated with ARX. Figure 6 shows
the convergence of the hybrid method with the same data used in Fig. 5. The hybrid
method converged more rapidly than BCSCX by including the slower crossover ARX.
This shows the significance of the gene diversity in evolutionary methods. The fitness
values after 150 generations were 0.021 in average.

Table 2 compares the convergence of crossover methods with 131-city data
(xqf131), and 662-city data (xql662). 2048 genes were used. To compare the ini-
tial convergence speed, we measured the number of generations required until ε is
less than 0.1. Each case was tested 100 times and the average value is shown in the
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Table 3 150-generation evolution of 128 local minima genes (662 cities, initial ε = 0.0915)

Run 1 2 3 4 5 6 7 8 9 10 Avg.

BCSCX 0.047 0.049 0.057 0.056 0.051 0.066 0.038 0.053 0.049 0.053 0.052

ARX 0.025 0.020 0.020 0.022 0.025 0.025 0.025 0.026 0.026 0.022 0.024

Hybrid 0.045 0.039 0.048 0.046 0.022 0.044 0.051 0.053 0.042 0.041 0.043

Fig. 7 Fitness after 150-generation evolution of 128 local minima genes (662 cities)

table. We also measured the error after 100 generations. Although ARX is slower in
the early convergence, performance can be greatly improved by hybridization with
BCSCX.

To investigate the advantage of ARX in diversity and continuous search, we applied
ARX to locally optimized genes with preprocessing. We generated 128 local minima
genes for a 662-city problem (xql662) by applying BCSCX and local improvement
such as 2-opt [12]. The local minima genes were then used as initial genes for further
evolutionwithBCSCX,ARX, and hybridmethods, and the convergencewasmeasured
as Table 3.

Figure 7 visually illustrates the convergence of the crossover methods shown in
Table 3. ARX showed the best convergence when applied to differently evolved genes
with low costs.

A similar experiment was done for a 10150-city problem (xmc10150). In this case,
we increased the number of genes by multiplying the 128 local minima genes. As the
size of the problem is larger than the 662-city experiment, we measured the ε after
500 generations with the different population sizes. The results are shown in Table 4.
With this experiment, the increase of population size did not provide satisfactory
convergence speed-up. To increase the diversity of genes, we divided the 2048 genes
into 8 groups, and evolution was applied within each group. The result is shown in
the last column in the table. The divided groups improved the performance of the
crossover methods.

Performance comparison between GPU implementation and CPU implementation
was also performed. We measured the performance for 4 problems which have 131,

123



GPU-based parallel genetic approach to large-scale travelling… 4411

Table 4 500-generation evolution of local minima genes with different population sizes (10150 cities)

10,150 cities (xmc10150): initial gene group precomputed to be ε = 0.1841
Obtained ε after 500 generations

128 genes (1 group) 256 genes (1 group) 2048 genes (1 groups) 2048 genes (8 groups)

BCSCX 0.1077 0.1102 0.1107 0.0860

ARX 0.1036 0.1100 0.1019 0.0824

Hybrid 0.1038 0.1039 0.1030 0.0839

Table 5 Computation time required for one generation

Genes Groups Number of cities

131 2071

GPU (ms) CPU (ms) CPU
GPU GPU (ms) CPU (ms) CPU

GPU

128 1 2.85 3.22 1.130 26.12 31.29 1.198

8 4.17 5.32 1.276 29.01 108.71 3.747

256 1 4.03 5.33 1.323 28.32 49.47 1.747

8 5.08 6.72 1.323 31.08 127.35 4.097

2048 1 15.22 19.15 1.258 63.25 326.35 5.160

8 15.90 20.33 1.279 66.10 397.50 6.014

Genes Groups Number of cities

10,150 100,000

GPU (ms) CPU (ms) CPU
GPU GPU (ms) CPU (ms) CPU

GPU

128 1 115.33 208.25 1.806 1160.29 5160.38 4.447

8 127.85 976.27 7.636 1315.88 29,093.50 22.110

256 1 124.78 289.18 2.318 1308.41 6212.37 4.748

8 132.71 1064.35 8.020 1490.96 30,559.15 20.496

2048 1 288.95 1632.42 5.649 5514.09 25,905.06 4.698

8 340.51 2397.90 7.042 5569.41 50,387.65 9.047

2071, 10,150, and 100,000 cities, respectively. Population size was also changed to
measure the performance in various environments. Genes evolved once as one group,
and once as eight groups. The performancewasmeasuredwith the time used to produce
the next-generation genes in milliseconds. The column titledCPU/GPU shows how
slow the CPU implementation is when compared with GPU version. In other words,
these values indicate the speed-up of GPU implementation over the CPU version. As
shown in the table, the GPU implementation showed better performance when the
population size or the number of cities increases (Table 5).

The proposed method was applied to a large-scale TSP with 1,000,000 cities. Fig-
ure 8 shows the result. 2048 genes were used and divided into 8 groups. The relative
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Fig. 8 The result of the proposed method applied to a large-scale TSP

error of the best fitness of the initial random gene pool was larger than 17.00. However,
only after 200 generations, the gene with ε = 0.1608 was found and the solution is
shown in Fig. 8a. Figure 8b, c shows the errors after 400 and 5000 iterations, respec-
tively. After 5000 generations, the genetic approach produced a gene with ε = 0.0655.
The currently known best tour is shown in Fig. 8d.

The experiments were performed on a single GPU system. Therefore, the sizes of
the problem and gene pool were restricted by the capability of the GPU. To increase
the problem size, a multi-GPU cluster system must be considered.

5 Conclusion

In this paper, we proposed an effective parallel approach to genetic TSP where
crossover methods cannot be easily implemented in parallel fashion. The crossover
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of the proposed method is a constructive approach like the previous crossover meth-
ods for TSP. Those constructive methods have serious disadvantages in that they have
greedy aspects in the construction of offspring sequences and it is difficult to in parallel
perform the crossovers.

The method proposed in this paper, ARX, lessens the greediness of crossover
methods like SCX and BCSCX by alternating the influence of parents on offspring
construction. ARX makes it possible for gene pools to maintain diversity so that
the evolution-based search does not stagnate in local minima. The experimental
results show that the hybridization of rapidly converging constructive method and
the diversity-conserving ARX can significantly improve evolution performance.

Although the constructive crossover methods cannot be performed in parallel, GPU
parallelism still can be exploited by creating threads for each gene. In this case, the
genes should be sufficiently large when compared with the problem size (the number
of cities). However, simple increase of population size does not guarantee better per-
formance because the constructive methods rapidly decrease the diversity in the gene
pool. We divided the genes into several groups to exploit the effect of increasing the
number of genes, and the experimental results showed that evolution is improved by
separating genes into groups, even with the loss of intergroup communication. GPU
implementation was more efficient in such multi-population environments.
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