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Abstract Local search metaheuristics (LSMs) are efficient methods for solving hard
optimization problems in science, engineering, economics and technology. By using
LSMs, we could obtain satisfactory resolution (approximate optimum) in a reason-
able time. However, it is still very CPU time-consuming when solving large problem
instances. As graphic process units (GPUs) have been evolved to support general
purpose computing, they are taken as a major accelerator in scientific and industrial
computing. In this paper, we present an optimized parallel iterated local search algo-
rithmefficiently accelerated onGPUs and test the algorithmwith a typical case study of
the Travelling Salesman Problem (TSP) in computational science. We introduce novel
methods as follows: first, we present an efficient mapping between a neighborhood and
a GPU thread. Second, we use the Roofline model to analyze the performance of exist-
ing GPU-based 2-opt kernels. Based on our analysis, we point out the limiting factor
of these 2-opt kernels and provide our optimization approaches. Furthermore, we test
our algorithm with standard TSP problem instances up to 4461 cities, in which our
strategy leads to a speedup factor 279× over the sequential counterpart. We compare
our approach with existing high-performance GPU-based local search algorithms, and
the results demonstrate that the proposed algorithm is competitive.
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1 Introduction

Solving optimization problems is complex and time-consuming for central processing
units (CPUs), especially for large-scale problems.Metaheuristics are efficientmethods
to obtain satisfactory resolution (approximate optimum) in a reasonable time, and
widely applied in solving science, engineering, economics and technology problems
[13,24,29,30,40]. Recently, efficient parallel metaheuristic algorithms have been a
topic of considerable interest [1,28,44]. Local searchmetaheuristics (LSMs) are one of
the most widely researched single solution-based approaches with many variants such
as iterated local search (ILS) [26], tabu search (TS) [10] and simulated annealing (SA)
[20]. LSMs share a common feature that the candidate solution is iteratively selected
from its neighborhood. LSMs could solve combinatorial optimization problems such
as theTravellingSalesmanProblem (TSP) [37] and theQuadraticAssignment Problem
(QAP) [21], both of which have been proved NP-hard. Many works are dedicated to
improve its performance by parallel computing technology from algorithmic level,
iteration level and solution level [38]. As a result, parallelism is a way not only to
reduce the time complexity but also to improve the quality of the solutions provided
[1].

Today, graphics processing units (GPUs) have evolved from fixed function ren-
dering devices to programmable and parallel processors [18]. The demand from the
market for real-time, high-definition 3D graphics motivates GPUs to become highly
parallel, multithreaded, many-core processors with tremendous computational power
and high-bandwidth memory. Therefore, the GPU architecture is designed such that
more transistors are devoted to data processing than to data caching and flow control
[32]. With the rapid development of general-purpose GPU (GPGPU) techniques in
many areas, major companies promote programming frameworks for GPUs, such
as CUDA [32], OpenCL [18] and Direct Compute. Recently, the use of GPGPU
has been extended to other domains such as numerical computing, computational
finance and life science. The field of metaheuristics also follows this trend, and GPU
accelerated LSMs have been reported more computational efficient than CPU-based
LSMs [9,17,28,35]. However, little work is known about the quantitative comparison
between the proposed approaches which is a challenging task [4]. As a result, we
should pay great efforts on trying different optimization strategies on several genera-
tions of GPUs. Although several studies are dedicated to the quantitative performance
analysis of parallel algorithms on GPUs [19,39], it is still missing in the field of meta-
heuristics, including LSMs. Furthermore, it is an important problem to make LSM
algorithms on GPU optimized for the best efficiency.

In this paper, we propose an optimized parallel ILS algorithm on GPUs and test
the algorithm with a typical and open issue of the TSP in computational science.
We present an efficient mapping between a neighborhood and a GPU thread. We do
quantitative comparison between previous parallel local search operators, by using
the Roofline performance model [41]. We analyze the performance of existing GPU-
based 2-opt kernels in the ILS. Based on the performance analysis, we propose an
optimized 2-opt kernel. We evaluate the performance of these algorithms with the
standard TSP problems with sizes as many as 4461 cities. We obtain a speedup factor
of 279× compared to the CPU sequential version.We also compare our algorithmwith
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two state-of-the-art GPU-based local search algorithms in literature, and the results
demonstrate our approach is effective.

The rest of the paper is organized as follows: First, we briefly introduce the GPU
architecture, the Roofline model and the ILS for the TSP in Sect. 2. Second, related
works are discussed in Sect. 3. Third, our methods for the design and analysis of
parallel ILS are discussed in Sect. 4. Our experimental methodology is outlined in
Sect. 5, and we describe the performance evaluation of our algorithm in this section.
Finally, we summarize our findings and conclude with suggestions for future work.

2 Background

2.1 GPU computing

For the purpose of understanding our work, a brief description of GPU architecture
and programming framework is required. GPUs have evolved from fixed function
rendering device to a highly parallel andmany-core general purpose computing device
which work in a single instruction, multiple data (SIMD) manner. They are very
suitable for compute-intensive and highly data parallel computation, because more
transistors are devoted to data processing than to data caching and flow control. More
detailed materials about the GPU architecture could be found in [2,16,31].

The programming framework that we adopt to implement the parallel ILS algorithm
is OpenCL. OpenCL is an open royalty-free standard for general-purpose parallel
programming acrossCPUs,GPUs and other processors, providing software developers
with portable and efficient access to the power of these heterogeneous processing
platforms [18]. OpenCL consists of APIs for coordinating parallel computation across
heterogeneous processors and a cross-platform programming language with a well-
specified computation environment.

Figure 1 illustrates that an OpenCL device is divided into one or more compute
units (CUs), which are further divided into one or more processing elements (PEs).
Computations on a GPU occur within the processing elements. Generally, a CPU
in OpenCL architecture could be named a host. The OpenCL application submits
commands from the host to execute computations on the PEs within a GPU.

A CU supports the SIMD model with multiple PEs that perform the same opera-
tion on multiple data points simultaneously. Work-items in OpenCL are the smallest
execution units and more generally called threads. We use the term thread and work-
item interchangeably. The host calls the GPU function by the kernel, which defines
the computation to be executed by many work-items organized in work-groups. In a
work-group, work-items are further grouped into batches (or warps) coordinated by a
scheduler at runtime. They execute concurrently on the PEs of a single CU.

The memory model of the GPU is hierarchical and could be classified into on-chip
memory and off-chip memory. The on-chip memory consists of local memory and
private memory. Work items in a work-group share data through the local memory,
which has a limited memory space typically within 64 K. The private memory is
a private memory region of a work item that cannot be observed by other work-
items. This memory contains registers used by each PE. The global memory, constant
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Fig. 1 OpenCL compute device architecture [18]

memory and texture memory together represent the off-chip memory of GPUs. The
largest memory region is the global memory, which can be accessed by all work items.
The size of this memory is typically larger than 1 GB, but it is much slower than the
local memory. The constant memory that can only be allocated and initialized on a host
is a read-only region in the global memory. The texture memory space also resides in
global memory and are cached in texture cache. A texture can be any region of linear
memory, so we could write arrays into texture memory for efficient data fetch.

2.2 Roofline performance model

Roofline model is a performance analysis model for modern processors, especially
focusing on the floating point performance of parallel processors [41]. This model
is based on the relation of processor performance to off-chip memory traffic. The
terminology operational intensity is used to mean operations per byte of DRAM
traffic, for example, the floating point operations per byte (FLOP/byte). The theoretical
performance of a kernel on a device could be calculated by multiplying operational
intensity by themainmemory bandwidth (byte/s). The performance is bounded by two
types of ceilings: computational ceilings and bandwidth ceilings. We could assume
that the operational intensity is a column. If it hits the computational ceiling, which
represents the theoretical peak performance of the device, the kernel is compute-
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bound; otherwise, it ismemory-bound. Thismodel offers uswith insights for algorithm
optimization on parallel processors.

2.3 Iterated local search for the TSP

The TSP is an NP-hard problem in combinatorial optimization and plays a prominent
role in research as well as in a number of application areas [14]. The objective of the
TSP is to find a minimum-weight Hamilton cycle in a complete weighted directed
graph G = (V, A, d), where V = 1, 2, . . . , n is a set of vertexes (cities), A =
{(i, j)|(i, j)εV × V } is the set of arcs, and d : A → N is a function assigning a
weight or distance (positive integer) di j to every arc (i, j).

The local search operator for TSP could be formally descried as follows. Let s
be the candidate solution of a TSP problem. N (s) presents for neighborhoods of s
which could be generated by simply change k edges in s, also named as k-opt. The
most well-known neighborhood generation methods for the TSP are the 2-opt and
3-opt. Let s′ be the best neighborhood in N (s). If the fitness value of s′ which is f (s′)
is smaller than f (s), then s′ replace the candidate solution s. This process is done
iteratively until there is no improvement to candidate solution and the local search
gets stuck at a locally optimal point. The basic local search is also known as the hill
climbing. To get global optimal solution, some approaches are incorporated into it to
jump out of the local optimal point. In the ILS, a perturbation function is made to the
local optimal solution s∗ by performing a random change of edges that is enough to
guide to another local optima. The double-bridge move (also known as 4-opt move),
first introduced by Lin and Kernighan in [25], is a typical perturbation method that
used widely in many modern algorithms. The ILS executes the local search operator
and the perturbation iteratively until the termination criterion condition is reached.
The outline of the algorithm is given in Algorithm 1.

Algorithm 1 Iterated Local Search Pseudo-code
1: s0 := I ni tialSolution();
2: s∗ := LocalSearch(s0);
3: repeat
4: s′ := Perturbation(s∗);
5: s∗′ := LocalSearch(s′);
6: s∗ := AcceptanceCriterion(s∗, s∗′);
7: until T erminationCriterion()

8: end

3 Related work

Recently, the GPU has become a major accelerator with the ease of programming and
the need for computing power. It is attractive to researchers who are interested in solv-
ing computationally hard optimization problems. Since LSMs are popular and efficient
methods for solving these problems, accelerating LSMs on GPUs is of course a rea-
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sonable choice. Following works have been dedicated to the parallel implementation
of LSMs on GPUs.

For solving the Quadratic three-dimensional Assignment Problem (Q3AP), Luong
et al. [27] present an iterated tabu search on GPUs. They design a new large neigh-
borhood structure in their algorithm. They obtain speedups up to 6.1 with convinced
quality and robustness. They later focus on the design and implementation of effective
LSMs on GPU [28]. They propose efficient approaches for CPU-GPU data transfer
optimization, thread control, mapping of neighboring solutions to GPU threads and
memory management. Their experiments are performed using four well-known com-
binatorial and continuous optimization problems. The results achieve 80× speedup
in large combinatorial problems and 240× speedup in a continuous problem. They
demonstrate that the performance GPU-based LSMs is even better than the cluster and
grid-based parallel architectures in some cases.

Rocki and Suda propose high-performance 2-opt [36] and 3-opt [35] algorithms on
GPUs for the TSP. Their results demonstrate that the local search operator execution
time is 90 % of the whole, and the GPU algorithm is approximately over 500× faster
in case of 3-opt compared to a sequential CPU code. Their major contribution is
the classification of distance calculation strategies. They name the strategy Look Up
Table (LUT) that the distances are pre-computed once and reused later reading from
memory. They identify that the space complexity of LUT is O(n2), which is not
suitable for the GPU memory architecture. Therefore, they present a better strategy
that reads coordinates of the vertexes and recalculates the distance each time.We name
it CALC. We also observe that Fosin et al. [9] propose a parallel ILS implementation
with 2-opt and 3-opt operators for the TSP, in which the distance is calculated at the
GPU run-time. This strategy is the same as CALC. They have reported a 27× speedup
with the same solution quality as the sequential CPU version.

Delévacq et al. [8] present an ILS on GPUs with considering processing hardware
andmemory structure. Theypropose twomodels for ILS, named ILSthread and ILSblock,
which exploit parallelism in different levels. They report speedups of up to 6.02 with
solution quality similar to the sequential CPU implementation on TSPs ranging from
100 to 3038 cities. They later integrate the GPU-based local search algorithm into
new GPU-based Max–Min Ant System algorithms [7] to achieve competitive com-
putational efficiency and solution quality. Similar as Delévacq et al., Arbelaez and
Codognet [3] present the ideas of parallelizing constraint-based local search in single-
walk and multi-walk manners. Their experiments indicate speedups up to 17 times.

O’Neil and Burtscher [33] present a GPU-accelerated random-restart hill climbing
embedded with 2-opt local search to solve TSP. They emphasize more on compu-
tational efficiency by as fully as possible exploiting GPUs hierarchical hardware
parallelism. They introduce an intra-parallelism scheme and a shared memory tiling
approach, which yield eight times faster than an OpenMP-based counterpart on a
20 cores CPU.

The previous works have researched the parallel ILS implementation on GPUs and
demonstrate that GPUs could accelerate ILS algorithms significantly. However, little
attention is paid to the performance analysis model for the design of LSM algorithms
on GPUs. Further, the analysis could motivate us to optimize the performance of the
parallel ILS on GPUs.
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4 Parallel ILS algorithms on GPUs

4.1 Parallel ILS design

Following the terminology defined by Talbi [38] in parallel metaheuristics, we design a
parallel ILS focusing on the iteration level. In this case, we parallelize the local search
process in Algorithm 1. Figure 2 illustrates the parallel local search accelerated by
GPU in the iteration level. In this design, a host that contains CPU and systemmemory
handles the major algorithm control flow and memory management. The most time-
consuming part of the local search is the evaluation of neighborhoods, which could be
accelerated by a GPU. The host copies TSP problem data structures such as the city
distance matrix to the GPU memory. Because the problem data are constant during
the local search process, it could be transferred into the constant memory or texture
memory onGPUs only once. The solution structure should be transferred into theGPU
global memory before each iteration of the local search process. The other processes
in Algorithm 1 are calculated on the host.

The local search operator we choose is the 2-opt. Figure 3 shows the generation of a
neighborhood in the 2-opt kernel for the TSP. The edges (i, i +1) and ( j, j +1) in the
original solution (at the left of Fig. 3) are broken and the fragments are reconnected to
a neighborhood solution (at the right of Fig. 3). Each neighborhood (i, j) is associated
with a unique id wid (work id), which is the number identity of a neighbor instead of
number pairs.

Fig. 2 The parallel local search accelerated by GPU in the iteration level

Fig. 3 Illustration of generation
a neighborhood in 2-opt operator
for the TSP
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Fig. 4 Parallel evaluation of neighborhoods on GPU

As depicted in Fig. 4, neighborhoods are processed in parallel on GPU. There are
two phases: the improvement computation and selection of the best neighborhood. In
the first phase, the key issue is the mapping between a neighborhood and a GPU thread
which is explained in the next subsection. EachGPU thread performs the improvement
computation of a neighborhood. In terms of task parallelism, each GPU thread could
also be assigned with m neighborhoods and process them sequentially. In the second
phase, we select the best improved neighborhood. In terms of data parallelism, the
improvement results in each GPUwork-group are processed to find the best improving
neighborhood by parallel reduction in O(logn) steps [12]. Then, we select the best
neighborhood from all work-groups by atomic operations.

4.2 Mapping strategy of neighborhood structures on GPU

Assuming that there are n cities in a TSP, the size of neighborhoods is n∗(n−1)
2 in the

2-opt. In our algorithm, we evaluate all of the neighborhoods on GPU and choose
the best improved one. This strategy is also regarded as the best improvement. For
the mapping between a neighborhood and a GPU thread that is not straightforward,
a conversion between them should be considered for efficiency. Figure 5 illustrates
our mapping scheme. First, we use a mapping table in which each row is associated
with a city i and each element in a row represents the combination with other cities.
In each row, the first element is set with i + 1 and the next value increases by 1 until
the last element is reached. If the value of element j is greater than n−1, we use j%n
instead. Second, since the neighbor (i, j) is equal to ( j, i), we eliminate the repeated
combinations with column id greater than or equal to n/2. Further, if n is an even
number, the neighborhoods with row id ranging from n/2 to n − 1 and column id
n/2− 1 are also repeated. We keep them for padding to avoid divergent code path on
GPUs. Finally, based on the work id wid, the 2-opt neighborhood indexes could be
calculated by {

i = wid
width

j = (i + 1 + wid%width)%n,
(1)

where width is the size of a row which is equal to n/2.
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Fig. 5 Neighbors and threads mapping on GPU

Because 32-bit integer arithmetic on GPU is more costly than single-precision
floating-point arithmetic [32], less number of integer operations should be considered
for efficiency. By simple calculation, we find that our mapping calculation contains
only five integer operations which is relatively small compared to that in [28,35]. Each
thread calculates the improvement �(i, j). Then, we select the minimal � in all the
threads and get the corresponding neighborhood (i, j).

To achieve higher hardware utilization,we assignm neighborhoods to a thread. Each
thread processes m neighborhoods sequentially and stores the best neighborhood to
local memory for the reduction process. In this case, the work id can be calculated by
wid = tid ∗ m + offset, where tid is the thread id and offset is the private work id in
thread tid.

4.3 Performance analysis of 2-opt kernels

We introduce Roofline model for GTX780 to analyze 2-opt kernels in Fig. 6. The
vertical line (the dashed line in the figure) is started from the operational inten-
sity of an algorithm on the x-axis and ended with the intersect point on the y-axis.
The performance of the 2-opt kernel on GTX780 lies somewhere along that line.
The key points behind the Roofline model are to calculate the operational intensity
(FLOPs/Byte, also named arithmetic intensity) of a GPU kernel and then to determine
if the kernel is compute-bound or memory-bound for further algorithm optimization.

First, we introduce major steps in the 2-opt kernel. In Fig. 3, the edge (i, i + 1)
and edge ( j, j + 1) are broken and then the four fragments are reconnected. The
improvement of the neighborhood is the length changed by these two new edges. To
reuse the distance of cities, a pre-calculated matrix d with size O(n2) is used as a
lookup table. The Euclidean distance of (i, j) is calculated by

d(i, j) =
√

(xi − x j )2 + (yi − y j )2, (2)

where (x, y) is the coordinate of a city. Because the distance matrix d is too large to
fit in GPU local memory, it is always put into global memory. So, we name this kernel
2-opt-glm.
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Fig. 6 Performance analysis of 2-opt kernels on a GTX780 by Roofline model. The graph is on a logClog
scale. The diagonal roof is the bound by memory bandwidth, and the horizontal roof is the bound by
computational performance. We add a ceiling, named no FMA (fused multiply-add), for which there is no
FMA operation in these kernels

Second, we measure the performance of the 2-opt-glm kernel by floating-point
operations per second (FLOP/s). The operational intensity of the 2-opt-glm kernel is
calculated as follows: We consider a neighborhood (i, j). First, four cities at positions
i, i +1, j and j +1 are loaded from solution s. Nowwe have four cities c1, c2, c3, c4.
Second, the lengths of four edges ((i, i+1), ( j, j+1), (i, j), (i+1, j+1)) are loaded
from d. Until now, there are totally eight float values loaded. Third, the improvement
of neighborhood (i, j) is calculated by�(i, j) = d[c1][c3]+d[c2][c4]−d[c1][c2]−
d[c3][c4] which contains three floating point operations (FLOPs). By simple calcu-
lations, we can get the operational intensity OI2opt = 3

8∗4 = 0.09375 FLOPs/Byte.
Figure 6 illustrates that the theoretical throughput of 2-opt-glm is only 27 GFLOP/s on
a GTX780 with memory bandwidth of 288.4 GB/s. As a result, we conclude that the
2-opt-glm kernel is memory-bound. Additionally, the memory access pattern of the
2-opt kernel is irregular. The GPUmemory bandwidth could hardly be fully exploited
because of these non-coalesced accesses.

4.4 Analysis of previous optimization approaches

There are two existing optimization approaches. The first one is to utilize the GPU
texturememory that proposed by Luong et al. [28]. Since thememory access pattern of
2-opt-glm is irregular and could hardly coalesce, this would degrade the performance
of the global memory accesses. Therefore, the use of GPU texture memory is well
suited for the following reasons:

1. The data structures used in the improvement computation phase are read-only
values.
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2. The texture memory space reside in global memory is cached in texture cache.
There is no need to consider noncoalesced accesses.

We call the strategy 2-opt-tex. This could also be explained by aforementioned perfor-
mance analysis. The 2-opt-glm kernel is memory-bound, so the global memory traffic
should be optimized to approach the theoretical performance.

Rocki and Suda [35] also have noticed the memory bandwidth limitation of the
2-opt kernel. They present a repeated computing data strategy to better utilize the
GPU computing power. They utilize the on-chip local memory on GPU. We name
this kernel 2-opt-shm. In fact, this approach increases the operational intensity of the
2-opt kernel. Two data structures are stored in local memory: the solution array and
city coordinates. For the size of a TSP solution that is n, it is easy to use local memory.
But the size of the city distance matrix that is n2 that exceeds the capacity of GPU
local memory (48 KB). It is unable to load the whole city distance matrix into GPU
local memory. The alternative method is to load the city coordinates (2n) into GPU
local memory, and the Euclidean distances between cities are calculated on-the-fly.
Fosin et al. [9] also suggest using this strategy.

We can learn from Eq. (2) that there are seven FLOPs for computing d(i, j). Four
city distance entries are calculated for each neighborhood, so there are additional 28
FLOPs to the 2-opt kernel. As the number of work-items in a work-group is limited
to 1024, for achieving higher operational intensity, we could assign m neighbors to
each thread. Considering a work-group, we compute the operational intensity by total
FLOPs dividing total bytes accessed in

OI2optE = w ∗ m ∗ (3 + 28)

(n + 2n) ∗ 4
= 31wm

12n
, (3)

where w is the number of work-items in a work-group, m is the number of neighbors
processed by a work-item and n is the number of cities. Given a work-group size
1024 and each work-item process ten neighbors, the operational intensity for a TSP
with size 1024 is 25.83 FLOPs/Byte. Figure 6 shows that the 2-opt-shm kernel is
compute-bound. Because there are no simultaneous floating-point additions and mul-
tiplications in the 2-opt kernel, we could hardly exploit the FMA operation supported
by GPU. Thus, we add a performance ceiling, named no FMA, which is half of the
peak computation performance (see Fig. 6).

The theoretical throughput of the 2-opt-shm kernel reaches 1988.5 GFLOP/s. This
kernel makes a tradeoff between the data transfer from global memory and the com-
putation of city distance. However, it is also bounded by the local memory size. Due
to this the 2-opt-shm kernel is unable to apply to TSP instances that is larger than 4096
cities [(4096 + 4096 ∗ 2) ∗ 4 = 49, 152Bytes = 48KB].

4.5 Our optimization approaches

We optimize the 2-opt kernel motivated by the above performance analysis. In the
following sections, we present the optimization approaches aiming at two strategies
of the Euclidean distance calculation: pre-calculation once (LUT) or recalculation
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every time (CALC). In order to clearly demonstrate the optimizations in the parallel
implementation, the major pseudo-code of the two kernels used to implement the
OpenCL version of the algorithm is shown in Listings 1 and 2.

Listing 1 The optimized 2-opt-tex-shm kernel pseudo code.

1 int tid = get_local_id(0);
2 int local_size = get_local_size(0);
3 int global_size = get_global_size(0);
4 for(int i = tid; i <= n; i+=local_size)
5 {
6 local_sol[i] = read_imagei(s, imageSampler, (int2)(i, 0)).x;
7 }
8 barrier(CLK_LOCAL_MEM_FENCE);
9 for(int i = tid; i < n; i+=local_size)

10 {
11 break_edges[i] = read_imagef(d, imageSampler,
12 (int2)(local_sol[i], local_sol[i+1])).x;
13 }
14 barrier(CLK_LOCAL_MEM_FENCE);
15 for(int wid = get_global_id(0); wid < total_nb; wid += global_size)
16 {
17 i = wid / (n/2);
18 j = (i + wid
19 c1 = local_sol[i];
20 c2 = local_sol[j];
21 next_c1 = local_sol[i + 1];
22 next_c2 = local_sol[j + 1];
23 delta =
24 read_imagef(d, imageSampler, (int2)(c1, c2).x +
25 read_imagef(d, imageSampler, (int2)(next_c1, next_c2).x -
26 break_edges[i] - break_edges[j];
27 if (min_delta > delta)
28 {
29 min_delta = delta;
30 min_id.x = i;
31 min_id.y = j;
32 }
33 }
34 local_id[tid] = min_id;
35 local_delta[tid] = min_delta;
36 barrier(CLK_LOCAL_MEM_FENCE);
37 // Perform a reduction operation to find the best neighbor in
38 a work-group.
39 reduce_op(local_id, local_delta);
40 if(tid == 0)
41 {
42 // Perform atomic operations to find the best neighbor
43 in all work-groups.
44 atomic_op(local_id, local_delta);
45 }
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4.5.1 Optimization of the 2-opt kernel based on the LUT strategy

Our major idea is to increase the operational intensity of the 2-opt kernel. Because
the city distance matrix is too large to fit into local memory, we still store it in the
texture memory for efficient data reuse (e.g., line 24 in Listing 1). We name this kernel
2-opt-tex-shm. Here, i and j stand for the position in the solution array (lines 17–18
Listing 1). Similar to the 2-opt-shm kernel, we use local memory to store the solution
array s (lines 4–7 in Listing 1). Further, we load the length of edges in solution s to
a local memory array break_edges so that we can later use it for the improvement
computation of neighborhoods (lines 9–13 in Listing 1). For example, the length of
edge (b, b+1) is saved to break_edges[b]. Thus, the improvement computation of the
neighbor (i, j) could use the length break_edges[i] and break_edges[ j] that reside in
local memory (line 26 in Listing 1).

We keep the number of FLOPs for computing improvement of neighborhoods but
reduce the overall data size load from global memory. For each work-group, the size
of local memory used is 2n (the s and break_edges array). For each neighborhood,
there are still two edges to be loaded from texture memory. Similar to the analysis
method of the 2-opt-shm kernel. We compute the operational intensity by total FLOPs
dividing total bytes accessed in

OI2optTS = w ∗ m ∗ 3

2n ∗ 4 + w ∗ m ∗ 2 ∗ 4
= 3wm

8(n + wm)
, (4)

where w is the number of work-items in a work-group, m is the number of neighbors
processed by a work-item and n is the number of cities. Given a work-group size 1024
and each work-item process ten neighbors, the operational intensity for a TSP with
size 1024 is 0.34 FLOPs/Byte. So, the theoretical performance is 98 GFLOP/s (see
Fig. 6).

4.5.2 Optimization of the 2-opt kernel based on the CALC strategy

Since the neighbors are mapping to a 2D matrix as illustrated in Fig. 5 before, we
could assign several rows of neighbors to a work-group and the work-items within the
work-group execute evaluation of each neighbor in a data-parallel fashion (Fig. 7).
We name this kernel 2-opt-coord. Here, i and j stand for the position in the ordered
coordinate array (coords) of a solution (Listing 2). We use two loops in the kernel. In
the outer loop (lines 3–7 in Listing 2), each work-item reads the data of city in position
i from global memory. In the inner loop (lines 8–13 in Listing 2), eachwork-item reads
the data of city in position j in parallel from global memory. Then, we optimize the
operational intensity of the kernel. First, similar to 2-opt-tex-shm, we create a global
memory buffer, named buf, to store the length of break edges. Therefore, the number of
distances to compute for each neighbor reduces from4 to 2. Second, the coordinates for
cites at position i could be reused, so for each neighbor, the number of the coordinates
loaded is 2 and the number of break edges is 1.We compute the operational intensity by

3+14
(2∗2+1)∗4 = 0.85. The theoretical peak performance of 2-opt-coord is 245 GFLOP/s
(see Fig. 6).
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Listing 2 The optimized 2-opt-coord kernel pseudo code.

1 int bid = get_group_id(0);
2 int work_group_num = get_num_groups(0);
3 for (i = bid; i < n; i += work_group_num)
4 {
5 pi0 = coords[i];
6 pi1 = coords[i + 1];
7 dist_i = buf[i];
8 for (k = tid; k < halfN; k += localSize)
9 {

10 j = i + 1 + k;
11 pj0 = coords[j];
12 pj1 = coords[j + 1];
13 dist_j = buf[j];
14 delta = compute_distance(pi0, pj0) + compute_distance
15 (pi1, pj1) -
16 dist_i - dist_j;
17 if (min_delta > delta)
18 {
19 min_delta = delta;
20 min_id.x = i;
21 min_id.y = j;
22 }
23 }
24 }
25 local_id[tid] = min_id;
26 local_delta[tid] = min_delta;
27 barrier(CLK_LOCAL_MEM_FENCE);
28 // Find the best neighbor (refer to lines {38}-{43} in Listing 1).

We could learn from the Roofline model analysis (Fig. 6) that the kernel is memory-
bound. Therefore, our other optimization is to improve the performance of global
memory accesses. Note that in Fig. 7, the j value is not continuous when the j index
is n − 1. This would cause uncoalesced global memory accesses. For example, the
neighbor (i = 5, j = 7) and its next one (i = 5, j = 0) are not continuous in the

Fig. 7 Optimization of global memory access pattern in 2-opt-coord kernel
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index of j . Our strategy is to expand the size of the coordinate array to 2n and copy
the first n elements of the array to fill the expanded space. Thus, if j exceeds n − 1,
the access of index j%n is replaced by j . For instance, we could use (i = 5, j = 8)
to retrieve the coordinate data of the next neighbor. Thus the global memory access
is coalesced (lines 13–15 in Listing 2) and, therefore, higher memory bandwidth is
achieved. Furthermore, because the kernel accesses the data without use of the local
memory, the size of the TSP problems to be solved is not limited by the hardware
resource.

5 Performance evaluation

We have experimented our algorithm implemented using C++ and OpenCL on a
PC. The detailed hardware specifications are given in Table 1. The OS is Microsoft
Windows 7 64-bit ultimate edition. Our experiment uses a standard set of benchmark
instances from the TSPLIB library [34]. The sizes of these TSP problems are varying
from 198 to 4461 cities which could represent samples from small tomedium and large
scale [11]. The perturbationmethod inAlgorithm1we choose is a double-bridgemove,
like nearly all ILS algorithms for the TSP [14].

Similar to Rocki and Suda [35], we use single-precision float-point numbers for
the city distance. Each TSP instance tests a fixed number of iterations 1000 times in
ten tries, and we use the average value for comparison. We record the 2-opt kernel
execution time of the sequential CPU version and parallel GPU-accelerated version,
respectively, and the speedup is calculated by dividing the sequential CPU time with
the parallel GPU time.

Table 1 Hardware specifications of our test platform

Property CPU GPU

Manufacturer Intel NVIDIA

Model Core i7-4770 GeForce GTX780

Codename/architecture Haswell Kepler

Clock frequency 3.4 GHz 863 MHz

Cores 4 2304

L1 Cache size 64 KB 64 KB

L2 Cache size 256 KB 1.5 MB

L3 Cache size 8 MB NA

DRAM memory 16 GB 3 GB

Memory bandwidth 25.6 GB/s 288.4 GB/s

GFLOP/s (single) 217.6 3977
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Table 2 Configuration of parameter m for each TSP instances

Instances d198 lin318 pcb442 rat783 pr1002 fl1577 pr2392 pcb3038 fnl4461

m 2 5 8 25 41 102 233 376 810

5.1 Thread configuration optimization

As we state that the 2-opt-shm kernel is compute-bound, a proper configuration of
m in Eq. (5) should be considered to achieve higher GPU hardware utilization. The
number of work-groups g is calculated by the total number of neighbors divided by
the number of neighbors in a work-group,

g =
⌈

n∗(n−1)
2

1024 ∗ m

⌉
=

⌈
n ∗ (n − 1)

2048 ∗ m

⌉
. (5)

If g is small than the number of CUs on a GPU, it makes some CUs idle during the
kernel execution, thus lowering the hardware utilization. To keep all CUs busy and
map each work-group to a dedicated CU, we set g = 12 and solve m for each TSP
instance. The configuration of m for each TSP instance is presented in Table 2.

5.2 Floating point performance comparison among 2-opt kernels

Figure 8 shows the performance results obtained by measuring the execution time of
each kernel. We use the theoretical performance depicted in Fig. 6 for comparison.
Due to the uncoalesced global memory accesses, the 2-opt-glm only achieves 41 % of
the theoretical performance in pr2392. With the help of the GPU texture memory, the
2-opt-tex kernel reaches 81% of the theoretical performance in pcb3038 and performs
better than the 2-opt-glm kernel. The 2-opt-tex-shm kernel improves the performance
of the 2-opt-tex kernel significantly. Because the city distance is calculated on GPU,
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Fig. 9 Kernel speedups comparison results

the 2-opt-shm and 2-opt-coord kernels have a much higher floating point operation
throughput than the 2-opt-glm, 2-opt-tex and 2-opt-tex-shm.

However, the performance analysis results (see Fig. 6) are too rough, especially for
the 2-opt-shm kernel (see Fig. 8). To achieve more accurate performance prediction,
we could add memory bandwidth and computational ceilings to the Roofline model
[41]. In this paper, we focus on the performance optimization of the GPU-based ILS
algorithm. So, the performance prediction is left for the future work.

5.3 Speedup comparison among 2-opt kernels

Figure 9 shows speedups of 2-opt kernels. The 2-opt-tex kernel outperforms 2-opt-glm
significantly in large datasets. We notice that the speedups of 2-opt-tex drop to 67.6
in f nl4461. This is explained in two different ways. On the one hand, due to large
data arrays being accessed randomly, texture memory cache efficiency is decreased
drastically. On the other hand, because the 2-opt-tex kernel is memory-bound, its
performance is highly related to the attainable memory bandwidth.

The 2-opt-shm kernel performs as high as 182× speedup in pcb3038 which is
65 % faster than 2-opt-tex. This demonstrates that the pressure on global memory
access is relieved in 2-opt-shm, and the GPU computing power is better utilized. Our
2-opt-tex-shm kernel also delivers promising performance even approaching the 2-
opt-shm kernel. However, because 2-opt-tex-shm avoids repeated calculation of city
distances, the algorithm is more work-efficient than 2-opt-shm. The best performed
one is 2-opt-coord which achieves a speedup of 279×. Since the global memory
access of 2-opt-coord is coalesced, its attainable memory bandwidth is very high. And
it also reads the pre-calculated length of two edges for each neighbor to avoid re-
computations. Therefore, this kernel is balanced with memory bandwidth and floating
point computation.

5.4 Solution quality

To ensure the solution quality of our approach is the same as the CPU implementation,
we run ILS with a fixed 1000 iterations for each kernel, and we get average results in
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Fig. 10 Throughput comparison with high performance GPU-based local search algorithms

ten tries. Table 3 lists the result of TSP instances ranging from 198 to 4461 cities for
all algorithms.

The results indicate that the solution quality of the GPU versions is similar to that
of the sequential CPU. Our GPU algorithm has the same principal as the sequential
CPU version; thus, the solution quality is preserved.

5.5 Comparisons with existing high performance GPU-based local search
algorithms

We also make a comparison with two high-performance GPU-based local search algo-
rithms in existing literatures (“State-of-the-art”): Logo [36] and TSP-GPU [33]. Both
of them are publicly available. The algorithms are based on ILS and random-restart hill
climbing, respectively, which embed the 2-opt local search operator. Since a parallel
heuristic method has to be efficient both in execution speed and in solution quality,
we provide computational performance and solution accuracy results for comparison.
Wemeasure the computational performance by calculating the number of 2-opt neigh-
bors evaluated (referred to as GigaNBs) per second. We also give mean percentage
deviations from optimal solution to demonstrate the solution accuracy (the lower the
better).

The version of Logo is 0.62 and it is built with OpenCL 1.2. The version of TSP-
GPU is 2.2 and it is built with CUDA 7.5. We choose our best performing kernel,
2-opt-coord, to compare with them. All of the algorithms are set to run with a fixed
number of local search iterations or restarts (1000) in ten tries. And they are compiled
without fast math option to make the comparisons as fair as possible. We also observe
from the 2-opt code of Logo that n neighbors are not evaluated 1. This has a subtle
impact on the intensification strength of the local search, butmay influence the solution
quality. Therefore, we change n to n − 1 in Listing 2 (line 3) to align our code with
Logo.

1 http://olab.is.s.u-tokyo.ac.jp/~kamil.rocki/logo-tsp-src_v_0_62.zip.
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The computational performance of TSP-GPU is the best one (Fig. 10). This could be
explained in two differentways. On the one hand, TSP-GPUexploits the independency
of each restart to achieve very high GPU hardware utilization (i.e. a restart per block).
On the other hand, since all neighbors of a restart computed in a block, more fine-
grained parallelism could be achieved by intra-parallelization and shared memory
tiling. Our approach is up to 1.7× faster than Logo. This demonstrates that our analysis
and optimization are effective.

The solution quality comparison results illustrate that the TSP-GPU is the worst
one (Table 4). This is because the major differences between ILS and multi-start
hill climbing is the exploring manner in solution space (single-walk and multi-walk
respectively). Although both of them embed a 2-opt local search operator, the high-
level algorithm frameworks are different. In ILS, perturbation plays a very important
role in escaping from local optima. On the contrary, multi-start hill climbing is based
on a “random restart” approach that each climber is independent in execution and
thus solution improved by each climber is limited. Table 4 also demonstrates that our
solution quality is as competitive as that of Logo.

6 Conclusions and future work

We present a parallel ILS design and adopt the Roofline model to analysis the perfor-
mance of previous 2-opt kernels. Based on the analysis, we identify the disadvantages
of the 2-opt kernels. We utilize the texture memory for optimizing memory transfer
and use the local memory as a user-managed cache for LUT. Furthermore, we also
enhance data parallelism and coalesce global memory access for CALC. All algo-
rithms use TSP as a case study and are tested with a large range of instances varying
from 198 to 4461 cities. The experimental results demonstrate that our optimization
strategies toward GPU platforms are effective. The solution result is also evaluated to
guarantee that the quality is similar to the sequential CPU version. We also compare
our algorithm with existing high-performance GPU-based local search algorithms.
The proposed algorithm is efficient in computation and effective in solution quality.

Research on parallel LSMs remains in development. We acknowledge that we have
experimented on a basic LSM algorithm. There are variants of LS, such as the tabu
search, simulated annealing and guided local search, which still need to be optimized
on GPU. And since ILS could also solve combinatorial optimization problems other
than TSP, the GPU-based ILS algorithm should be reconsidered for its differences
in data structure. Furthermore, the local search kernel could be combined with other
population-based metaheuristic algorithms, such as ant colony optimization (ACO),
particle swarm optimization (PSO) and honey bee mating optimization (HBMO) to
more efficiently find optimum solutions. This combination should also be analyzed to
utilize the full potential of the GPU parallelism power [23,43].

In future work, we will try to extend the optimization method of GPU accelerated
metaheuristics algorithms to the fields of CAD, graphics and images [5,6,15,22,42,
45].Wewill also conduct comparative study ofGPU-based ILS algorithms on different
GPU platforms to analyze the differences in ratios of cores to memory [11].
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