
J Supercomput (2016) 72:2259–2282
DOI 10.1007/s11227-016-1728-5

Parallel multilevel recursive approximate inverse
techniques for solving general sparse linear systems

Antonios T. Makaratzis1 · Christos K. Filelis-Papadopoulos1 ·
George A. Gravvanis1

Published online: 5 May 2016
© Springer Science+Business Media New York 2016

Abstract In this article, a new parallel multilevel algebraic recursive generic approx-
imate inverse solver (PMARGAIS) is proposed. PMARGAIS utilizes the parallel
modified generic factored approximate sparse inverse (PMGenFAspI) matrix tech-
nique designed for shared memory parallel systems. PMARGAIS requires a block
independent set reordering scheme, to create a hierarchy of levels. A modified block
breadth first search (MBBFS) is proposed for reducing memory requirements and
retaining load balancing. The SVDmethod is used to compute the inverse of the inde-
pendent blocks that are formed from the reordering scheme, and computes accurately
the Schur complement that is used as a coefficient matrix on the next level, result-
ing in a hybrid direct-iterative method for large linear systems. The solution of the
linear system at the last level is performed with the parallel explicit preconditioned
BiCGSTAB method in conjunction with the PMGenFAspI matrix. The paralleliza-
tion of the proposed methods uses the vector units of modern CPUs. Implementation
details are provided and numerical results are given demonstrating the applicability
and effectiveness of the proposed schemes.

Keywords Parallel modified factored approximate sparse inverses ·
Parallel multilevel algebraic recursive generic approximate inverse solver ·
Parallel explicit preconditioned bi-conjugate gradient stabilized method ·
Shared memory parallel systems · Vector units

B George A. Gravvanis
ggravvan@ee.duth.gr

1 Department of Electrical and Computer Engineering, School of Engineering,
Democritus University of Thrace, University Campus, Kimmeria, 67100 Xanthi, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1728-5&domain=pdf

2260 A. T. Makaratzis et al.

1 Introduction

Let us consider a sparse linear system

Ax = b (1)

where A is the coefficient matrix, b is the right-hand side vector and x is the solution
vector of the linear system. Preconditioned Krylov subspace iterative methods are
amongst the most widely used iterative methods. The effectiveness of these iterative
methods relies on the use of effective preconditioning schemes that reduce the num-
ber of required iterations and in many cases ensure converge, cf. [3,15,16,18,22–24].
Approximate inverses have been extensively used as preconditioners with iterative
methods, cf. [3,7,8,10,13,15,16,18]. The approximate inverses possess inherent
parallelism, cf. [10,13,15,16], and thus can be effectively used on parallel sys-
tems. Recently, a generic class of approximate inverses has been proposed that can
handle any sparsity pattern of the coefficient matrix, cf. [14]. By redesigning the
Generic Approximate Banded Inverse algorithm, cf. [14], and utilizing approximate
inverse sparsity patterns], derived from patterns of sparsified matrices (PSMs), cf.
[7,8], the generic approximate sparse inverse (GenAspI) algorithm as well as the
generic factored approximate sparse inverse (GenFAspI) algorithm were proposed,
cf. [10].

Multilevel techniques have been proposed in the recent years by many researchers,
cf. [4,5,23,24]. Thesemethods utilize reordering schemes and techniques fromdomain
decomposition methods, cf. [4,5,19,21,23,24,27]. Nested Grids ILU decomposition
(NGILU), cf. [4], multilevel recursive incomplete LU factorization (MRILU), cf.
[5], algebraic recursive multilevel solver (ARMS), cf. [23], and multilevel algebraic
recursive generic approximate inverse solver (MARGAIS), cf. [10] are multilevel
techniques that have been proposed in recent years.

Herewith, parallel schemes are proposed for shared memory parallel systems,
using the OpenMP environment, cf. [6]. The parallel modified generic factored
approximate sparse inverse (PMGenFAspI) method is proposed, which is a paral-
lel version of the MGenFAspI method, cf. [10], using vector units, cf. [17]. The
proposed parallel multilevel solver, namely parallel multilevel algebraic recursive
generic approximate inverse solver (PMARGAIS), utilizes a modified reordering
scheme that is based on block breadth first search (BBFS), cf. [23]. The coeffi-
cient matrix of the system is reordered such that the upper left block is a block
diagonal matrix. The inversion of the block diagonal matrix is performed in paral-
lel, utilizing the SVD method, cf. [11,12], for each block. The modified reordering
scheme (MBBFS) ensures that the dimensions of each block remains small, resulting
to less memory requirements and balanced computational work during the inver-
sion of the block diagonal matrix. The Schur complement is formed explicitly to
be used as the coefficient matrix on the next level. This process is repeated until
the linear system of the last level is small enough to be solved efficiently. The
parallel explicit preconditioned bi-conjugate gradient stabilized (PEPBiCGSTAB)
method, cf. [28], is parallelized for shared memory parallel systems in conjunc-
tion with AVX vector units, cf. [17], and used to solve the reduced order linear

123

Parallel multilevel recursive approximate inverse. . . 2261

system of the last level. The explicit formation of the Schur complement and the
exact inversion of the block diagonal inverse, leads to a hybrid direct-iterative
method.

The AVX units are vector units used for carrying out concurrent computations to
multiple data following the SIMD model, cf. [17]. Efforts have been concentrated by
other researchers to facilitate efficient processing of problems that involve matrix and
vector computations at the hardware level, cf. [1,25,26]. These efforts involve the
design of specialized units, based on reversible logic synthesis, to carry out efficiently
such types of concurrent computations, cf. [1,25,26].

In Sect. 2, the PMGenFAspI method is presented along with implementation
details. In Sect. 3, the PMARGAIS method based on the modified reordering scheme
(MBBFS) is presented, along with discussions on the performance improvements.
Furthermore, implementation details for the parallel inversion of the block diago-
nal matrix and the computation of the Schur complement are given. Further, the
parallel EPBiCGSTAB method based on AVX units is given. In Sect. 4, numerical
results presenting the performance and applicability of the proposed schemes are
given.

2 Parallel modified generic factored approximate sparse inverse
(PMGenFAspI)

TheMGenFAspImatrix, cf. [10], can be computed using the following decomposition,
cf. [2,12,20,22]:

A = LU ⇔ A−1 = U−1L−1 ⇔ M = GH (2)

where M = A−1, G = U−1 and H = L−1. The factors L and U are obtained from
Incomplete LU decomposition, cf. [2,20,22]. The sparsity patterns of the factorsG and
H are computed by sparsifying the triangular factors L and U using a predetermined
drop tolerance (drptol). The resulting sparsified matrix is then raised to a predefined
power or level of fill (lfill). The sparsity pattern is based on powers of sparsified
matrices (PSM’s), cf. [7,8]. Hence, to compute the elements of the G and H factors
we have to solve the following systems, cf. [10]:

{
UG lfill

drptol = I
LH lfill

drptol = I

}
⇔

{
Ug:, j = e:, j
Lh:, j = e:, j

}
, 1 ≤ j ≤ n (3)

where lfill is the level of fill used to compute the sparsity pattern of the approxi-
mate inverse and drptol is the threshold for retaining elements in the initial sparsity
pattern of the approximate inverse, cf. [7,8,10], while g:, j and h:, j are the elements
of the jth column of the triangular factors of the approximate inverse and e:, j are
the elements of the j th column of the identity matrix. During the computation, the
elements g:, j and h:, j are stored in a dense vector iw to prevent column search for
elements in the sparse format matrices G and H . The elements of the j th column
of the identity matrix e:, j are stored in a dense vector e. Each nonzero element of

123

2262 A. T. Makaratzis et al.

the H and G factors of the MGenFAspI method can be computed by the following
equations:

H(k, j) = I (k, j) − L(k, 1 : k − 1) ∗ H(1 : k − 1, j)T

L(k, k)
,

k = j, . . . , n, (k, j) ∈ H lfill
drptol (4)

G(k, j) = I (k, j) −U (k, k + 1 : n)T ∗ G(k + 1 : n, j)

U (k, k)
,

k = j, . . . , 1, (k, j) ∈ G lfill
drptol. (5)

where I is the identity matrix.
The parallel computation of the MGenFAspI process can be performed efficiently

due to the fact that the computation of each column of the factors G and H is
not related to the computation of other columns. Each processor is responsible for
computing a group of columns of the approximate inverse without any communi-
cations. The PMGenFAspI method has been further modified to utilize AVX units
accelerating the computation of the involved inner products. Initially the values
of a register are set to zero. Then, the values of the involved vectors residing in
the memory are transferred in groups of four values to two registers. The com-
putation of the products is performed concurrently and the respective results are
accumulated to the register retaining the partial sums. The procedure is repeated
until all the elements have been accumulated, resulting in four partial sums. The
inner product is computed by adding the four partial sums. In case the number of
nonzero elements is not a multiple of four, the remaining elements are accumulated
independently. The parallel modified generic factored approximate sparse inverse
scheme in conjunction with AVX units is described by the following algorithmic
scheme:

123

Parallel multilevel recursive approximate inverse. . . 2263

PMGenFAspI Algorithm with AVX

Let G and H be the approximate inverse factors with drptol drop tolerance and lfill

levels of fill

Parallel For i=0,…,n-1
For j∈H(:,i) with j≥i

sum=0

For k∈L(j,:) with k<j with step 4

Load 4 double numbers from L(j,:) in main memory to register xr1

Load 4 double numbers from iw in main memory to register xr2

xr3=fmadd(xr3,xr1,xr2)

End For (k)

sum=xr3(1)+xr3(2)+xr3(3)+xr3(4)

Add remaining products L(j,k)*iw(k) to sum

iw(j)=(e(j,i)-sum)/L(j,j)

End For (j)

H(:,i)=iw – Sparse set (A column of the H factor)

iw(j∈H(:,i) with j≥i)=0 – Sparse set to zero

For j∈G(:,i) with j≤i in reverse order

sum=0

For k∈U(j,:) with k>j with step 4

Load 4 double numbers from U(j,:) in main memory to register xr1

Load 4 double numbers from iw in main memory to register xr2

xr3=fmadd(xr3,xr1,xr2)

End For (k)

sum=xr3(1)+xr3(2)+xr3(3)+xr3(4)

Add remaining products U(j,k)*iw(k) to sum

iw(j)=(e(j,i)-sum)/U(j,j)

End For (j)

G(:,i)=iw – Sparse set (A column of the G factor)

iw(j∈G(:,i) with j≤i)=0 – Sparse set to zero

End For (i)

where f madd(xr3, xr1, xr2) is the fused multiply add operation xr3 = xr3+ xr1∗
xr2, where xr1, xr2 and xr3 are vectors consisting of four double-precision floating
point numbers. The iw vector is the work vector used to store temporarily the elements
of the i th column of each of the factors of the approximate inverse, while the vector e
is the i th column of the identity matrix.

123

2264 A. T. Makaratzis et al.

It should be noted that the length of the vectors iw and e is multiplied with the
number of the processors that are being used, so that each processor uses a different
part of the vectors. The elements of the vectors are determined as follows:

iw (cur_tid ∗ n + k) : (iw (k) of cur_tid processor) (6)

e (cur_tid ∗ n + k) : (e (k) of cur_tid processor) . (7)

where n is the number of the rows of the factors G and H , cur_tid=0,. . ., nprocs-1 is
the id number of each processor and nprocs is the total number of processors.

3 Parallel multilevel algebraic recursive generic approximate inverse
solver (PMARGAIS)

3.1 Modified block breadth first search (MBBFS)

Independent Sets are a crucial component of multilevel methods. An Independent Set
is composed of unknowns that are decoupled between them and can be handed inde-
pendently or simultaneously without affecting other unknowns of the linear system,
cf. [23,24]. Recently, a reordering scheme was introduced for the algebraic multilevel
recursive solver (ARMS), cf. [23], based on Breadth First Search algorithm, utiliz-
ing a threshold parameter which restricts unknowns that have lesser relative diagonal
dominance in their respective row, to join the independent set, cf. [23]. The block inde-
pendent sets is a generalization of the Independent sets, where groups of unknowns
are decoupled. The unknowns belonging to the Block Independent sets are numbered
first and the interface unknowns are numbered last. Hence, the upper left block of the
permuted coefficient matrix has a block diagonal structure.

The modified block breadth first search (MBBFS) algorithm reduces the memory
requirements of the block diagonal inverse by retaining the dimension of the (dense)
blocks to a predefined small number. For the BBFS algorithm, grouping of nodes into
independent sets stops after a whole level of neighbors has been added and the block
size has exceeded the predetermined block size. This technique results in blocks of
much bigger size than the predetermined one, especially in the case of matrices with
large number of nonzero elements per row. In contrast the MBBFS scheme stops the
insertion of unvisited nodes to a block independent set when the predetermined block
size is reached. This technique results in blocks of size equal to the predetermined one
or smaller when there are not enough neighboring nodes, thus giving an upper limit
to the memory requirements for computing the inverse of the block diagonal matrix.
The MBBFS scheme improves the balance of computational work between the CPUs,
since the dimensions of each block are almost the same.

It should be stated that the algorithm also returns a vector s storing the starting and
ending point of each block, to handle the blocks independently:

s(block) =
block∑
j=1

block_size(j), block = 1, . . . , number_of_blocks (8)

123

Parallel multilevel recursive approximate inverse. . . 2265

where block_size(j) is the size of each block and s(0) = 0. Utilizing the vector s, the
following information can be obtained:

• s(i-1): the row and the column of the block diagonal matrix where the first row
and column of the i th block are located.

• s(i)-1: the row and the column of the block diagonal matrix where the last row and
column of the i th block are located.

• s(i)-s(i-1): the order of the i th block.

The modified block breadth first search algorithm is described by the following algo-
rithmic scheme:

MBBFS Algorithm

Let R be the reordering vector.

Set all the vertices in U

Compute relative diagonal dominance weights for every row of the matrix A

R={}

While U≠{}

B={u} if u is not marked as excluded

For all neighbors Ni of u up to the bsize level set

If bsizeNB i ≤+

B=B∪Ni and remove from U if they have relative diagonal dominance lesser

than the prescribed tolerance, else mark them as excluded and remove from U.

Else

Let iNW ⊂ such that bsizeBW ≤+ .

B=B∪W and remove from U if they have relative diagonal dominance lesser

than the prescribed tolerance, else mark them as excluded and remove from U.

End If

End For
Mark all neighbors of block B to be excluded and remove from U

Reverse the order in B

R=R∪B

End While

Append the excluded nodes in the end of R
It should be mentioned that in case the number of vertices grouped in a block is

smaller than the prescribed value (bsize) and no more neighboring vertices exist, then
the block is retained as is.

123

2266 A. T. Makaratzis et al.

3.2 Parallel multilevel approximate inverse solver

Let us consider the reordering matrix P computed with the MBBFS algorithm. The
reordered block matrix K is as follows, cf. [10]:

K = PAPT =
[
B C
D E

]
=

[
I 0
DB−1 I

] [
B 0
0 S

] [
I B−1C
0 I

]
(9)

where S = E − DB−1C is the Schur complement of the block matrix A and B is a
block diagonal matrix. The inverse of K can be computed as follows:

K−1 =
[
B C
D E

]−1

=
[
I −B−1C
0 I

] [
B−1 0
0 S−1

] [
I 0
−DB−1 I

]
. (10)

The inverse of the block matrix can be computed by inverting the matrices B and S.
Matrix B is a block diagonal matrix, thus the inverse B−1 is a block diagonal matrix.
The order of the blocks is small and the exact inverse matrices can be computed using
the SVD method separately on each block. The inverse matrix B−1 that is computed
with this technique is the exact inverse of matrix B. The inverse of each block can be
computed independently, thus each processor is responsible for inverting a different
group of blocks. The number of nonzero elements is small compared to the order of
matrix B, thus the inversion of the blocks does not require substantial computational
work or high memory requirements.

Computing the inverse of the Schur complement is less expensive due to its reduced
order compared to thematrix K , and can be computed approximatelywith the PMGen-
FAspI method. This process leads to the computation of a two-level approximate
inverse. The two-level process could be recursively applied to invert the resulting
Schur complement, leading to a multilevel scheme. The scheme is applied until the
Schur complement is sufficiently small and can be inverted efficiently, or no more
independent sets exist. The last Schur complement can be approximately inverted
using the PMGenFAspI method.

In practice, it is inefficient to compute an approximate inverse explicitly using this
multilevel technique, because the involved operations tend to have increasing number
of nonzero elements, cf. [10]. Instead the linear system (1) can be solved in block
form.

The equivalent expression for the reordered system is of the following form:(
PAPT

)
Px = Pb ⇔ Kx ′ = b′ ⇔ x ′ = K−1b′ (11)

where K = PAPT, x ′ = Px and b′ = Pb. Using Eq. (10) we derive the following:[
xi
xr

]
= K−1

[
bi
br

]
=

[
I −B−1C
0 I

] [
B−1 0
0 S−1

] [
I 0
−DB−1 I

] [
bi
br

]
(12)

where the subscript i denotes the solution and the right-hand side corresponding to the
nodes associated with the independent sets and the subscript r denotes the solution and

123

Parallel multilevel recursive approximate inverse. . . 2267

the right-hand side corresponding to the rest of the nodes. The equivalent expression
of (12) is as follows:

[
xi
xr

]
=

[
B−1bi − B−1CS−1(−DB−1bi + br)
S−1(−DB−1bi + br)

]
(13)

or equivalently

xi = B−1bi − B−1Cxr . (14)

xr = S−1(−DB−1bi + br) (15)

The solution vector xi can be computed directly since B−1 is known explicitly and xr
is computed by (15). Hence, xi is computed with three matrix vector multiplications
and with one vector subtraction. These computations are executed in parallel using
AVX units. Nevertheless, the solution vector xr is computed by solving the linear
system:

Sxr = (−DB−1bi + br). (16)

This linear system can be solved with the PEPBiCGSTAB in conjunction with the
PMGenFAspI method. This process leads to a two-level hybrid direct-iterative scheme
for solving linear systems. The two-level process could be recursively applied to the
linear system (16), leading to a multilevel scheme for the computation of the solution
vector x . The multilevel scheme is depicted in Fig. 1. The solution vector xi of the last

Fig. 1 Multilevel solution of a linear system through recursive solution of continuously smaller Schur
complement linear systems along with the linear systems corresponding to the block independent sets

123

2268 A. T. Makaratzis et al.

level is computed using the vector xr . The vector x = PT [xTi xTr]T is returned as the
solution vector xr of the previous level.

In the casewhere the singular values of B are close tomachine precision, themethod
might converge in more than a single iteration, due to the rounding errors. Moreover,
singular values close to the machine precision are set explicitly to zero. This is also
true in the case where the prescribed tolerance is close to machine precision. In such
cases, the multilevel process is used as a preconditioner to the Richardson iterative
method,

xk+1 = xk + PMARGAIS(A,rk) (17)

where rk = b− Axk , k = 0, 1, 2. . . is the residual vector. The scheme is repeated until
the solution of the linear system is acquired to the prescribed tolerance. The multilevel
scheme is a hybrid direct-iterative method.

The parallel multilevel algebraic recursive generic approximate inverse solver
(PMARGAIS) can then be described by the following algorithmic scheme:

Algorithm PMARGAIS

x=PMARGAIS(A,b,level)

If level≠last_level

Setup the reordering matrix P using MBBFS method.

Form K=PAPT and b’=Pb in parallel.

Parallel computation of the exact inverse B-1 using SVD method.

Parallel computation of Schur Complement: S=E-DB-1C.
Compute xr=PMARGAIS(S,-DB-1bi+br,level+1)

Compute xi=B-1bi-B-1Cxr in parallel.

Compute x=PT[xi
T xr

T]T

Else If level=last_level

Parallel solution of the system Ax=b using PEPBiCGSTAB method in conjunction

with the PMGenFAspI technique, based on AVX units.

Return of the solution vector x to the previous level.

End If

The PEPBiCGSTAB method, cf. [13,28], using AVX units, is presented in the
“Appendix”.

It should be noted that the parallel computations of the method use the cache
blocking technique. Thus, each computation is tiled to segments such that eight double-
precision floating point numbers are transferred to the cache memory, since the L1
cache line of the systems used is 512 bits (64 bytes).

3.3 Parallel inversion of block diagonal matrix

For the exact inversion of the block diagonal matrix B, each block of the matrix is
inverted using the SVD method. The dimensions of each block are kept small, thus

123

Parallel multilevel recursive approximate inverse. . . 2269

the computational work as well as the memory requirements required for inversion are
kept reduced. Using the SVD method, the block that is inverted takes the following
form, cf. [11,12]:

Bsub = U�V T (18)

whereU andV are orthogonalmatrices, thus their inverses are equal to their transposes,
and � is a diagonal matrix, cf. [11,12]. Hence, the inverse of the block Bsub can be
computed as follows:

(Bsub)
−1 = V�−1UT . (19)

It should be stated that in case the dimension of the block is equal to one, then the
inversion is trivial and does not require the SVD method. After the computation of
the inverse of each blocks, they are stored in B−1 assembling the complete inverse
matrix. The mapping from local to global positions in the inverse is realized through
the vector s, which is obtained by the MBBFS method. Then, the exact inverse of B
is computed by the following algorithmic compact scheme:

Parallel computation of B-1

Let B-1 be the inverse of the block diagonal matrix B.

tA=PAPT

Parallel For block=1,…,num_of_sets

start_p=s(block-1), end_p=s(block)-1, sub_size=end_p-start_p

Bsub=tA(start_p:end_p,start_p:end_p)

If sub_size=1

B-1(start_p)=1/Bsub(0,0)

Else

v (:,:)=0.0; q(:,:)=0.0; u(:,:)=Bsub(:,:)

SVD (q,u,v)

Set the singular values that are close to the machine precision equal to zero.

B-1(start_p:end_p,start_p:end_p)=(v)(q-1)(uT)

End If

End For

The blocks of matrix B have arbitrary form, thus their inverses are generally dense.
To form the matrix B−1 the memory requirements have to be a priori computed. The
vector ss is retaining the memory requirements for each block and its elements are
computed as follows:

ss(block) =
block∑
j=1

[s(j) − s (j − 1)]2, block = 1, . . . , number_of_blocks (20)

123

2270 A. T. Makaratzis et al.

Fig. 2 Compressed sparse row storage format (three vector variant) of B−1

where ss(0)= 0. The values of the vector ss denote the number of the nonzero elements
that are stored in the inversematrix B−1. The blockmatrix B−1 is stored in compressed
sparse row (three vector variant) storage format using the values of the vector ss, the
values of the inverses of the blocks, as well as the column indexes computed from the
s vector, as depicted in Fig. 2.

The inverse of each block of the matrix B can be computed with the multiplication
(v)(q−1)(uT) where u, q and v are computed by the SVD decomposition. The triple
matrix multiplication involves dense computations that can be parallelized with AVX
units. Parallelization with AVX units is fine grained, thus the inner summation loop is
parallelized. The dense matrix multiplication with AVX units can be described by the
following algorithmic procedure:

Dense Matrix Multiplication Algorithm with AVX

For i=1,...,sub_size

For k=1,...,sub_size

Load 4 times the double number A(i,k) to register xr1

For j=1,...,sub_size with step 4

Load 4 double numbers from B(k,j...j+3) in main memory to register xr2

Load 4 double numbers from C(i,j...j+3) in main memory to register xr3

xr3=fmadd(xr3,xr1,xr2)

Store the 4 double numbers from register xr3 to C(i,j...j+3)

End For (j)

Compute remaining C(i,j)= C(i,j)+A(i,k)*B(k,j)

End For (k)

End For (i)

where f madd(xr3, xr1, xr2) is the fused multiply add operation xr3 = xr3+ xr1∗
xr2, where xr1, xr2 and xr3 are vectors consisting of four doubles.

123

Parallel multilevel recursive approximate inverse. . . 2271

The Schur complement is computed by the following equation:

S = E − DB−1C. (21)

The computation of the Schur complement requires sparse matrix operations, which
are computationally intensive. The required sparse matrix multiplications can be par-
allelized efficiently since each processor computes the assigned number of rows
independently. Sparse matrix multiplications are two-step operations: initially the
possible number of nonzero elements should be evaluated and then the values of
the resulting nonzero elements can be computed. It should be mentioned that the com-
putation of each row is performed using a dense work vector (w) and a list, which
stores the nonzero values as well as their positions. In case of multiple processors,
the dimension of this vector is computed by multiplying the number of columns of
the first sparse matrix with the number of processors. Hence, each processor uses a
different part of the vector.

4 Numerical results

In this section, the performance of parallel multilevel algebraic recursive generic
approximate inverse solver (PMARGAIS) is examined for solving various problems.
The execution time is given in ss.hh (seconds.hundreds) and the overall gain cor-
responds to the time of the serial execution divided with the time of the serial or
parallel execution that includes the use of AVX units. The problems ATMOSMODD,
tmt_unsym and cage13 were obtained from the University of Florida Sparse Matrix
Collection, cf. [9]. The Poisson problem in two and three dimensions can be described
by the following PDE:

− �u = f, (x1, x2, . . ., xd) ∈ � = [0, 1]d (22)

u = 0, (x1, x2, . . . , xd) ∈ ∂� (22.a)

where ∂� denotes the boundary of� and d denotes the number of the space variables.
The above PDE is discretized with the five point stencil finite differences method in
two space variables and with the seven point stencil finite differences method in three
space variables. The right-hand side of the linear system derived fromPDE (22)–(22.a)
was computed as the product of the coefficient matrix A by the solution vector, with
its components equal to unity.

4.1 Parallel modified generic factored approximate sparse inverse
(PMGenFAspI) using AVX units

The performance, the speedup and the overall gain of the PMGenFAspI method par-
allelized for shared memory parallel systems with AVX units is examined for the
3D Poisson problem. The experimental results were obtained using an Intel Core-i7
4700MQ 2.4GHz with 8GB of RAM memory, running Windows 10 Pro.

123

2272 A. T. Makaratzis et al.

Table 1 Performance and speedups of PMGenFAspI algorithm, using AVX units, for the 3D Poisson
problem for various number of threads and values of the lfill parameter

Model problem Threads Performance Speedups

lfill = 1 lfill = 2 lfill = 4 lfill = 1 lfill = 2 lfill = 4

3D Poisson n = 1,000,000 1 0.8436 1.4263 2.3273 – – –

2 0.4644 0.7791 1.1775 1.8168 1.8308 1.9765

4 0.2253 0.3898 0.6159 3.7439 3.6596 3.7789

8 0.1871 0.3043 0.3363 4.5096 4.6877 6.9199

3D Poisson n = 1,000,000 AVX 1 0.2202 0.6090 1.6137 – – –

2 0.1233 0.3405 0.8182 1.7867 1.7883 1.9722

4 0.0849 0.2222 0.4931 2.5952 2.7412 3.2728

8 0.0707 0.1772 0.2858 3.1164 3.4366 5.6456

Table 2 Overall gain of PMGenFAspI algorithm, using AVX units, for the 3D Poisson problem for various
number of threads and values of the lfill parameter

Overall gain Threads lfill = 1 lfill = 2 lfill = 4

3D Poisson n = 1,000,000 AVX 1 3.8303 2.3423 1.4423

2 6.8436 4.1887 2.8445

4 9.9404 6.4206 4.7202

8 11.9370 8.0494 8.1425

It should be noted that the software was developed in C++ without the use of
scientific libraries. The software was compiled using the Visual Studio 2010 with
OpenMP v2.0 and the maximum speed optimizations flag (/O2). The use of AVX
unitswas realized through software libraries offered by the correspondingdevelopment
environment.

In Table 1, the performance and speedup of the PMGenFAspI algorithm, using
AVX units, for the 3D Poisson problem of order n = 1,000,000 for various number
of threads and values of the lfill parameter are presented. In Table 2, the overall gain
of the PMGenFAspI algorithm, using AVX units, for the 3D Poisson problem of order
n = 1,000,000 for various number of threads and values of the lfill parameter is given.

It should be noted that the speedup of the PMGenFAspI method tends to the theo-
retical maximum as the number of threads is increased. The performance is increased
using AVX units.

4.2 Parallel multilevel algebraic recursive generic approximate inverse solver

The performance of PMARGAIS is examined for solving various problems. Experi-
mental results obtained from various systems and for various values of the parameters
of the method are presented, to assess the behavior of the scheme. It should be stated
that the following parameters were used for all the executions: dtol = 0.0, lfill =

123

Parallel multilevel recursive approximate inverse. . . 2273

Table 3 Performance and speedups of PMARGAIS method for the 2D Poisson problem for various values
of the order (n), number of threads with Block size = 50, levels = 2 and the BBFS reordering scheme

n Performance Speedups

Threads = 1 Threads = 2 Threads = 4 Threads = 2 Threads = 4

2D Poisson
Bsize = 50
2 levels
BBFS

10,000 0.2846 0.1729 0.1320 1.6460 2.1561

90,000 2.8041 1.5797 0.9926 1.7751 2.8250

250,000 8.6949 4.9598 3.1189 1.7531 2.7878

490,000 19.3171 10.8979 6.6989 1.7726 2.8836

810,000 35.8468 19.2370 11.6515 1.8634 3.0766

1,000,000 46.0691 25.5934 15.3069 1.8000 3.0097

1,440,000 69.7447 40.3776 24.6997 1.7273 2.8237

1,960,000 106.0235 58.4938 35.0132 1.8126 3.0281

2,560,000 144.4935 82.5649 52.2495 1.7501 2.7655

2,890,000 172.8347 96.0503 60.1290 1.7994 2.8744

Fig. 3 Escalation of PMARGAIS method for the 2D Poisson problem for various values of the order (n)
and number of threads with Block size = 50, levels = 2 and the BBFS reordering scheme

2, droptol = 0.1, ILUfill = 10 and ILUtol = 0.001, cf. [10]. The stopping criterion
for the PMARGAIS method was ‖rk‖ < 10−10 ‖r0‖, where ri is the residual vec-
tor. The stopping criterion for the PEPBiCGSTAB method used in the last level was
‖rk‖ < 10−12 ‖r0‖.
System 1 Numerical results were obtained using an AMD Phenom(tm) II X4 955
Processor 3.20GHZwith 4GB of RAMmemory, runningUbuntu 12.04 LTS. It should
be noted that the software was developed in C++ without the use of scientific libraries.

123

2274 A. T. Makaratzis et al.

Table 4 Performance and speedups of PMARGAIS method for the 3D Poisson problem for various values
of the order (n) and number of threads with Bsize = 1, levels = 2 and the MBBFS reordering scheme

n Performance Speedups

Threads = 1 Threads = 2 Threads = 4 Thread = 2 Thread = 4

3D Poisson
Bsize = 1
2 levels
MBBFS

27,000 0.2127 0.1815 0.1695 1.1719 1.2549

125,000 1.3624 1.0534 0.8442 1.2933 1.6138

343,000 4.5452 3.2765 2.6030 1.3872 1.7461

729,000 13.1469 9.0173 6.6356 1.4578 1.9813

1,000,000 17.6166 12.1194 9.4103 1.4536 1.8721

1,520,875 30.1416 19.7937 15.4303 1.5228 1.9534

1,953,125 40.8718 28.1957 20.9582 1.4496 1.9502

2,460,375 53.3979 36.3735 28.1247 1.4680 1.8986

3,048,625 72.3477 49.2697 37.6895 1.4684 1.9196

3,723,875 93.8577 61.2613 47.1386 1.5321 1.9911

Fig. 4 Escalation of PMARGAIS method for the 3D Poisson problem for various values of the order (n)
and number of threads with Block size = 50, levels = 2 and the BBFS reordering scheme

The software was compiled with g++ 4.6.3 with OpenMP v3.0 and the maximum
optimizations flag (−O3).

In Table 3, the performance and speedup of PMARGAISmethod for the 2DPoisson
problem for various values of the order (n) and number of threads with Block size =
50, levels = 2 and the BBFS reordering scheme are given. In Fig. 3, the escalation of
PMARGAIS method for the 2D Poisson problem for various values of the order (n)
and the number of threads with Block size = 50, levels = 2 and the BBFS reordering
scheme is depicted. In Table 4, the performance and speedups of PMARGAIS method

123

Parallel multilevel recursive approximate inverse. . . 2275

Table 5 Performance and speedups of PMARGAISmethod for various problems, values of the Block size,
number of threads and reordering schemes

Model problem B size Performance Speedups

Threads = 1 Threads = 2 Threads = 4 Threads = 2 Threads = 4

tmt_unsym
n = 917,825
3 levels
BBFS

15 190.8138 117.924 76.2462 1.6181 2.5026

20 114.6582 66.6983 44.0186 1.7191 2.6048

25 104.7484 64.0429 41.0811 1.6356 2.5498

30 159.9528 98.6397 63.4345 1.6216 2.5215

cage13
n = 445,315
2 levels
MBBFS

1 9.5137 8.0920 7.0192 1.1757 1.3554

2 12.406 10.0205 8.4776 1.2381 1.4634

3 20.7175 16.732 13.8483 1.2382 1.4960

4 17.0560 13.5611 11.2221 1.2577 1.5196

5 19.7831 15.8145 12.8718 1.2509 1.5369

6 22.1682 17.4644 14.3224 1.2693 1.54780

7 24.3199 19.3236 15.7927 1.2586 1.5399

10 30.3313 24.0421 19.5113 1.2616 1.5546

cage13
n = 445,315
2 levels
BBFS

1 9.5201 8.1271 7.0212 1.1714 1.3559

2 18.2540 14.5264 12.1916 1.2566 1.4973

3 20.8029 16.7427 13.8009 1.2425 1.5074

4 29.5075 21.9046 17.9558 1.3471 1.6433

ATMOSMODD
n = 1,270,432
2 levels
BBFS

1 41.9591 25.9568 19.5746 1.6165 2.1435

10 64.1076 39.9283 28.1478 1.6056 2.2775

15 62.5057 42.0861 26.5054 1.4852 2.3582

20 65.0233 40.1462 28.7578 1.6197 2.2611

25 68.7114 44.4020 28.9884 1.5475 2.3703

30 76.8841 47.7144 33.6002 1.6113 2.2882

ATMOSMODD
n = 1,270,432
2 levels
MBBFS

1 42.1482 25.9399 19.3094 1.6248 2.1828

10 65.3200 39.5534 28.0340 1.6514 2.3300

15 64.4462 40.2910 27.9754 1.5995 2.3037

20 62.4860 41.3284 27.8987 1.5119 2.2397

25 67.9544 42.7432 29.7789 1.5898 2.2820

30 70.7867 43.3763 30.6878 1.6319 2.3067

for the 3D Poisson problem for various values of the order (n) and number of threads
with Bsize= 1, levels= 2 and theMBBFS reordering scheme are presented. In Fig. 4,
the escalation of PMARGAIS method for the 3D Poisson problem for various values
of the order (n) and the number of threads with Block size = 50, levels = 2 and the
BBFS reordering scheme is depicted. In Table 5, the performance and speedups of
PMARGAISmethod for various problems, values of the Block size, number of threads
and reordering schemes are presented.

It can be easily seen that the speedups, presented in Tables 3 and 4, do not increase
uniformly as the order (n) increases, which is due to the fact that the number of block

123

2276 A. T. Makaratzis et al.

Table 6 Performance and speedups of PMARGAISmethod for various problems, values of the Block size,
number of levels, number of threads and reordering schemes

Model problem B size Performance Speedups

Threads 1 Threads 2 Threads 4 Threads 8 Threads 2 Threads 4 Threads 8

2D Poisson
n = 1,000,000
2 levels
BBFS

1 73.0583 41.7131 32.0228 24.9650 1.7514 2.2814 2.9264

10 52.2918 27.5197 23.6618 18.2017 1.9002 2.2100 2.8729

15 37.2686 22.3016 16.1839 13.7833 1.6711 2.3028 2.7039

20 40.0517 24.7563 17.1673 14.8514 1.6178 2.3330 2.6968

25 37.9516 21.4154 16.2204 13.1258 1.7722 2.3397 2.8914

50 33.4608 19.0901 12.8044 10.8613 1.7528 2.6132 3.0807

60 41.0946 22.8041 14.7068 12.6521 1.8021 2.7943 3.2481

2D Poisson
n = 1,000,000
3 levels
BBFS

1 65.1896 40.8322 28.3215 22.0881 1.5965 2.3018 2.9513

10 40.7832 24.6101 16.2110 13.1583 1.6572 2.5158 3.0994

15 36.0839 20.6026 13.3689 11.0747 1.7514 2.6991 3.2582

20 35.2060 20.1801 13.8575 10.9855 1.7446 2.5406 3.2048

25 38.4092 20.2266 14.0181 11.3409 1.8989 2.7400 3.3868

50 42.3599 23.6993 15.3683 12.6636 1.7874 2.7563 3.3450

60 48.9286 27.4814 17.2894 14.7174 1.7804 2.8300 3.3245

3D Poisson
n = 1,000,000
2 levels
MBBFS

1 12.3523 8.2733 6.6882 6.9908 1.4930 1.8469 1.7669

2 29.6087 19.1731 15.8568 13.1233 1.5443 1.8673 2.2562

5 35.4885 21.7388 16.7468 15.6908 1.6325 2.1191 2.2617

10 40.8753 24.5271 20.1769 15.3356 1.6665 2.0259 2.6654

20 43.0303 24.8755 18.4289 16.3608 1.7298 2.3349 2.6301

independent sets is not amultiple of the number of processors. Thus, the computational
work is not balanced among processors and execution time of the parallel scheme is
governed by the processor which is assigned the largest number of independent sets.
The imbalance affects parallel performance significantly especially in the case where
the block size has a large value and the number of independent sets is not a multiple
of the number of processors.

System 2 Numerical results were obtained using an Intel Core-i7 4700MQ 2.4 GHz
with 8 GB of RAM memory, running Windows 10 Pro.

It should be noted that the software was developed in C++ without the use of
scientific libraries. The software was compiled using the Visual Studio 2010 with
OpenMP v2.0 and the maximum speed optimizations flag (/O2). The use of AVX
unitswas realized through software libraries offered by the correspondingdevelopment
environment.

In Table 6, the performance and speedups of PMARGAIS method for various
problems, values of theBlock size, numbers of levels, number of threads and reordering
schemes is given. In Table 7, the performance and speedup of PMARGAIS method,
using AVXunits, for various problems, values of the Block size and number of threads

123

Parallel multilevel recursive approximate inverse. . . 2277

Table 7 Performance and speedup of PMARGAIS method, using AVX units, for various problems, values
of the Block size and number of threads with levels = 2 and MBBFS reordering scheme

Model problem B size Performance Speedups

Threads 1 Threads 2 Threads 4 Threads 8 Threads 2 Threads 4 Threads 8

ATMOSMODD
n = 1,270,432
2 levels
MBBFS

1 25.4312 15.5799 12.5642 11.8345 1.6323 2.0241 2.1489

5 45.6125 28.7473 23.1224 21.0849 1.5867 1.9727 2.1633

20 60.2285 35.3484 25.1605 20.8075 1.7039 2.3938 2.8946

30 63.1542 37.3636 25.4148 22.0798 1.6903 2.4849 2.8603

40 74.1339 41.9909 29.3320 24.1994 1.7655 2.5274 3.0635

ATMOSMODD
n = 1,270,432
2 levels
MBBFS AVX

1 23.6567 14.7736 11.2694 10.3592 1.6013 2.0992 2.2836

5 40.1180 25.6247 19.6499 18.3342 1.5656 2.0416 2.1882

20 49.2225 29.5135 21.4837 18.2292 1.6678 2.2912 2.7002

30 52.1364 31.9592 22.9823 20.1613 1.6313 2.2686 2.5860

40 61.3299 35.7913 24.2216 22.5914 1.7135 2.5320 2.7147

cage13
n = 445,315
2 levels
MBBFS

1 8.6980 7.3315 6.7626 6.5930 1.1864 1.2862 1.3193

5 13.6959 11.4181 9.9488 9.4726 1.1995 1.3766 1.4458

20 32.8766 27.4312 23.6745 21.9267 1.1985 1.3887 1.4994

30 57.9347 43.5103 39.6480 35.8269 1.3315 1.4612 1.6171

40 216.7681 120.9654 70.9745 46.5487 1.7920 3.0542 4.6568

cage13
n = 445,315
2 levels
MBBFS AVX

1 7.2936 6.1280 5.6183 5.5628 1.1902 1.2982 1.3111

5 12.5755 10.5042 8.7812 8.0882 1.1972 1.4321 1.5548

20 29.5345 25.1745 21.6107 20.5358 1.1732 1.3667 1.4382

30 50.6622 39.1946 36.3984 32.8196 1.2926 1.3919 1.5437

40 198.1292 111.1254 65.1045 42.0849 1.7829 3.0432 4.7078

Table 8 Overall gain of PMARGAIS method, using AVX units, for various problems, values of the Block
size and number of threads, with levels = 2 and the MBBFS reordering scheme

Overall gain B size Threads = 1 Threads = 2 Threads = 4 Threads = 8

ATMOSMODD
n = 1,270,432
2 levels
MBBFS AVX

1 1.0750 1.7214 2.2567 2.4549

5 1.1370 1.7800 2.3213 2.4878

20 1.2236 2.0407 2.8035 3.3040

30 1.2113 1.9761 2.7480 3.1324

40 1.2088 2.0713 3.0606 3.2815

cage13
n = 445,315
2 levels
MBBFS AVX

1 1.1925 1.4194 1.5481 1.5636

5 1.0891 1.3039 1.5597 1.6933

20 1.1132 1.3060 1.5213 1.6009

30 1.1435 1.4781 1.5917 1.7652

40 1.0941 1.9507 3.3295 5.1507

123

2278 A. T. Makaratzis et al.

with levels = 2 and MBBFS reordering scheme is presented. In Table 8, the overall
gain of PMARGAIS method, using AVX units, for various problems, values of the
Block size and number of threads with levels = 2 and MBBFS reordering scheme is
given.

It should be mentioned that the use of the modified reordering scheme (MBBFS)
instead of the BBFS scheme ensures load balancing and better control over the
size of each block, especially for problems where the size of the blocks increases
rapidly, such as matrices whose corresponding graph contains multiple vertices of
large degree. Hence, the MBBFS method reduces the memory requirements for stor-
ing the block diagonal inverse, giving an upper limit of thememory requirements of the
method.

It should be also noted that the results can be further improved by modifying the
MBBFS method to produce blocks that their number is equal to a multiple of the
processor units.

5 Conclusion

The proposed parallel multilevel algebraic recursive generic approximate inverse
solver (PMARGAIS) is efficient for solving a class of problems resulting in large
sparse linear systems. The hybrid direct-iterative PMARGAIS method involves dense
computations that can be parallelized efficiently, using AVX units. Dense computa-
tions are more efficiently parallelized than sparse computations leading to increased
performance and better scalability. Moreover, the proposed scheme is based on the
modified reordering scheme (MBBFS) retaining balanced computational work, thus
enhancing performance and corresponding speedups are close to theoretical maxi-
mum. The PMARGAIS method is based on the PBiCGSTAB method in conjunction
with PMGenFAspI matrix, using AVX units. The use of AVX units in conjunction
with multicore systems for computing the PMGenFAspI matrix results in increased
speedups that surpass the number of available processors. Moreover, the PBiCGSTAB
has been parallelized for multicore systems with AVX units resulting in improved per-
formance. Future work will be focused on the implementation of the method on hybrid
distributed memory systems.

Appendix

The PEPBiCGSTAB method, using AVX units, is described by the following algo-
rithmic scheme:

123

Parallel multilevel recursive approximate inverse. . . 2279

Parallel Explicit Preconditioned Bi--Conjugate Gradient STABilized Algorithm
(PEPBiCGSTAB) with AVX
Let x0 be an arbitrary initial approximation to the solution vector x and r0 the residual
vector for the initial approximation. Then,
r0=b-A*x0; r0

’=r0; ρ0=α=ω0=1; v0=p0=0
Then, for i=1,...,(until convergence) compute the vectors xi, ri, zi, yi, pi, si, ti and the
scalar quantities α, β, ωi, ρi as follows:
 Parallel For j=1,...,m
 Load 4 double numbers from r0

’ in main memory to register xr1
 Load 4 double numbers from ri-1 in main memory to register xr2
 xr3=fmadd(xr3,xr1,xr2)
 End For (j)
 xr3=xr3proc(1)+xr3proc(2)+...xr3proc(k); ρi=xr3(1)+xr3(2)+xr3(3)+xr3(4)
 Add remaining products r0

’(j)*ri-1(j) to ρi
 β=(ρi/ρi-1)/(α/ωi-1)
 Parallel For j=1,...,m with step 4
 Load 4 times the double number ωi-1 to register xr1
 Load 4 double numbers from vi-1 in main memory to register xr2
 Load 4 double numbers from pi-1 in main memory to register xr3
 Load 4 times the double number β to register xr4
 Load 4 double numbers from ri-1 in main memory to register xr5
 xr6= xr5+xr4*(xr3-xr1*xr2)
 Store the 4 double numbers from register xr6 to pi
End For (j)
Compute remaining pi(j)=ri-1(j)+β(pi-1(j)-ωi-1vi-1(j))
Parallel For j=1,...,m

For k∈M(j,:) with step 4
Load 4 double numbers from M(j,:) in main memory to register xr1
Load 4 double numbers from pi in main memory to register xr2
xr3=fmadd(xr3,xr1,xr2)

End For (k)
yi(j)=xr3(1)+xr3(2)+xr3(3)+xr3(4)
Add remaining products M(j,k)*pi(k) to yi(j)

End For (j)
Parallel For j=1,...,m

For k∈A(j,:) with step 4
Load 4 double numbers from A(j,:) in main memory to register xr1
Load 4 double numbers from yi in main memory to register xr2
xr3=fmadd(xr3,xr1,xr2)

End For (k)
vi(j)=xr3(1)+xr3(2)+xr3(3)+xr3(4)
Add remaining products A(j,k)*yi(k) to vi(j)

End For (j)
Parallel For j=1,...,m

Load 4 double numbers from r0
’ in main memory to register xr1

Load 4 double numbers from ri-1 in main memory to register xr2
xr3=fmadd(xr3,xr1,xr2)

End For (j)
xr3=xr3proc(1)+xr3proc(2)+...xr3proc(k); sum=xr3(1)+xr3(2)+xr3(3)+xr3(4)
Add remaining products r0

’(j)*ri-1(j) to sum
α=ρi/sum

123

2280 A. T. Makaratzis et al.

Parallel For j=1,...,m with step 4
Load 4 times the double number a to register xr1
Load 4 double numbers from vi in main memory to register xr2
Load 4 double numbers from ri-1 in main memory to register xr3
xr4=xr3-xr1*xr2
Store the 4 double numbers from register xr4 to si

End For (j)
Compute remaining si(j)=ri-1(j)-α*vi(j)
Parallel For j=1,...,m

For k∈M(j,:) with step 4
Load 4 double numbers from M(j,:) in main memory to register xr1
Load 4 double numbers from si in main memory to register xr2
xr3=fmadd(xr3,xr1,xr2)

End For (k)
zi(j)=xr3(1)+xr3(2)+xr3(3)+xr3(4)
Add remaining products M(j,k)*si(k) to zi(j)
End For (j)
Parallel For j=1,...,m

For k∈A(j,:) with step 4
Load 4 double numbers from A(j,:) in main memory to register xr1
Load 4 double numbers from zi in main memory to register xr2
xr3=fmadd(xr3,xr1,xr2)

End For (k)
ti(j)=xr3(1)+xr3(2)+xr3(3)+xr3(4)
Add remaining products A(j,k)*zi(k) to ti(j)

End For (j)
Parallel For j=1,...,m

Load 4 double numbers from ti in main memory to register xr1
Load 4 double numbers from si in main memory to register xr2
xr3=fmadd(xr3,xr1,xr2); xr4=fmadd(xr4,xr1,xr1)

End For (j)
xr3=xr3proc(1)+xr3proc(2)+...xr3proc(k); xr4=xr4proc(1)+xr4proc(2)+...xr4proc(k)

sum=xr3(1)+xr3(2)+xr3(3)+xr3(4); sum2=xr4(1)+xr4(2)+xr4(3)+xr4(4)
Add remaining products ti(j)*si(j) to sum
Add remaining products ti(j)*ti(j) to sum2
ωi=sum/sum2
Parallel For j=1,...,m with step 4

Load 4 times the double number ωi to register xr1
Load 4 double numbers from zi in main memory to register xr2
Load 4 times the double number α to register xr3
Load 4 double numbers from yi in main memory to register xr4
Load 4 double numbers from xi-1 in main memory to register xr5
xr6=xr5+xr3*xr4+xr1*xr2
Store the 4 double numbers from register xr6 to xi

End For (j)
Compute remaining xi(j)=xi-1(j)+α*yi(j)+ωizi(j)
Parallel For j=1,...,m with step 4

Load 4 times the double number ωi to register xr1
Load 4 double numbers from ti in main memory to register xr2
Load 4 double numbers from si in main memory to register xr3
xr4=xr3-xr1*xr2
Store the 4 double numbers from register xr4 to ri

End For (j)
Compute remaining ri(j)=si(j)-ωi*ti(j)

End For (i)

123

Parallel multilevel recursive approximate inverse. . . 2281

where f madd(xr3, xr1, xr2) is the fused multiply add operation xr3 = xr3+ xr1∗
xr2, where xr1, xr2 and xr3 are vectors consisting of four double-precision floating
point numbers.

References

1. Arabnia HR, Thapliyal H, Vinod AP (2006) Combined integer and floating point multiplication archi-
tecture (CIFM) for FPGAs and its reversible logic implementation. In: 49th IEEE InternationalMidwest
Symposium on Circuits and Systems (MWSCAS’06), San Juan, Puerto Rico, August 6–9, pp 148–154

2. Axelsson O (1996) Iterative solution methods. Cambridge University Press, Cambridge
3. Benzi M, Meyer CD, Tuma M (1996) A sparse approximate inverse preconditioner for the conjugate

gradient method. SIAM J Sci Comput 17(5):1135–1149
4. Botta EFF, van der Ploeg A, Wubs FW (1996) Nested grids ILU- decomposition (NGILU). J Comp

Appl Math 66:515–526
5. Botta EFF, Wubs W (1997) MRILU: it’s the preconditioning that counts. Technical Report W-9703,

Department of Mathematics, University of Groningen, The Netherlands
6. Chapman B, Jost G, Van Der Pas R (2008) Using OpenMP: portable shared memory parallel program-

ming. The MIT Press, Cambridge
7. Chow E (2001) Parallel implementation and practical use of sparse approximate inverses with a priori

sparsity patterns. Int J High Perf Comput Appl 15:56–74
8. ChowE (2000)Apriori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM

J Sci Comput 21:1804–1822
9. Davis TA, Hu Y (2011) The University of Florida sparse matrix collection. ACM Trans Math Softw

(TOMS) 38(1):1–25
10. Filelis-Papadopoulos CK, Gravvanis GA (2016) A class of generic factored and multilevel recursive

approximate inverse techniques for solving general sparse systems. Eng Comp 33(1):74–99
11. Golub GH, Reinsch C (1970) Singular value decomposition and least squares solutions. In: Wilkinson

JH, Reinsch C (eds) Handbook for automatic computation, vol. 2 (Linear Algebra). Springer-Verlag,
New York, pp 134–151

12. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press,
Baltimore

13. Gravvanis GA (2009) High performance inverse preconditioning. Arch ComputMeth Engin 16(1):77–
108

14. GravvanisGA, Filelis-Papadopoulos CK,Matskanidis PI (2014)Algebraicmultigridmethods based on
generic approximate banded inverse matrix techniques. Comput Model Eng Sci (CMES) 100(4):323–
345

15. Grote MJ, Huckle T (1997) Parallel preconditioning with sparse approximate inverses. SIAM J Sci
Comput 18(3):838–853

16. Grote MJ, Huckle T (1995) Effective parallel preconditioning with sparse approximate inverses. In:
Proceedings of SIAMConference on Parallel Processing for Scientific Computing, SIAM, pp 466–471

17. Intel Volume 1. BasicArchitecture: http://www.c-jump.com/CIS77/reference/Intel/CIS77_24319002/
index.html

18. Kolotolina YuL, Yeremin YuA (1993) Factorized sparse approximate inverse preconditionings. I. The-
ory. SIAM J Matrix Anal Appl 14:45–58

19. Manguoglu M (2011) A domain-decomposing parallel sparse linear system solver. J Comput Appl
Math 236(3):319–325

20. Meijerink JA, Van der Vorst HA (1977) An iterative method for linear systems of which the coefficient
is a symmetric M-matrix. Math Comput 31:148–162

21. Ruge A, Stuben K (1987) Algebraic multigrid. In: McCormick (ed) Multigrid methods. Front Appl
Math 3(4) SIAM

22. Saad Y (1994) ILUT: a dual threshold incomplete LU factorization. Num Linear Algebra Appl
1(4):387–402

23. Saad Y, Suchomel B (2002) ARMS: an algebraic recursive multilevel solver for general sparse linear
systems. Num Linear Algebra Appl 9(5):359–378

123

http://www.c-jump.com/CIS77/reference/Intel/CIS77_24319002/index.html
http://www.c-jump.com/CIS77/reference/Intel/CIS77_24319002/index.html

2282 A. T. Makaratzis et al.

24. Saad Y, Zhang J (1999) BILUTM: a domain-based multilevel block ILUT preconditioner for general
sparse matrices. SIAM J Matrix Anal Appl 21:279–299

25. Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (RPLA) using Fredkin and
Feynman gates for industrial electronics and applications. In: Proceedings of the International Confer-
ence on Computer Design and Conference on Computing in Nanotechnology (CDES’06), Las Vegas,
USA, June 26–29, ISBN #: 1-60132-009-4. http://arxiv.org/abs/cs/0609029, pp 70–74

26. Thapliyal H, Srinivas MB, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel
subtractors. In: Proceedings of the International Conference on Embedded Systems and Applications,
ESA’05, June, Las Vegas, pp 165–181

27. Trottenberg U, Osterlee CW, Schuller A (2000) Multigrid. Academic Press, Cambridge
28. Van derVorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution

of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644

123

http://arxiv.org/abs/cs/0609029

	Parallel multilevel recursive approximate inverse techniques for solving general sparse linear systems
	Abstract
	1 Introduction
	2 Parallel modified generic factored approximate sparse inverse (PMGenFAspI)
	3 Parallel multilevel algebraic recursive generic approximate inverse solver (PMARGAIS)
	3.1 Modified block breadth first search (MBBFS)
	3.2 Parallel multilevel approximate inverse solver
	3.3 Parallel inversion of block diagonal matrix

	4 Numerical results
	4.1 Parallel modified generic factored approximate sparse inverse (PMGenFAspI) using AVX units
	4.2 Parallel multilevel algebraic recursive generic approximate inverse solver

	5 Conclusion
	Appendix
	References

