J Supercomput (2016) 72:1897-1926 @ CrossMark
DOI 10.1007/s11227-016-1690-2

Cloud service ranking as a multi objective optimization
problem

Arezoo Jahani! - Leyli Mohammad Khanli!

Published online: 9 March 2016
© Springer Science+Business Media New York 2016

Abstract Cloud computing is a kind of computing model on subscription basis. In
cloud computing environment, there are a lot of cloud providers that present variety
kind of services with different quality of services. Users have various kinds of appli-
cations that should be carried out on suitable cloud services. Consequently the users
might encounter problems in choosing the best service. Hence selection of a method to
compare services and to choose best service has been regarded as a challenge. In this
paper we presented NSGA_SR approach that utilizes both objective and subjective
assessments and models ranking problem as a multi objective optimization and then
solves it with use of non-dominated sorting genetic algorithm. Numerical experiments,
confirmed that the proposed approach outperforms available approaches in terms of
flexibility and scalability with increasing number of users and services. Also it con-
verges to optimization of goals and has good stability during the different generations.
Also it includes no limitation regarding any additive new quality attribute, service or
supplementary function.

Keywords Cloud computing - Quality of service (QoS) - Service ranking - Multi
objective optimization (MOO) - Non-dominated sorting genetic algorithm (NSGA-II)

B Arezoo Jahani
a.jahani @tabrizu.ac.ir

Leyli Mohammad Khanli
I-khanli @tabrizu.ac.ir

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1690-2&domain=pdf

1898 A. Jahani, L. M. Khanli

1 Introduction

Cloud computing knowledge performs the eminent role in expanding the systems and
distributing the applications throughout the internet. This computing model makes
possible access to information and computing resources in a flexible and scalable way
atthe demanded time [1]. Nowadays, in cloud computing environment, suitable service
selection is important, because cloud users always have various kinds of applications
with different quality requirements. Moreover, in cloud environment there are various
kinds of cloud services with different qualities [2]. They have three types: software as
a service (SaaS), platform as a service (PaaS) and infrastructure as a service (IaaS) [3].
Users collide with problem in selecting one service based on their quality of service
(QoS) requirements. In service ranking, the accuracy and celerity are vital, so having
a suitable method to select and rank the services is a real challenge. Furthermore, it
is not possible to select exclusively one service that is the aim of user from countless
available ones. Therefore, in order to obtain the highest performance in short time,
we need ranking systems. Ranking system can select some services based on user’s
requirements as candidate services and then it ranks them [4,5].

Ranking systems mostly use QoS values for service ranking. QoS attributes show
functional attributes of service from qualitative or quantitative perspectives. Service
quality refers to the capability of a network to provide better service with the guarantee
of one or a number of commitments [6,7]. Evaluation and comparison of various cloud
services is possible only through comparison and evaluation of quality of service.
Therefore using the standard QoS values leads to a large acceleration in ranking
operations [8]. QoS attributes may have various types such as Boolean, numerical and
range [9]. In Boolean type, attributes have two values (one or zero). In numerical type,
attributes have a numerical value and in range type, attributes have a value in a range.
Such as response time that may be in the range of (20, 40) s [8,9].

Service ranking as a framework can evaluate different cloud services and determine
their priorities. Cloud service ranking has four stages: receiving users requirement,
measuring QoS attributes by monitoring or benchmarking tools [10], selecting candi-
date services and service ranking [8,11,12]. This paper has been focused on last two
stages: selecting candidate services and service ranking. Candidate services receive
rank according to user requirements; it can be through a statistical approach or linear
algebra or an evolutionary algorithm. Higher ranking means that service is more suit-
able to meet the needs of user. Some ranking systems store the feedback of previous
users as training information that would be used in ranking process. Therefore, the
popularity of services can also effects ranking [13, 14].

In ranking process, users may have essential and non-essential requirements. Essen-
tial requirements should be satisfied by candidate services. Non-essential requirements
have less significance and if they do not be satisfied by candidate or ranked services,
there would be no problem [8]. It means that if a service has all essential and non-
essential requirements except one essential requirement, it cannot be accepted by user
and can not do user’s application properly. Accordingly ranking systems try to satisfy
essential and non-essential requirements, if it would be possible.

This paper proposes non-dominated sorting genetic algorithm_service rank
(NSGA_SR) approach as a ranking approach in order to rank all kinds of cloud

@ Springer

Cloud service ranking as a multi objective optimization problem 1899

services (includes SaaS, PaaS and IaaS [3]). The main aim of present work is cloud
service ranking based on QoS attributes which utilizes both essential and non-essential
requirements and both objective and subjective assessments in ranking process. Objec-
tive assessments are QoS attributes and subjective assessments are previous user’s
feedback information [8, 15]. In fact, this paper covers both data by multi objective
optimization (MOO) [16] with multiple functions and considers the range of user’s
requirements as constraints in the optimization problem. The NSGA_SR approach
for service ranking, initially uses a filtering system in order to extract the candidate
services that capable to satisfy user’s all requirements. Then it finds several opti-
mum pseudo services by non-dominated sorting genetic algorithm (NSGA-II) [17]
with the use of two objective functions. At the end, all candidate services would be
ranked based on their distance to pseudo services by application of clustering algo-
rithm.

We implemented NSGA_SR approach (presented approach), AHP_SR, SVD_SR
and W_SR (our previous approach) as related approaches in MATLAB software. We
used QWS [18] real data set that were collected from more than 2500 web services.
The experimental results showed that the NSGA_SR is more flexible and scalable
with increase in the number of users and services and that NSGA_SR converges to
optimization goals. It has also good stability during different generations. Moreover it
has no limitations regarding the addition of any new quality or supplementary function.

The rest of the paper is organized as: brief overview of related works is described
in Sect. 2. The QoS attributes is described in Sect. 3. The proposed ranking approach
is outlined and described in details in Sect. 4. Dataset and Performance comparison
are respectively provided in Sects. 5 and 6. At the end, conclusion and future works
are discussed in Sect. 7.

2 Related works

With the increasing popularity of cloud computing services, many researchers started
to evaluate and compare the services in order to help users to select appropriate
services. In this regard, researches have been divided into two groups: solutions to
compare and evaluate services and solutions to service ranking.

Solutions to compare and evaluate the services, only compare services based on
QoS values without looking at the user’s requirements. Monitoring and benchmark
tools [10] are major available solutions in this category. These tools are able to compare
services with monitoring different QoS features. In general, these tools can calculate
and measure the QoS values and most of results are publicly available in the real
datasets. Ranking solutions rank the services with assumption of having QoS values.
These solutions compare and rank the services on the basis of user’s requirements.
The results of comparing division can be used in ranking services.

Cloudstone [19] is a benchmark and measurement tool for web 2.0 that was designed
in 2008. Cloudstone is a toolkit that uses a set of automation tools to generate load and
measure its performance in different deployment environments. This tool has been
examined on Elastic Compute Cloud (EC2) and is able to measure the cloud services
performance with the use of one question; "how many concurrent (simulated) users

@ Springer

1900 A. Jahani, L. M. Khanli

can be supported by a fixed amount of hardware under baseline conditions (no special
database tuning, caching)?”

CloudHarmony [20] is an important resource for cloud service performance evalu-
ation. Totally, Cloud Harmony measures all of the attributes that can be supported by
any service and is publicly available on internet. Users can select one attribute with
several services and see the result of CloudHarmony benchmark in form of a graph,
table or figure. CloudCmp [21,22] benchmark is able to estimate performance and
cost of an application while it is deployed on a particular cloud provider. These tools
are used for a comprehensive measurement on four major cloud providers; the Ama-
zon web service, Microsoft Azure, Google App Engine and Rackspace cloud servers.
The results are available on [28]. In general, CloudCmp is a systematic comparing
structure of the performance and cost of cloud providers that measures the persistent
storage, elastic computing and networking services offered by a cloud along metrics
which directly reflects their impact on the performance of customer applications.

The main advantages of CloudCmp facing other tools was that it can be compliance
with all aspects (such as computational power, stocks, network and scalability); while
other tools could not cover all aspects. In addition, other tools were not extensible to
all kinds of providers (for example they were not suitable for PaaS).

Compuware Company presented CloudSleuth [23] monitoring tools that was ini-
tially created as an internal resource to help users, measures the reliability and
consistency of the most popular public IaaS and PaaS providers. CloudRank-D [24] is
benchmark and rank cloud computing systems that are shared to run big data applica-
tions. The main focus of this tools is to propose two new simple metric: data processed
per second and data processed per Joule as two complementary metrics for evaluating
cloud computing systems that is suitable for evaluating whole system level instead
of a component or subsystem level, like processor or I/O subsystems. Skoutas et al.
ranked web services using multi criteria dominance relationships [25] here it can also
be extended to cloud services.

Rehman et al. [26] claimed that benchmark tests are unable to accurately determine
or reliably predict the performance of actual cloud applications because they do not
produce real workload. Instead, they presented a user feedback based approach that
used from a cloud status checker and measured QoS values in the presence of real
applications.

Parallel to the increasing popularity of cloud computing, many researches have
been carried out about service ranking. Although service ranking was familiar in web
services for many years, but some ranking approaches were proposed just on the basis
of cloud services and their attributes. Chan and Chieu [11] presented a cloud service
provider mapper as a ranking solution that uses from singular value decomposition
(SVD) techniques for cloud service ranking. This SVD base approach tried to find the
best service upon users requirements. By this way, it would initially find one pseudo
service by applying SVD technique on available service and then it finds a suitable
service with lowest distance of pseudo service. service ranking system (SRS) [27]
is another approach that presented in the form of two modes: static and dynamic.
In static mode, SRS ranked all available services in cloud market by not noticing
to user’s requirements. But in dynamic mode, It ranked services according to user’s
requirements. Also, service level agreement (SLA) matching approach [28] being as

@ Springer

Cloud service ranking as a multi objective optimization problem 1901

a part of the Cirrocumulus [29] project defined the process of identifying compatible
cloud provider for given requirement by matching SLA parameters.

Aggregation approach [15] is the first ranking approach that used both objective
and subjective assessments. Instead of utilizing all of the user’s requirements it only
focused on user’s priority (such as normal values for each attribute that showed its
significance). CloudRank approach [30,31] benefited from training users feedback to
QoS values prediction [32] and so found similar users and gave same ranking result to
similar users. Another approach that benefited from Analytical Hierarchical Process
(AHP) [8] for service ranking was able to rank them based on both essential and non-
essential requirements. This approach proposed a SMICloud (Service Measurement
Index) framework. SMICloud ranked services based on SMI attributes that presented
by Cloud Service Measurement Index Consortium (CSMIC [33]) and was especially
designed for cloud computing services. W_SR (Weight_Service Rank) [34] approach
was able to benefit from both essential and non-essential requirements and ranked
services by using Min—Max technique as a decision solutions.

The main disadvantages of ranking systems is that none of them did not use objective
and subjective assessments and essential and non-essential requirements. The related
works had low level of flexibility and scalability. Also they were limited in terms of
adding new qualitative attribute or service. The aim of present article is to address
these problems and propose a new ranking system.

3 Quality of services

Comparing and evaluation of services can be possible by QoS values [35,36]. There-
fore it is important that QoS attributes would be recognized and measured [37-39].
QoS attributes have many different types such as response time and availability. There-
fore, we should have a criterion that would cover wide range of qualitative attributes
and make it possible to compare service providers and their services. In this regard
CSMI Consortium specified attributes which were named SMI attributes to evaluate
and compare cloud services [40]. Specified attributes are based on International Orga-
nization for Standardization (ISO [41]) and they include seven attributes and some
sub attributes. The main attributes described are as follows [8,33,42]:

1. Accountability contains attributes used to measure the properties related to the
service provider organization. These properties may be independent of the service
being provided. If a service does not have accountability, no one tend to use and
deploy his/her data on it. Because it is possible that the service was not able to
respond during needed time due to the unavailability. Some of sub attributes of
accountability are: auditability, compliance, data ownership, ease of doing busi-
ness, governance, ownership, provider business stability.

2. Agility indicates the impact of a service upon a client’s ability to change direction,
strategy, or tactics quickly and with minimal disruption. In the presence of this
attribute, users can change or expand their services without paying any extra cost.
Adaptability, capacity, elasticity, extensibility, flexibility, portability and scalabil-
ity are sub attributes of agility.

@ Springer

1902 A. Jahani, L. M. Khanli

3. Cost the amount of money spent on the service by client. Acquisition and transition
cost, ongoing cost and profit cost or cost sharing are sub attributes.

4. Performance because of many kinds of cloud providers, users need to understand
about the performance of each service faced with their application. Efficiency
means less time or energy for most work is done right. The purpose of the perfor-
mance of a system, determine the maximum time that a system can not resist or
the accomplishment of a given task measured against preset known standards of
accuracy, completeness, cost, and speed. In a contract, performance is deemed to
be the fulfillment of an obligation, in a manner that releases the performer from
all liabilities under the contract. Features and functions of provided services like
accuracy, functionality, suitability interoperability and service response time are
regarded as its sub attributes.

5. Assurance the probability of system success or unsuccess in doing the duties with-
out any failures called assurance. In fact service assurance is a procedure or set of
procedures intended to optimize performance and provide management guidance
in end-user applications. Service assurance is an all-encompassing paradigm that
revolves around the idea that maximizing customer satisfaction inevitably maxi-
mizes the long-term profitability of an enterprise. Sub attributes are availability,
maintainability, recoverability and reliability.

6. Security and privacy indicate the effectiveness of a service provider’s controls on
access to services, service data and the physical facilities form which services are
provided. Sub attributes are access control and privilege management and data
geographic.

7. Usability by this feature, users can easily learn using from service and switch to
that. Accessibility, client personnel requirements and instability are some of sub
attributes.

4 Assumptions of NSGA_SR

The assumptions of proposed NSGA_SR approach are presented here. NSGA_SR
can ranks the services based on both objective and subjective assessments. Also
it can consider both essential and non-essential requirements in ranking process.
Users can enter the required values in three ways of Boolean, numerical and range.
NSGA_SR has two objective functions: one is to find suitable services that satisfies all
essential requirements and most of non-essential requirements. In fact it maximizes
user’s objectives optimization and minimizes the deviations from the soft constraints
(Objective assessment). Another feature is to use training user’s feedback in order to
show the satisfaction of training users. In fact it maximizes service satisfaction by
training users (Subjective assessment). These objective functions and other assump-
tions such as modeling of service and users and also QoS vector are described in
Sects. 4.1-4.5. The NSGA_SR approach and its steps will have described in detail in
Sect. 5.

Here we modeled ranking problem as a MOO problem. We also modeled essential
and non-essential requirement respectively with hard and soft constraint. In following
sections we called essential and non-essential requirement with these names.

@ Springer

Cloud service ranking as a multi objective optimization problem 1903

4.1 Modeling cloud services

All cloud services that are available in system’s catalogue are called cloud services.
Modeling of services is depicted in Eq. (1).

§={sm|l =n <N}
Sn:<qnlvqn21-'~sqnjv-"1an> (1)

S is a set that includes services like s,,. if we have N services in total, then n will be
between 1 and N. Each s, is known by its QoS attributes. So s, is an ordered pair
that has Q element. g,,; shows j as the qualitative attribute of service n. If we have Q
qualitative attributes, then each service would be shown by Q value.

4.2 Modeling ranking system’s users

All users that have a ranking request from the system at same time are generally called
users. Modeling process of users is depicted in Eq. (2).

U ={unll =m < M}
Uy = {Rm, Cpm, SCp, HCy,}
Ry =(Rm1, Ru2, ..., Ryj, ..., Ruo)
Cn ={Cn1,Cp2y ..., Cpyj, ..., Ciug)
SCyp =(SCp1,...,8Cnj,...,SCug), SCn;j €{0,1}
HCy, ZFmZ(Hcml,...,Hij,...,HCmQ), HCyj € {0,1} 2)

U is a set of services that includes users like u,,. m is between 1 and M, if we have
M total users that use the system at same time. Each u,, is identified by four values
that are as follows:

® Ry, is an ordered pair and shows user’s requirements and includes R;,; which
shows j th QoS requirement of user m. Each R,,; can be a single value, a Boolean
or an arrange. If it has arange as value it will be like [R;;1, Rjj2] in a way that
the first value is (min R,,;) and the next is (max R,,;). If it has a Boolean or single
value will be like [R;,j, R;,;] that has two same values.

e C,, is an ordered pair too and shows user’s coefficient (or user’s priority) and
includes Cy,;; that shows j th QoS coefficient of user’s m. The user enters coefficient
between 0 and 1 and it is not needed to the sum of coefficient to be 1 (it is regarded
to be one of the advantages of proposed approach).

e SC;, is an ordered pair and shows user’s soft constraint and includes SC,,; that
shows j th QoS soft constraint of user’s m. Each SCy,; is a Boolean value that can
be zero or one.

e HC,, is an ordered pairs and shows user’s hard constraint and includes H C,,;
that shows j th QoS hard constraint of user’s m. Each HC,,; is a Boolean value

@ Springer

1904 A. Jahani, L. M. Khanli

Table 1 Main variables in NSGA_SR

N Number of services Sn n th service

M Number of users Um m th user

Ry QoS requirement of user m Cm QoS coefficient of user m
SCm QoS soft constraint of user m HCy QoS hard constraint of user m
T Number of training users tuy t th training user

K Number of candidate services CcS Set of candidate services

0 Number of quality attributes

that can be zero or one. Hard constraint includes quality attributes that are not soft
constraint. So HC,,, = SC,,.

4.3 Modeling of training users

All the previous users that have ranking request from system are called training users.
These users can give feedback after finishing request between zero and one which is
stored as training information and used in ranking. However users are able to have a
ranking request either by using or not using training information (this is again one of
the advantages of present approach). Modeling of training users is depicted in Eq. (3).

TU ={tu;|]1 <t <T}
tut:(Cl‘lact27"'7Ctja'-'sCl‘Q> (3)

TU is a set of training users like fu, that give feedback to the same service. ¢t would
be between 1 and 7, if we have T training users as it has been figured out in Table 1.
Each tu; is known by training user’s coefficients. Cy; is an ordered pair and shows j
th QoS coefficient of training user’s #. The main variables of NSGA_SR are shown in
Table 1. As indicated in Table 1, K is the number of candidate services and CS is a
set of candidate services that will be used in Sect. 5.

4.4 QoS vector modeling

All of the users, services and training users are modeled by QoS attribute. QoS
attributes has been described in Sect. 3. The description, measurement methods and
unit of measurement of seven main QoS attributes are depicted in Table 2. We will
evaluate proposed approach with the use of these seven main attributes (Q = 7). Here,
we can confirm that our approach is more flexible whit adding any new attribute and
we will show that in Sect. 6.

4.5 Modeling objective functions

In MOO [16] we have more than one objective function in which we want to minimize
or maximize its components at the same time. In fact, because of availability of many

@ Springer

Cloud service ranking as a multi objective optimization problem 1905
Table 2 Quality of service attributes
Quality of Description Measurement Unit of
service method measurement
1 Accountability Interval time for access to Time required to send ms
user data in demand time requests and receive
replies
2 Agility Ability to change or expand Ability to change services %
cloud services without without spending (rate
spending of meet the changing
needs of the user)
3 Cost Performance of cloud Relative error messages to %
services based on SLA the total number of
messages
4 Performance Needed costs to run the The cost of allocated $
service resources
5 Assurance Number of answered The total number of Invoke/s
service requests at a time invokes at a time
6 Security and Data protection The data protection %
privacy
7 Usability Learn easy and switch to The number of successful %

cloud services easily

invokes/total number of

invokes

different objectives, we cannot improve all of the objectives simultaneously and we
have to set a tradeoff among them. As it was mentioned aimed use both objective and
subjective assessments. Objective assessments obtained from QoS values and subjec-
tive assessments obtained from the feedback of previous users as training information.
In NSGA_SR we have two main objective functions, one for objective assessment and
the other for subjective. They are described as follow:

(1) Objective assessment (maximizes user’s objectives optimization and mini-
mizes deviations from the soft constraints) this object is defined to receive user’s
requirements and increase system ability in selection of suitable services according to
user’s requirements. In this objective, the services that can satisfy all hard constraints
and most of the soft constraints, have more chance to select.

Here it should be mentioned that in this objective, we have some attributes that
must be maximized such as availability or security. On the contrary, we have some
attributes that should be minimized such as cost or error rate. Suppose that we have
p attributes which should be maximized and ¢ attributes that should be minimized
(p + g = Q) and each of these can be either hard or soft. The first objective function
is depicted in Eq. (4).

)4
minF\(objective) = — > (Cj X gnj X HCpj + Cuj X Ignj — Rimjl x SCpnj)
j=1
q
+ D (Conj X Gnj X HCj+ Conj X |qnj— Rinj| X SCrj) ~ (4)
j=1

@ Springer

1906 A. Jahani, L. M. Khanli

Cpyj shows jth QoS coefficients of user u. g,,; shows j thatis the qualitative attribute
of service n. HC,,; shows j that is the QoS hard constraint of user u. Ry,; shows j
that is the QoS requirement of user u. SC,; is j that is the QoS soft constraint of user
u and the deviations from the soft constraints calculate in objective function.

p is the number of attributes with maximization objective and ¢ is the number of
attributes with minimization objective. Here we change first objective function as a
minimum function (min F7(x)) and calculate reverse total of p attributes with total of
q attributes. Hard constraints are directly multiplied in the amount of QoS constraint.
On the other hand soft constraints are multiplied in the subtracting of the amount of
user QoS requirements.

(2) Subjective assessment (to maximize service satisfaction by means of training
users of the system) this function typically is a guarantee of QoS. Because training
user produces his/her feedback of services after finishing application and such function
tries to select services that receive better feedback from training (previous) users. So
it can be a QoS guarantee. Second objective function is depicted in Eq. (5).

min F; (subjective)

14 T
= —Z(Z (Ctj X qnj X HCpj + Crj X |qnj — Rijl| X Sij)/T)
)

j=1 \r=1

q T
+ Z(z (Ctj X qnj X HCmj + Ctj X |qnj — Rij| X SCiij) /T)

j=1 \r=1

C;j shows j that is the QoS coefficients of training user . Other variables are
described in first objective function. 7 shows the number of training users that give
feedback to the same service such as s,,. Second function is calculated as below; for all
available services (Zle) and for all available training users (ZITZI), user’s feedback
(coefficients of training user) has been multiplied in value of the attribute. At the end
the total amount of obtained values has been divided in to the number of training
users (notice that, as we saw in first objective function, the process is different in hard
or soft constraints). Any MOO problem has some constraints. The constraints of our
proposed approach are depicted in Eq. (6).

minR;,; < ¢pj <MaxRyj, j:1<j=<0Q (6)

Ryj shows the value of j that is the QoS requirement of user u. If user insert
requirements in range shape, the lower limit of range, would be set in min Ry,; and
the upper limit of rage, would be set in max Ry;. If user inserts only one value as
requirement, the lower and upper limit, would be set to the same number. To sum up
constraints expresses the fact that “all attribute values must be in the range of user’s
requirements.” By having these two objective functions, the services can satisfy more
user’s requirements and receive better score from training users who are luckier to be
selected.

@ Springer

Cloud service ranking as a multi objective optimization problem 1907

5 NSGA_SR approach

The proposed NSGA_SR approach is presented in this section. NSGA_SR approach
includes three steps that are shown in Algorithm 1.

1. Filtering step initially, in filtering step some candidate service that can satisfy users
requirements would be selected. In this paper we showed the candidate services
with K. this variable can be initialized by ranking system designer.

2. Finding pseudo services with NSGA-II step After that some pseudo services would
be extracted by NSGA-II that are not available in fact and do not have any priority
to each others.

3. Clustering step At the end candidate services would be ranked by clustering algo-
rithm.

NSGA_SR inputs are sets of services, training users, requirements and coefficients
of requirements. The output is a service ranking of candidate service. The NSGA_SR
flowchart has been shown in Algorithm 1. All of the steps are depicted in Fig. 1.

Algorithm 1 NSGA_SR Algorithm: Nondominated Sorting Genetic Algo-
rithm_Service Rank // Cloud Service Ranking as MOO problem with NSGA-II

Require: a full service set S, an users Requirement set Ry, an users coefficient set C,;, an soft constraint
set SCyy,, a Training users set 7 U, a preference multi object function

Ensure: a service ranking R

1: Filtering_Algorithm // Select candidate services from service set S

2: NSGA-II Algorithm // Select the pseudo services

3: Clustering Algorithm // Ranking candidate services

5.1 Filtering step

This step evaluates services according to users requirements and extracts the candidate
services. Filtering step has two main aims: to maximize the user’s requirements (or not
to exceed the constraints of the user) and to minimize violations of soft constraints.
Generally, the number of candidate services is initialized by designer of ranking system
and are shown by K. filtering step has been depicted in Algorithm 2.

As it is depicted in Algorithm 2, by the time the number of candidate services gets
larger than the total number of available services, all of them would be considered
as candidate services and then sent to second step. Otherwise the algorithm extracts
services that can satisfy all hard and soft constraints. After that, if the size of extracted
candidate services (C.S) would be smaller than k and the size of soft constraint (SC,,)
be larger than zero, it selects one soft constraint with fewer coefficient and sets it with
([—00, +00]) in user requirement (R,,) then it remove soft constraint (SC,,). This
process reoccurs until K or more than K candidate services would be founded.

If the size of candidate service would be smaller than K and gets equal with zero
and the size of soft constraint grows not bigger than zero, in this condition there would
be not any suitable services and the algorithm must be exited.

@ Springer

1908 A. Jahani, L. M. Khanli

Filtering
Receive S, Rm, Cm, SCm, K | et
Select CS from S so that R_emov_e_a soft constraints
N fmin R < Goy<! Max RMj with minimal impact factor
my < Gy J (fewer coefficient) of Rm
Yes Ygs
Candidate Service
(CS)=S Yes rYes
No
There aren't any service

according to user’s
requiremen

: Finding pseudo :
: services with NSGA-II ;

Initialize the gosulationm Gen=1

Non dominated sorting of population |

If terminate
condition
is true?

| Calculating crowding distance of population
Crossover and Mutation

| Non dominated sorting of population |

Gen=Gen+1

No

Yes
N

2 Send Pseudo Services (PS)
Calculating crowding distance of population to next step

Sorting the population and select ordinary population |

Set PS as a clusters, set all service of CS in different clusters, i=1 |(— Clustering

If all items are in one cluster

No
\'2

Show the rank of
services

|ﬁnd nearest services of CS clusters to PS, join them in PS and mark them as i th rankl

1

| Calculate the distance between all clusters, i=i+1 |

Fig. 1 NSGA_SR flowchart

5.2 Finding pseudo services with NSGA-II step

This step finds pseudo services through NSGA-II that are not really available but they
satisfy user’s requirements. This step maximizes the selecting chance of services that
can satisfy more requirements of user. This level has been shown in Algorithm 3. In
the following sections coding method, calculating fitness function and the NSGA-II
evolution would be described.

5.2.1 Coding method

To search the answer in MOO problems, at first we must code the problem with proper
chromosome structure. Each chromosome of the NSGA_SR problem is indicative
through a sequence of services that respectively intended to the users. Therefore each
service is also indicative by its QoS attributes. We proposed the method for NSGA_SR

@ Springer

Cloud service ranking as a multi objective optimization problem 1909

Algorithm 2 Filtering Algorithm

Require: a full service set S, an users Requirement set R,;, an soft constraint set SCy, , a cofficient set
Cy,, the number of candidate service K

Ensure: a candidate service set CS

1: if (k > |S]|) then

2: /I if the number of candidate services is bigger than the number of all services, filtering step is not

need

3: CS=S;

4: else

5: Select services from S such as s, so that (minRy,j < q,j < maxR,;) and put them in CS set;

6

7

8

if (|/CS| < K) then
if (sum(SC;; > 0) then
/1 if there is still some soft constraint

9: Select the Index of min{Cy, x SCpy "*P**|Cpy; x SCppj #0,1 < j < 0}
10: Cin(Index) = 003

11: SCn(Index) = 0;

12: Rin(1ndex) = [—00, +00];

13: Goto4;

14: else

15: if (CS ==0) then

16: /1 if algorithm can not find any candidate service

17: return "there isn’t any service according to user’s Requirement" as a output ;
18: Exit;

19: end if

20: end if

21: endif

22: end if

23: return C'S (candidate service set) as a output

Algorithm 3 NSGA-II Algorithm

Require: public input: an users Requirement set Ry, an users coefficient set C;,;, an users soft coefficient
set SCyy,, an users hard coefficient set H Cy;, a preference multi object function
Private input: npop, problemg;o=M X Q, pc,pm, ne, Nm
Ensure: a pseudo service set PS
1: Population=Initialize Population(n pp, problemy; ;.);
2: Nondominated sorting of Population;
3: Calculating crowding distance between Population items;
4: while stop condition () do
5: Parents=select parents(Population, n.);
6: for parent|, parent, € parents do
7
8

Childy, Childy= crossover(parenty, parenty, p¢);
add Childy and Child; to Population;

9: end for

10: solution=select solution(Population, n,);

11: for each solution € solution do

12: mutate solution= mutate(solution, p;,);
13: add mutate solutiom to Population;
14: end for

15: Nondominated sorting of Population;

16: Calculating crowding distance between Population items;
17: P S=Get best solution(Population, 7 pp);

18: end while

19: Return P S

@ Springer

1910 A. Jahani, L. M. Khanli

Service for user #1 | S qi | 92| 913 q1Q

Service foruser #2 | S, Q21| 922 | 923 q20

Service for user #3 | S;

Service for user #4 | Sy

Service for user #N [Sy qni | e | gns aNQ

S, : Service n for user n
(nj: Quality service j for service n

Fig. 2 Coding for a chromosome (for one user such as m)

coding in Fig. 2. Our coding method is a two—dimensional integer array of length
M x Q. (M is number of users who use ranking system at the present time and Q is
the number of qualitative attributes of each service) an element at index (i, j) of the
array represents the value of the QoS that is based on the j qualitative attribute of useri.

5.2.2 Calculating fitness function

As it was mentioned, NSGA_SR is an approach that tries to rank services as a MOO
problem according to objective and subjective assessments. Here two objective func-
tions (4) and (5) have been produced that can be utilized as fitness function in second
step of NSGA_SR.

5.2.3 NSGA-II evolution

Evolution of NSGA-II in NSGA_SR second step and according to Algorithm 3, has
been performed in following steps (In order to understand required variables in Algo-
rithm 3 take a look at Table 3):

1. Generating initial population Initial population is a set of chromosomes in which
each chromosome includes its QoS for every user. Another method to generate
initial population is the use of candidate services produced in filtering step and
set them as initial population of the algorithm. By this work, the initial population
would be selected intelligently and may accelerate the convergence of algorithm.
But it does not have any capability to produce final answer. The effect of product
generation (randomly or intelligently) will be examined in details in Sect. 7.

2. Calculating the fitness According to the objective of optimization, chromosomes’
fitness is calculated by application of (4) and (5).

@ Springer

Cloud service ranking as a multi objective optimization problem 1911

Table 3 Evolution parameters of NSGA_SR

Name of parameter Parameter Value

Number of candidate services K 100

Population size Npop 50

Maximum number of generations MaxXiteration 100

Rate of crossover Pe 0.08

Number of generated solutions with crossover ne Round (p¢ X npop/2) x 2
Rate of mutation Pm 0.03

Number of generated solutions with mutation nm Round (pm X npop)

3. Nondominated sorting of population Non-dominated sorting of population is the
most important part of NSGA-II. It sorts chromosome based on dominated or
dominant when facing other chromosomes. In fact this part sorts the population
(includes services) based on all objective functions and finds some Pareto front
that each includes some services. For the reason that, more than one objective
function exist, it is difficult to sort the population in order to select the better
solutions of population and also move them to next generation. Non-dominated
sorting compares population based on all objective functions and then sorts them.
Services with lowest Pareto front are considered to be better than the others while
services that have same Pareto front, are same and do not have any priority to each
others.

In order to identify solutions (chromosome or service) that are on the first Pareto
front, each solution must be compared with every other solutions in the population.
The solutions that are not dominated by any other solution are marked as the first
Pareto front. Now we have all solutions on first Pareto front. To find the members
of other Pareto fronts, we should omit the solutions on first Pareto front. Now
again, we should find solutions that are not dominated by other solutions and mark
them as second Pareto front. This process continues until the number of Pareto
front of all solutions would be identified.

Formally, the procedure happens in following levels: at first we should define two
variables for each solution; domination count is the number of solutions which
dominate a solution. Dominant set is a set of solutions in which a solution dom-
inates over them. After that, all pairs of solutions would be compared. In every
comparison, if solution A dominates over solution B, B would be added to the
dominant set of A and if solution B dominate over A, domination count of B
gets incremented. Now the solutions that have domination count equal to zero
acquire first Pareto mark and form the current Pareto front. To find the other
pareto, we should omit the solutions with first Pareto front and should increase
the domination count from solutions that first Pareto solutions are dominated
over. Therefore by repeating this process we are able to find all Pareto fronts.
Such procedure will be continued until we would not have any solution with-
out Pareto front or could not find any solution with domination count equal with
Zero.

@ Springer

1912 A. Jahani, L. M. Khanli

Method of domination
In competition between the solutions, we use objective functions. First we calculate
all objective functions for every solution and therefore we use Eq. (7).

(Adom B) = Vj: fij(A) < f;(B)
djo : ij(A) < ij(B)
1=j<0)

As it has been depicted in (7), solution A have dominance over solution B, if A
does not worse than B in any way and does better than B at least in one way.

4. Calculating crowding distance Always, after non-dominated sorting of population,
we must calculate crowding distance. Later to finding all Pareto fronts, it should
be noticed that the solutions which have less Pareto fronts will be better than the
others and if some solutions have same Pareto fronts, they are same and do not
have any priority to each other. But “how we can select some of solutions on a
Pareto front?”” Crowding distance can do this by calculating crowding distance for
each Pareto front.

In fact, crowding distance is estimating the density of solutions surrounding a
particular solution in a population. About a particular solution, we calculate the
average distance of two solutions on either side of this solution along with each
objective and in each Pareto front. For each Pareto front, crowding distance of
both the initial and final solution would be set to be infinite.

Presently, every solution of one Pareto front with high crowding distance is con-
sidered to be better than the others and is luckier to remain. As an instance, we
showed non-dominated sorting and crowding distance for a MOO problem with
two objective functions in Fig. 3 (both of the objective functions are minimizing,
so the ideal spot is (0, 0)).

As depicted in Fig. 3, if we have two objective functions F (1) and F(2) and we
showed all solution with points in shape (a), with determination Pareto fronts,
we can reach to shape (b) and with calculating crowding distance, we can reach
to shape (c) of Fig. 3. Here, the solutions with lowest Pareto front and highest
crowding distance were better than the others.

5. Crossover After generating median population, solutions selected pairs and then
the crossover was carried according to the rate of crossover (P,.). We used two—
point crossover method in which both two solutions replaced the number of their
gens with each other’s.

6. Mutation In order to protect the algorithm from stopping in local optimum, we
must use mutation in NSGA-II. Some solutions with rate of mutation (P,,) were
selected and a gene was randomly selected from each and then it was replaced
with a random number.

7. Sorting and replacing After performing above actions, to select the number of
median solution and then to transfer into the next generation, we sorted population.
For sorting procedure we used solution’s priority (with lowest Pareto front and
highest crowding distance). Here,we should notice that if we want to sort the
population, first it should be based on Pareto fronts and next on crowding distance.

@ Springer

Cloud service ranking as a multi objective optimization problem 1913

Fy(x) F,(x)

* 8-

b % - L e 'R

*] I * »*
LR % LI x R 3 *
% ‘ . % . 8‘ * ‘x X\\‘\ ‘x‘\ %‘K Pareto Front 4
R N L \
% * ‘3 * ¥ %, Ppareto Front 3
N *
By b 3 g‘
% % Pareto Front 2
“Pareto Front 1
Fi(x) F,(x)

(a) (b)
F(x)

Crowding Distance = o

rowding Distance = oo
Fy(x)

(O]

Fig. 3 Methods of nondominated sorting and calculating crowding distance

In fact we should firstly sort based on crowding distance and next based on Pareto
fronts.
8. Termination condition To obtain objective optimization, the NSGA-II evolution
ends with following condition:
e To reach the maximum number of generations,
e To converge to the final answer and have no need to repeat the algorithm.

5.3 Clustering step

Clustering step has been shown in Algorithm 4. This algorithm is similar to hierarchical
clustering algorithm by having little changes. In hierarchical clustering algorithm, the
aim is to find clusters that have lowest distance from each other. In every iteration,
two clusters with lowest distance join together. The iteration would be continued until
there remain only one cluster.

We have used similar clustering algorithm. Our clustering algorithm receives two
inputs: candidate services and pseudo services. Here we inserted pseudo services in
cluster as a base cluster. Now, in every iteration it is tried to find nearest candidate
services to pseudo services cluster and mark them as first rank and join them in cluster
of pseudo services and this act would be repeated until all services receive rank and
join to the cluster of pseudo services.

6 Dataset description

To evaluate the NSGA_SR approach, we used QWS (Quality of Web Service) dataset
[17]. QWS is a real world dataset which includes nine main QoS that are collections

@ Springer

1914 A. Jahani, L. M. Khanli

Algorithm 4 Clustering Algorithm

Require: a candidate service set C'S, a pseudo service set P S

Ensure: a service ranking R

1: Put all services of CS§ in separable clusters and put P S in one cluster;

2:i=1;

: while (all CS and P S isn’t in one cluster) do

Calculate distance between P .S and all CSy; // CSy is k th candidate service
Mark all nearest services to P.S cluster’s as i th Rank and add them in P S cluster;
i=i+1

: end while

: R=all rank of CS set

: return R

of more than 2500 web service. The information of QWS dataset has been collected
from multiple heterogeneous sources (i.e. UDDI, service portals, or search engines).
Therefore it adds another level of complexity with respect to service providers manag-
ing and their administration. To develop examinations that the desired service number
is more than 2500, more quality information services have been produced according to
QWS. NSGA_SR and compared solutions have been implemented in MATLAB soft-
ware (Version R2015a 7.14.0) in an operating system with an Intel Corei5 Duo 2.53
processor, 4 GB Ram and Windows 7 x86 Enterprise. QWS data set lacked cost and
security attributes, so we randomly generated these attributes and added to the data set.

Constraints of users were produced randomly with normal distribution between
the highest and lowest values for each quality of service. Training users informa-
tion can be produced randomly or can be started with empty values and recorded
by receiving every feedback from training users. We produced training information
randomly.

Moreover we assumed that all feedback is a filter and no user can enters untrue
feedback. As it was mentioned, NSGA_SR uses NSGA-II, we showed NSGA-II para-
meters in Table 3. We obtained these parameters with examination, trial and error
procedure. They are best parameters to development algorithms suitably.

7 Performance comparison

In order to evaluate the NSGA_SR approach, we had seven experiments: five exper-
iments included: flexibility, scalability, optimality, convergence and stability. Other
two experiments included: how to create an initial population and number of candi-
date services. Experiments results were compared with results of three related work
which were: AHP base service rank, SVD base servicer rank and W_SR. For ease of
nomenclature we called them respectively with AHP_SR, SVD_SR and W_SR (SR
for Service Rank).

7.1 Flexibility

In flexibility experiment, the rate of flexibility and feasibility of adding new services or
features were investigated in proposed approach, AHP_SR and SVD_SR approaches.

@ Springer

Cloud service ranking as a multi objective optimization problem 1915

S; ... Sy S S Sy S
S| S Snel S1 Sn Sntl s 1 n+1S 1 n+1
sy Sy 1 1
AHP_SR (q1]1 ; @ﬂz . GH@ : m@ﬂ
s sn Sn Sn
n
Sutl Sp+l Sn+1 Sn+1
Qi .- 94990Q+1
S
SVD_SR . @h[
Sn
Sn+1
q1,...0->q1,..Q +1
S1
NSGA_SR
Sn
Sp+10

Fig. 4 Flexibility comparisons of NSGA_SR and previous approaches

This test tried to reveal the main concept of flexibility. More accurate results would
be investigated in scalability test. In this section we assumed that, NSGA_SR has N
services and Q qualitative attributes. Here, the aim was to find the amount of work
that was required by adding a new service or an attribute. All ranking approaches at
first required comparing the services.

As depicted in Fig. 4, AHP_SR compared services by using a matrix. It means
that we put the QoS value in a matrix and to compare each two services we com-
pared their QoS. In other hand, for each QoS, AHP_SR like ¢;, made a n x n
matrix (n is number of service) to compare all services according to ¢;. Therefore
if we want to compare Q QoS, we should have Q matrix. As it was mentioned,
to add a new attribute, AHP_SR like (gp+1), added a n x n matrix and a new
service, and added a row and a column to each matrix that consume time and
space.

SVD_SR uses a matrix to compare the services that included: services in row and
QoS attributes in column. Therefore in order to add a new attribute, a column must
be added to base matrix and to add a new service, a row must be added to base
matrix.

Opposite to the previous works, in NSGA_SR every service is displayed by a digit
which is used to compare services. Therefore in NSGA_SR, and to add a new service,
only a digit is added and to add a new attribute, only the way of calculating digits for
services would be changed. It is understandable that why NSGA_SR is more flexible
than other approaches.

Additionally, the other reason for high flexibility of NSGA_SR is that it uses both
objective and subjective assessments and for the sake of application of MOO, adding
a new objective function is easily possible and need no more time. For example any
new feature (such as adding distance between users and services in the rankings) can
be easily done as a third or fourth objective function.

@ Springer

1916 A. Jahani, L. M. Khanli

7.2 Scalability

Scalability test is considered in two parts: scalability with increasing the number of
users and scalability with increasing the number of services.

7.2.1 Scalability with increasing the number of users

In this test we had 10,000 fixed services, 1000 candidate services (K), 5 training users.
The number of users were varied between 1 to 50 with step 10. For each scenario we
had seven QoS that we reproduced randomly. The average results of 30 runs for all of
the tasks have been reported. The results are shown in Fig. 5.

As depicted in Fig. 5, with increasing the number of users, NSGA_SR depicted
more scalability than the other approaches. The heaviest computational part of the
proposed approach is to find candidate services (first step or filtering) and calculate
the fitness of chromosomes.

About candidate services, we can say NSGA_SR endures required time throughout
filtering step to decrease required time in second and third steps. In first step NSGA_SR
can find some candidate services and rank them instead of ranking all services and so
decreases require time. About calculating the fitness; we can say that NSGA_SR uses a
suitable coding method that causes to have linear increase with increasing the number
of users. As mentioned in flexibility test, AHP_SR uses a matrix to compare services
and it needs more time and have a nonlinear increase time with increase in users.
Therefore it is less scalable than NSGA_SR. SVD_SR could not answer to more than
5 users in the same conditions that we had with NSGA_SR. W_SR performed well.
However, because it compared services based on all QoS, compared to NSGA_SR, it

70
60 - u
50 |- —
%\
§ —=—NSGA__SR
% 40 —— AHP__SR n
5 ——W__SR
e —e—SVD__SR
= 50 .
c
k<]
5
]
x 20 |-
Ll
10 + —
0 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Number of Users

Fig. 5 Scalability with increasing number of users

@ Springer

Cloud service ranking as a multi objective optimization problem 1917

—=—NSGA__SR
——AHP__SR
—4—W__SR
—e—SVD__SR

IS
T
|

Execution Time(Seconds)
T T

| |
6000 8000 12000

number of services

|
4000

Fig. 6 Scalability with increasing number of services

needed more time. As mentioned NSGA_SR uses only one digit for each service and
is more scalable than other approaches.

7.2.2 Scalability with increasing number of services

In this test we had 1000 fixed candidate services, 1 user and 5 training users and the
number of services were varied from 1000 to 12,000 with 1000 step. The results are
shown in Fig. 6.

As it was came in Fig. 6, execution time of AHP_SR, SVD_SR and W_SR initially
were less than NSGA_SR, but with increasing in the number of services, it became
more than NSGA_SR because of the flexibility issue. SVD_SR uses SVD technique
and could not answer in more than 10,000 services. W_SR compare services based
on all QoS and is less scalable than NSGA_SR. The main focus of Fig. 6 is when
number of service is 1000. In this point, the number services are same with number of
candidate services. When the number of services is 1000, filtering step do not run in
NSGA_SR and W_SR. Therefore all available services rankings cause NSGA_SR to
consume more time. However in more than 1000 services, filtering step can decrease
execution time of NSGA_SR.

7.3 Optimality

NSGA_SR proposed approach tries to rank services in an optimum way. It means
that services with highest ability to satisfy user’s requirements receive best rank. We
used Expert Choice [43] software to know optimum solution and compare ranking
approaches. Expert Choice is ranking software that can be used in every solution. It

@ Springer

1918 A. Jahani, L. M. Khanli

90

B w__sr
I NSGA SR
I ~HP__SR

N ®
o O

[o2]
o

Optimality(%)
r o

(]
o

1 10 20 30 40
Number of Users

Fig. 7 Scalability with increasing number of services

is based on AHP technique and is responsive in low number of service. In this test
we had 20 fixed candidate services, 100 services and 5 training users and the number
of users were varied from 1 to 40 with step 10. The results are shown in Fig. 7. As
depicted in Fig. 7, NSGA_SR achieved to more than 98 % optimality. W_SR achieve
to about 100 % and AHP_SR achieved to about 98 %. The results show that all three
approaches had acceptable rate of optimality.

As depicted in Fig. 7, NSGA_SR achieved to more than 98 % optimality. W_SR
achieve to about 100 % and AHP_SR achieved to about 98 %. The results show that
all three approaches had acceptable rate of optimality.

7.4 Convergence

NSGA_SR uses NSGA-II that is a MOO and evolution algorithm. Such algorithm has
a main feature by which it can converge to best answer after some iteration. NSGA-II
that we used must be converged to the best Pareto front after some iteration. If this
convergence would not happen, it means that evolution of population has not been done
properly. To ensure acceptable convergence of NSGA-II that used in NSGA_SR, we
investigated values of best and average fitness in different generations.

In this test we used two main objective functions that were mentioned in Sect. 4
and the number of generation was from 1 to 500 with step 1. In each generation we
calculated value of best fitness and average fitness. The results are showed in Fig. 8
and numerical values in Table 4.

As depicted in Fig. 8, two diagrams respectively show the values of best fitness and
average fitness. The diagram of best fitness that goes always above average fitness has
step changes. This diagram in higher generations gradually convergence to numbers
and reach the first Pareto front. The cause of being step in this diagram is that always
improved chromosome is replaced with worst chromosome and the best chromosomes
remains for next generations. With these explanations the diagram can have a swing

@ Springer

Cloud service ranking as a multi objective optimization problem 1919

60

Best Fitness

Average Fitness

Value of Fitness
N
(6]

40

35
0 50 100 150 200 250 300 350 400 450 500

Improvisation

Fig. 8 Investigate the convergence of used NSGA-II to optimization goals

toward lower values (minimizing the objective functions). This stream in average
diagram is similar a swing diagram because in each generation average chromosome
value fitness has been calculated. The general trend of diagram shows evolution of
population and convergence to best Pareto front. This convergence shows success in
population evolution.

7.5 Stability

Stability is one of the important features of an evolution algorithm. In fact stabil-
ity verifies that algorithm does not follow any certain condition and has not been
achieved by accident. To investigate stability of NSGA-II that we used in second step
of NSGA_SR, we run convergence test in some iteration and extract execution time
during each iteration. If the difference between the values of fitness in different gen-
erations will not evident, it indicates good stability of the algorithm. This averment
can satisfy by calculate variance and standard deviation because variance and standard
deviation has an inverse relationship with stability. Therefore if variance and standard
deviation have less value, the stability will be more. The results showed in Fig. 9 and
numerical values are shown in Table 5.

As depicted in Fig. 9, the value of best fitness in different executions shows the same
number, variance and standard deviation to be close to zero. Therefore the NSGA-II
that was used in second step of NSGA_SR has stability. We do not compare NSGA_SR
with other approaches in stability test, because only the approaches which are based
on evolution algorithm can be investigated from the perspective of algorithm stability.

@ Springer

A. Jahani, L. M. Khanli

1920

968T's¢ L8EY'8E YCLY8E 7105°s¢ 8¥L0°6€ 089°S¢ TYCL'8E TYCL'8E 9%60'9¢ 19TS°6¢ 798S°1S Ssamy 1seg
0669°S€ 8791°9¢ 891¢°LE 9CER'9¢ 6LCY 8¢ LOS8'SE SSI1'9¢ CIET ot 8€06°LE 0s0€°0t 798G°1¢ ssouy a5eIony
00s oSy 0oy 0S¢ 00¢ 0S¢ 00¢ 0ST1 001 0s ! UONEIdUAF JO ToquinN

159) 90UZIAAUOD [[-YOSN PIsh JO s)[nsar jo Arewwng d[qeL,

pringer

As

Cloud service ranking as a multi objective optimization problem 1921

80

70+ B
Average=0.044844

60 B
Variance=0.044844

50| B

standard deviation=0.066966.
40 B \/\/__\/\/\/\-/_\/‘\7
30 -

20 .

10 b

Best Fitness Value

oF .

-10 b

—20 1 1 1 1 1
0 5 10 15 20 25 30
Number of Executions

Fig. 9 Investigate the stability of used NSGA-II to optimization goals

Table 5 Summary of results of used NSGA-II stability test

Number of execution 1 5 10 15 20 25 30

Best fitness value 39.4484 41.0479 39.6258 38.1913 38.4916 37.1960 37.0277
Average = 0.0448440365

Variance = 0.044844934

Standard deviation = 0.066966

7.6 How to create an initial population (random or intelligent)

As it was said in Sect. 5.2, we can initialize the population in two ways: randomly
or intelligently. This subsection investigates the effect of creating initial population
on speed of convergence. In intelligent method, first step result or candidate services
were used as initial population. In random method, population initialized with random
variables. The results are shown in Table 6.

As figured out in Table 6, we had 10,000 services and 100 candidate services
and initial population were various from 1 to 300 with step 50. In each scenario
we calculated the number of iteration to converge into best answers. To increase the
accuracy of algorithm we run algorithm 30 times for each iteration and calculated the
average level of results.

As shown in Table 6, because of little difference between the results, there was not
any significant difference between the randomly initial populations or intelligent ones.
We understand that there is no effect in initial population. So we decided to gener-
ate population in a combined method. 80 % generated randomly and 20 % generated
intelligently.

@ Springer

1922 A. Jahani, L. M. Khanli

Table 6 Effect of initial population in convergence

Number of initial population 1 50 100 150 200 250 300
Random 1 3 7 10 13 17 21
Intelligent 1 3 6 9 14 16 22

7.7 Number of candidate service (K)

This section investigates execution time with different number of candidate services
(K). Itincludes two tests: effect of K with increasing in the number of users and effect
of K with increasing in the number of services.

7.7.1 Effect of K with increasing in number of user

In this test we had 20,000 fixed services and the number of users was various from
1 to 50 with step 10. We collected the results for 4 different value of K (100, 1000,
12,000 and 20,000). For each scenario we had seven QoS. The results are shown in
Fig. 10.

As shown in Fig. 10, this test is extension of scalability test with increasing in the
number of users. AHP_SR and SVD_SR ranked all services and had not filtering step.
So variables K do not have any effect on their performance. Therefore execution time
in these approaches do not change with different values of K. SVD_SR cannot answer

k=100 k=1000
_/g 80 % 80
s ’g —— NSGA_SR
@ 60 2 60 —Pp— AHP_SR
(2} W__SR %) W__SR
T T —@— SVD_SR
£ 40 € 40
[=
S 5
g /‘=“5 20
[$] [$]
L]
1 2
0 0 Numger of L?S%I’S 50 0 10 Nur%%er of S’gers 40
k=12,000 k=20,000
- 80 " . - 80 . .
g —l— NSGA__SR >-§ —ll— NSGA__SR
(8] + AHP__SR [&] + AHP__SR
3 60 W_SR 3 60 —4— wW_sR
> —@— sVD_SR ot —@— sVD_SR
E 40 E 40
c c
o k]
5 20 g 20
[$] [&]
2 % .
LLi Og i]
0 10 20 30 40 50 0 10 20 30 40
Number of users Number of users

Fig. 10 Effect of K with increasing in number of users

@ Springer

Cloud service ranking as a multi objective optimization problem 1923

to more than five users. On the contrary, NSGA_SR and W_SR need more time to
execute by increase in K. But the required time with any K is less than the time of other
approaches. NSGA_SR and W_SR are same. But NSGA_SR can have less execution
time in lower variable of K and oppositely; W_SR can have less execution time in
higher value of K.

W_SR ranks services based on only objective assessment. But NSGA_SR ranks
services based on both objective and subjective assessments. Thus, in cases that user
has a ranking request based on both objective and subjective assessments, application
of NSGA_SR is better and in cases that user has a ranking request based on objective
assessment, W_SR is better.

7.7.2 Effect of K with increasing in number of services

In this test we had 20 fixed users and the number of services was ranged from 1 to
24,000 with step 5000. We collected the results for four different value of K (100, 1000,
12,000 and 20,000). For each scenario we had seven QoS. The results are presented
in Fig. 11.

As figured out in Fig. 11, AHP_SR and SVD_SR rank all services and have not
filtering step. Thus, variable K does not have any effect on their performance. Therefore
execution time in these approaches do not change with different values of K. SVD_SR
cannot answer to more than 10,000 services. On the contrary, NSGA_SR and W_SR
with increase in K need more time to execute. But the required time with any K is less
than other approaches time. NSGA_SR and W_SR are same. But NSGA_SR can have
less execution time in lower variable of K. However W_SR can have less execution
time in higher value of K.

Fig. 11 Effect of K with increasing in number of services

k=100 k=1000
%8 58
(2]
©
§5 ~——m— NSGA__SR g 5 ~——m— NSGA__SR
3 —>— AHP_SR e — > AHP_SR
a4 —4— W_SR L n 4 ——W_SR |
g 3 —e— SVD__SR g 3 —e— SVD_SR
E £
< '
g2 §2 -
3 s ==
g 1 = g 1 —
[} In P>
0
0 2000 4000 6000 ~ 8000 10000 12000 % 2000 4000 6000 8000 10000 12000
Number of services Number of services
k=12000 k=20,000
6 —~ 6 T
38 38
55 —=— NSGA__SR S5 —m— NSGA__SR
54 —»— AHP__SR 3 —» — AHP_SR
0 4 —4— W_SR n 4 —— W_SR !
[(9]
€3 —e— SVD_SR £, —e— SVD_SR
= =
s2 % 82 , :
2, —— R
g 1z 22
o] 0
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

Number of services

Number of services

@ Springer

1924 A. Jahani, L. M. Khanli

W_SR ranks services based on only objective assessment. But NSGA_SR ranks
services based on both objective and subjective assessments. So in cases that user
has a ranking request based on both objective and subjective assessments, using the
NSGA_SR is usable.

Having to say, the proposed NSGA_SR ranking approach has some advantages:

Application of both objective and subjective assessments

Service ranking based on both essential and non-essential requirements
Receiving users requirements in Boolean, numerical or range,

No need to normalize the input values,

Accountability in lack of feedback information of training users,
Flexibility by increasing in services or users,

Scalability by increasing in services or users,

Having convergence and stability.

8 Conclusion and future work

Changing needs of users parallel to the development of Internet-based technologies
causes a challenge to fulfill the ever changing demands of the users. One of the new
technologies to provide the services on the Internet is cloud computing services. Cloud
computing, by providing an improved business model based on subscription, enables
service providers to have various services with different quality attributes. But in such
a vast space, finding a suitable service according to the changing needs of users has
become a major challenge. Ranking systems, by focusing on user’s needs and values of
quality attributes of various cloud services, enable the users to select most appropriate
service. Building a high qualitative ranking system requires a method to compare the
services with the ability to choose the ones that meet the user’s quality constraints.

The aim of ranking cloud services based on both objective and subjective assess-
ments on the one hand and both essential and non-essential requirements on the other
hand let us to consider service ranking in cloud computing. In this regard we pro-
posed NSGA_SR as a ranking approach. In fact NSGA_SR is a MOO problem with
two objective functions that can be solved by NSGA-II. This proposed approach has
three steps. NSGA_SR approach for service ranking, at first uses a filtering system
in order to extract the candidate services that have ability to satisfy user’s all require-
ments. Afterward it finds several optimum pseudo services by NSGA-II. At the end
all candidate services would be ranked based on their distance with pseudo services
by application of clustering algorithm.

In the future with the aim of selecting and composing best services, we will extend
our approach for service composition that need great attention to focus on user’s
requirements. We can also extend our approach by other evolution algorithms and
then compare the results. We can also apply users’ similarity as subjective assessment
in service ranking. Also we can use machine learning in cloud service ranking based
on QoS. Aside from all of these we can propose a new monitoring method to achieve
the values of quality attributes and so rank services that help to ensure to accuracy of
QoS values.

@ Springer

Cloud service ranking as a multi objective optimization problem 1925

References

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging IT

platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener Comput
Syst 25(6):599-616

Ding S, Yang S, Zhang Y, Liang C, Xia C (2014) Combining QoS prediction and customer satisfaction
estimation to solve cloud service trustworthiness evaluation problems. Knowled Based Syst 56:216—
225

Buyya R, Vecchiola C, Selvi C (2013) Cloud computing architecture 4:111-140

Chen CT, Lin KH (2010) A decision making method based on interval valued fuzzy sets for cloud
service evaluation. In: 4th international conference on new trends in information science and service
science (NISS), Gyeongju

Hao Y, Zhang Y, Cao J (2010) Web services discovery and rank: an information retrieval approach.
Future Gener Comput Syst 26(8):1053-1062

Stojanovic MD, Bostjancic Rakas SV, Acimovic Raspopovic VS (2010) End-to-end quality of service
specification and mapping: the third party approach. Comput Commun 33(11):1354-1368

Chen L, Feng Y, Jian W, Zheng Z (2011) An enhanced QoS prediction approach for service selection.
In: IEEE international conference on services computing, Washington, DC

Garg SK, Versteeg S, Buyya R (2013) A framework for ranking of cloud computing services. Future
Gener Comput Syst 29(4):1012-1023

Itani W, Ghali C, Kayssi Al, Chehab A (2011) Accountable reputation ranking schemes for service
providers in cloud computing. In: International conference on cloud computing and services science,
Frank Leymann

Katsaros G, Subirats J, Fito JO, Guitart J, Gilet P, Espling D (2013) A service framework for energy
aware monitoring and VM management in clouds. Future Gener Comput Syst 29(8):2077-2091
Chan J, Chieu T (2010) Ranking and mapping of applications to cloud computing services by SVD.
In: IEEE/IFIP network operations and management symposium workshops (NOMS Wksps), Osaka
Katchabaw MJ, Lutfiyya HL, Bauer MA (2005) Usage based service differentiation for end-to-end
quality of service management. Comput Commun 28(18):2146-2159

Zhang R, Zettsu K, Kidawara Y, Kiyoki Y (2012) Web service ranking based on context. In: Second
international conference on cloud and green computing, Xiangtan

Segev A, Toch E (2009) Context based matching and ranking of web services for composition. IEEE
Trans Serv Comput 2(3):210-222

QuL, Wang Y, Orgun MA (2013) Cloud service selection based on the aggregation of user feedback and
quantitative performance assessment. In: IEEE 10th international conference on services computing,
Santa Clara

Alarcon-Rodriguez (2009) A multi objective planning framework for analysing the integration of
distributed energy resources. In: A thesis presented in fulfilment of the requirements for the degree of
Doctor of Philosophy, Institute of Energy and Environment, Department of Electronic and Electrical
Engineering, University of Strathclyde

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans Evol Comput 6(2):182—-197

Almasri E, Mahmoud QH (2008) Investigating web services on the world wide web, refereed track:
web engineering—web service deployment, New York

Sobel W, Subramanyam Sh, Sucharitakul A, Nguyen J, Wong H, Klepchukov A, Patil Sh, Fox O,
Patterson D (2008) Cloudstone: multi platform, multi-language benchmark and measurement tools
for web 2.0. In: Proceedings of cloud computing and its applications, CCA-08. http://www.cca08.
orgpapers.php

Miller P (2009) The importance of benchmarking clouds. CloudHarmony. http://www.cloudharmony.
com

Li A, Yang X, Kandula S, Zhang M (2010) CloudCmp: comparing public cloud providers. In: IMC
*10 proceedings of the 10th ACM SIGCOMM conference on internet measurement, New York

Li A, Yang X, Kandula S, Zhang M (2011) CloudCmp: shopping for a cloudmade easy. HotCloud’ 10
proceedings of the 2nd USENIX conference on Hot topics in cloud computing, USENIX Association
Berkeley, CA

Abubakr T (2011) Tools for benchmarking the cloud: Cloud Sleuth. https://www.cloudsleuth.net

@ Springer

http://www.cca08.orgpapers.php
http://www.cca08.orgpapers.php
http://www.cloudharmony.com
http://www.cloudharmony.com
https://www.cloudsleuth.net

1926 A. Jahani, L. M. Khanli

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

Luo C, Zhan J, JiaZ, Wang L, Lu G, Zhang L, Xu C, Sun N (2012) CloudRank-D: benchmarking and
ranking cloud computing systems for data processing applications. Front Comput Sci 6(4):347-362
Skoutas D, Sacharidis D, Simitsis A, Sellis T (2010) Ranking and clustering web services using
multicriteria dominance relationships. IEEE Trans Serv Comput 3(3):163-177

Rehman U, Hussain OK, Parvin S, Hussain FK (2012) A framework for user feedback based cloud ser-
vice monitoring. sixth international conference on complex, intelligent and software intensive systems,
Palermo

Choudhury P, Sharma M, Vikas K, Pranshu T, Satyanarayana V (2012) Service ranking systems for
cloud vendors. Adv Mater Res 433:3949-3953

Lejeune J, Arantes L, SopenaJ, Sens P (2012) Service level agreement for distributed mutual exclusion
in cloud computing. In: 12th IEEE/ACM international symposium on cluster, cloud and grid computing,
Ottawa

Wright State University (2010) Cirrocumulus: a semantic framework for application and core services
portability across heterogeneous clouds, project at Kno—e—sis Center at Wright State University. http://
knoesis.org/node/70

Zheng Z, Wu X, Zhang Y, Lyu MR, Wang J (2013) QoS ranking prediction for cloud services. IEEE
Trans Parall Distrib Syst 24(6):1213-1222

Zheng Z, Wu X, Zhang Y, Lyu MR (2010) CloudRank: a QoS-driven component ranking framework
for cloud computing. In: 29th IEEE international symposium on reliable distributed systems
Dikaiakos MD, Zeinalipour Yazti D (2004) A distributed middleware infrastructure for personalized
services. Comput Commun 27(15):1464-1480

CSMIC (2011) Service measurement index version 1.0. Carnegie Mellon University Silicon Valley,
Moffett Field

Jahani A, Mohammadkhanli L, Razavi SN (2014) W_SR A QoS based ranking approach for cloud
computing. Comput Eng Syst 3(2):55-62

Durao F, Carvalho J, Fonseka A, Garcia V (2014) A systematic review on cloud computing. J Super-
comput 68(3):1321-1346

Sun L (2016) Cloud-FuSeR: fuzzy ontology and MCDM based cloud service selection. Future Gener
Comput Syst 57:42-55

Almulla M, Yahyaoui H, Al-Matori K (2015) A new fuzzy hybrid technique for ranking real world
web services. Knowl Based Syst 77:1-15

Singh S, Chana I (2014) QRSF: QoS-aware resource scheduling framework in cloud computing. J
Supercomput 71(1):241-292

Chen JH (2015) A hybrid model for cloud providers and consumers to agree on QoS of cloud services.
Future Gener Comput Syst 50:38—48

CSMIC (2011) CSMIC SMI overview diagram TwoPointOne. Carnegie Mellon University Silicon
Valley, Moffett Field

Raisanen V (2004) Service quality support-an overview. Comput Commun 27(15):1539-1546

Yau SS, Yin Y (2011) QoS-based service ranking and selection for service based systems. In: IEEE
international conference on services computing, Washington, DC

Ishizaka A, Labib A (2009) Analytic hierarchy process and expert choice: benefits and limitations. OR
Insight 22(4):201-220

@ Springer

http://knoesis.org/node/70
http://knoesis.org/node/70

	Cloud service ranking as a multi objective optimization problem
	Abstract
	1 Introduction
	2 Related works
	3 Quality of services
	4 Assumptions of NSGA_SR
	4.1 Modeling cloud services
	4.2 Modeling ranking system's users
	4.3 Modeling of training users
	4.4 QoS vector modeling
	4.5 Modeling objective functions

	5 NSGA_SR approach
	5.1 Filtering step
	5.2 Finding pseudo services with NSGA-II step
	5.2.1 Coding method
	5.2.2 Calculating fitness function
	5.2.3 NSGA-II evolution

	5.3 Clustering step

	6 Dataset description
	7 Performance comparison
	7.1 Flexibility
	7.2 Scalability
	7.2.1 Scalability with increasing the number of users
	7.2.2 Scalability with increasing number of services

	7.3 Optimality
	7.4 Convergence
	7.5 Stability
	7.6 How to create an initial population (random or intelligent)
	7.7 Number of candidate service (K)
	7.7.1 Effect of K with increasing in number of user
	7.7.2 Effect of K with increasing in number of services

	8 Conclusion and future work
	References

