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Abstract A reversible logic has application in quantum computing. A reversible logic
design needs resources such as ancilla and garbage qubits to reconfigure circuit func-
tions or gate functions. The removal of garbage qubits and ancilla qubits are essential in
designing an efficient quantum circuit. In the literature, there are multiple designs that
have been proposed for a reversible multiplication operation. A multiplication hard-
ware is essential for the circuit design of quantum algorithms, quantum cryptanalysis,
and digital signal processing applications. The existing designs of reversible quantum
integer multipliers suffer from redundant garbage qubits. In this work, we propose a
reversible logic based, garbage-free and ancilla qubit optimized design of a quantum
integer multiplier. The proposed quantum integer multiplier utilizes a novel add and
rotate methodology that is specially suitable for a reversible computing paradigm.
The proposed design methodology is the modified version of a conventional shift and
add method. The proposed design of the quantum integer multiplier incorporates add
or no operation based on multiplier qubits and followed by a rotate right operation.
The proposed design of the quantum integer multiplier produces zero garbage qubits
and shows an improvement ranging from 60 to 90 % in ancilla qubits count over the
existing work on reversible quantum integer multipliers.
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1 Introduction

A reversible logic has application in quantum computing. Reversible circuits are
required to have an equal number of inputs and outputs. They are designed with-
out any feedback and fanout. There are a few parameters or resource constraints used
to measure the performance of reversible circuits namely quantum cost (QC), garbage
outputs (GO), ancilla inputs (Al), gate count (GC), and delay (A). The quantum cost
of a reversible circuit is the number of 1 x 1 and 2 x 2 quantum gates that are used
to construct the circuit. Garbage outputs are the ones that are neither the primary
outputs nor the ones required for further computation. An ancilla or constant inputs
are required to derive a certain function and to retain one-to-one mapping. A delay
corresponds to the number of primitive quantum gates in the critical path of the circuit.

Multipliers are the major computational units that are used frequently in digital
signal processing computations. Optimization is a major objective in designing a
multiplier with design constraints. In a reversible circuit design, it is necessary to
minimize the count of garbage outputs and ancilla inputs in order to reduce the total
number of qubits; therefore, we present the design of a reversible multiplier which
produces zero garbage outputs and minimizes the number of ancilla inputs compared
to the existing multiplier designs in the literature.

In this work, we present a modified version of the add and shift method of multipli-
cation. The basic components used in our design are add or NOP block and rotate right
(ROR) block. To meet our design requirement, we also present a modified circuit of
reversible ALU design presented in [1]. In addition, we present a generalized circuit
design methodology that is supported by a generalized behavioral model to design a
constant depth rotate right reversible circuit. This design is motivated by the design
presented in [2]. The reversible multiplier design presented in this work outperforms
existing multiplier designs in terms of its garbage outputs and ancilla inputs. We also
give an estimate of the gate count, quantum cost, ancilla inputs, and delay for N x N
qubit multiplier. In the optimization of performance parameters, there is always a trade-
off; such as in optimizing one parameter, the other parameters get affected. Here, our
objective is to optimize the ancilla inputs and garbage outputs, due to this the remaining
parameters get affected. To indicate the trade-off, the estimation of all the performance
parameters is given for each block used in designing a N x N reversible multiplier.
The paper is organized into several sections namely: Sect. 1 provides an introduc-
tion to reversible logic gates; Sect. 2 elaborates on the background of reversible logic
gates; Sects. 3—5 cover existing designs, behavioral model of the proposed design, and
the proposed circuit design methodology, respectively; Sects. 6—8 cover performance
parameters calculation, results comparison, and conclusion, respectively.

2 Background on reversible logic gates

This section covers the basics of reversible logic gates. Any N variable reversible
system is built with N x N reversible circuits. A few 1 x 1 and 2 x 2 primitive
quantum gates are used to construct large-sized reversible gates and circuits. The
quantum cost of reversible gates used in this work can be found in [3]. The reversible
gates used in this work are Fredkin, CNOT, Toffoli, and Swap gates [4—6].
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2.1 CNOT gate

A CNOT gate is also known as a Feynman gate (FG). Itis a 2 x 2 reversible gate. The
inputs and outputs are denoted as (A, B) and (P, Q), respectively. Here, A is treated
as a control qubit, while B is treated as a target qubit. The mapping of input to outputs
are denoted as P < A, Q <> A & B. The block diagram and symbol of CNOT gate
are shown in Fig. 1. QC of FG is 1.

2.2 Toffoli gate (TG)

This gate is also known as a C> NOT gate. The TG used in our work is a 3 x 3 gate with
inputs (A, B, C) and outputs (P, Q, R), respectively. Here, A and B are the control
qubits, while C is the target qubit. The mapping between inputs and outputs is given
with the relation P <> A, Q <> B, R <> (A - B) ® C. The block diagram and symbol
of TG are presented in Fig. 2. QC of TG is 5.

2.3 Fredkin gate (FRG)

A Fredkin gate is commonly used as a controlled Swap gate. In this paper, we use a
3 x 3 Fredkin gate. A, B, and C are the inputs and P, Q, and R are the output qubits.
The mapping of the input and outputs are given based on the value of A, which is the
control qubit. When A is high, Q <+ C and R <+ B. When A is low, Q0 < B and
R < C.Irrespective of A value, P <> A. The block diagram and symbol of FRG gate
are shown in Fig. 3. QC of FRG is 5.

P=
A— —— P=A A A
FG
B— — Q=A®B B Q=A®B

(a) CNOT gate (b) Symbol

Fig.1 CNOT gate and its symbol

Fig. 2 Toffoli gate and its A P
symbol A — P=A N
B— TG [— Q=B Q
c— — R-AB®C C R
(a) Toffoli gate (b) Symbol
Fig. 3 Fredkin gate and its A p=A A P
symbol
B FRG Q=ABD AC B Q
c R=A'C® AB C
(a) Fredkin gate (b) Symbol
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Fig.4 Swap gate and its symbol A

A ] —— B
SWAP Gate

B — — A

(a) Swap gate (b) Symbol
2.4 Swap gate (SG)

The Swap gate is a 2 x 2 gate. It swaps the input and output qubits unconditionally.
The mapping is A <> Q and B <> P. The block diagram and symbol are shown in
Fig. 4. QC of SG is 3.

3 Existing work

The research on reversible logic is being explored in the domains of design, synthe-
sis, and testing. Although there are many synthesis techniques available to realize
reversible circuits, having dedicated designs of a reversible circuit component gives
flexibility in choosing the designs based on the application requirement. Multiple
ways of designing arithmetic circuits have been explored in conventional, reversible
and quantum computing [7-21]. Several interesting contributions have been explored
in the existing synthesis of reversible logic circuits [3,22-29]. In this section, we dis-
cuss the existing reversible multiplier designs that are important arithmetic circuits in
processing digital signals.

There are several multiplier designs proposed by many authors in view of optimiz-
ing different performance parameters namely quantum cost, ancilla inputs, garbage
outputs, logic depth, and a combination of these parameters. The multipliers proposed
in [30-34] follow two phases in computing product terms. In the first phase, the partial
products are computed. In the second phase, the summation of partial products are
computed to get the final product terms. In all the designs mentioned above, the par-
tial product generation and summation stages are improved either in terms of constant
inputs, quantum cost, or garbage outputs. We found that the design in [34] gives better
results when compared to other existing work in terms of ancilla inputs and gate count.
Apart from the regular parallel or array multiplier designs, other techniques of multi-
plications like Booth, Wallace, and Vedic are proposed by researchers in [35-37]. All
these designs are illustrated for smaller operand width. It is necessary for any designer
to choose designs based on their performance over a wide range of operand width.
We found that the recent publication on multiplier in [38] discussed NxN reversible
multiplier design. We considered the designs proposed in [38,39] and compared it
with our work, as the efforts in both of these papers were to reduce the number of
constant inputs and garbage outputs.

4 Proposed reversible multiplier behavioral model

In this section, we present an algorithm for multiplying two n qubit numbers A and B.
The result is stored in 2n qubit product register P. There are two conventional tech-
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niques of add and shift method of multiplying two numbers. Shift the multiplicand
left and add it to the product register contents iteratively or add the multiplicand and
shift the product register contents right iteratively. In the first technique, after the com-
putation is completed, the multiplicand will not be in its original form and since one
cannot recover the multiplicand, it will be considered as garbage qubits. We choose
the second technique. The final result will be the contents of the product register and
the multiplicand contents are unaltered, so that garbage outputs are not generated.

4.1 Behavioral model of N x N multiplier

The multiplier algorithm is best explained using an example of 4 x 4 multiplication
with a dot diagram as shown in Fig. 5. Initially, the P register is loaded with ancilla
0 qubits. The multiplicand B is added to the P register contents. For the P register, it
considers a least significant position (LSP) from n — 1 and move up to 2n — 1 position.
For the B register, LSP starts from 0 and moves up to n — 1. A multiplicand is added
to the P register only if the corresponding multiplier qubit is high; otherwise, only
rotate operation is performed. The rotate right operation is performed irrespective of
the value of a multiplier qubit. While adding a multiplicand to the P register, the
(n — 1)th position of the P register is aligned to the Oth position of the B register. Due
to this alignment, one rotate operation is eliminated at the end of computation. The
diagram shown in Fig. 5 is self-explanatory of the algorithm.

4.2 Behavioral model of rotate right operation

In this section, we present a rotate right operation for 2n qubit data width. In the
multiplication technique presented in the Algorithm 1, there is a need to rotate the P
register contents to the right; the size of the P register is 2n qubit width. The rotate right
operation is performed by swapping the qubits in two stages. The circuit is designed
to obtain constant logic depth. To give an illustrative example, we present a rotate
right operation in Fig. 6 for data width of 8 qubits. The numbers 0-7 represent the
qubit positions. The initial representation of qubits is shown in the left most part of
Fig. 6. The rotate right operation is performed in two stages. In the first stage, qubits

Algorithm 1 Add and rotate method to model N x N multiplier

function MULTIPLIER(| Ay ), | Bn), | P2n)=102,))
fori =0ton —2do

if |Aj;) = I1) then
|P2n—1:0-11) = |P2n—1:0—-11) + [ Bin—1:01):
end if
| Pan—1:01)= ROTATERIGHT(| P{2,,—1:0)):
end for
if |Ap—17) =11) then
| Pn—t:n—11) = | Pn—t:n—11) + | Bn—1:01):
end if
return P;

end function
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Figl.:51'4><'4q51bi:1' AOO® 0O
multiplication dot diagram B . . . .
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B 0000
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Fig. 6 Rotate right with two sets of disjoint transpositions

in the position pairs (0, 7), (1, 6), (5, 2), and (4, 3) are swapped [(0, 7) indicates O is
swapped with 7]. In the second stage, (0, 6), (1, 5), and (2, 4) are swapped. It is visible
from the diagram that the swapping of qubits in each stage is parallel which reduces
the logic depth compared to the sequential shifting of qubits. The reversible circuit
design of rotate right operation will be discussed in the latter section of this paper.
We present a generalized pseudo-code for the method discussed in Fig. 6 to swap the
qubits in two stages.

The pseudo-code presented in the Algorithm 2 performs rotate right operation by
1 qubit position. This code works for both even and odd data width. The Algorithm 2
will be useful in any application when data input width is variable (i.e., even or odd).
For the multiplication technique proposed in this paper, the width of product register
(P) is always even; hence, the second half of the pseudo-code is redundant for the
proposed work.

5 Proposed garbageless reversible multiplier circuit design

From the behavior models Algorithms 1 and 2 presented in the Sect. 4, it is clear that to
compute the product of two n qubit numbers, we need to design the following reversible
circuits: (1) n qubit addition or no operation (ADD/NOP) circuit; (2) uncontrolled
rotate right operation circuit. This section elaborates on the reversible circuit design
methodology of ADD/NOP and rotate right (ROR) block.
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Algorithm 2 Pseudo-code for rotate right operation
ROTATERIGHT(| P))

k=SIZEOF(| P)); > k is an integer
k1=FLOOR(k/2); > k1 is an integer
if kK mod 2 == 0 then > For even number of qubits
i=0; j=k—1; > and j are integers
while i < k1 && j >=k1 do > First Stage
SWAR(| Pyigh| Py
i=i+lj=j-1
end while
i=0;j=k—-2;
while i <kl —1&& j >=k1 do > Second stage

SWAP(| P(;1)| Pyjp)):
i=i+lj=j—-1;

end while
else > For odd number of qubits
i=0j=k—1;
while i < k1 && j >=kl + 1do > First Stage
SwAR(| Piig) [ Pjj)
i=i+1l;j=j—-1
end while
i=0;j=k—-2;
while i < k1 && j >=kl do > Second Stage
SWAR(| Piig) | Pjy)
i=i+lj=j—-1;
end while
end if
return P;
At
A[; Zcin=0
o %ﬁ R J# e
MR s
By 2Zcin=c[1) | ———— By
Pin) 72 ; | ﬂ P(n)
Bin1] : :Zm:c[n-l] : : Bin-1)
P2n2) Pian2)
P(2n1) Pi2n1]

Fig. 7 Reversible ADD/NOP circuit

5.1 ADD or NOP circuit design

ADD or NOP block has evolved from the ALU design proposed in [1]. We have
modified the original work to adapt to our garbageless multiplier design. The reversible
circuit design of ADD/NOP block is shown in Fig. 7. Inputs to the ADD/NOP block
are:

(a) n qubit product register | P2,—1.,—1]); (b) n qubit input operand |B[,—1.01); (c) 1
qubit input Zcin initialized with ancilla 0; (d) 1 qubit input operand A[,,), where m
is the qubit position varying from O to n — 1. Here, A[,,) acts as the control qubit;
if it is high, the P and B register contents are added. At the output, we have the B
register contents unaltered, where the P register contents will have the sum of P and
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B contents. If Ay, is low, then the B and P register contents are regenerated at the
output without modification. The role of Zcin is to propagate the carry generated from
the previous qubit position. If the control qubit Ay, is high, Pj2,—1] will have the final
carry out generated; otherwise, it will retain its value.

The computation of ADD/NOP block is summarized below. Here, the index of B
varies from 0 to n — 1 and P varies from n — 1 to 2n — 1, according to the requirement
of the multiplier design. The index of A is chosen to be m which ranges from 0 to
n — 1, where 7 is the size of operands (multiplier and multiplicand). Here, j is used
to indicate the qubit position of the product register P.

1. Computation Phase 1
Initialize Zcin with ancilla O qubit. In further stages, the same line will propagate
the carry generated from the previous stage.

2. Step I Apply 3 x 3 Toffoli gate at locations Ay, Bjo}, and Pj,—1;]. After the
computation, Ay, and Bjg) will retain their value. Pj,—1; will get transformed
according to the equation given below.

| Pin—11) = (A1) - | Blo)) @ | Pn—11) (D

3. Step2aForO<i<n—1landn —1<j<2n—2,apply 3 x 3 Fredkin gate at
locations P}, By;j, and Zcin. Here, Pj) acts as a control line to FRG gate and
it will not change after the computation. The remaining lines B;} and Zcin will
get modified according to the equations shown below.

|Zcin) = |By) it |Pj) =1 )
|Zcin) if |Pjy) =0
|Zein) if [Py} =1

Byiy) = i 3

| []) I‘B[ﬂ) if ‘P[j]>=O 3)

4. Step 2b For 1 <i<n—1landn <j<2n — 2, apply a 3 x 3 Toffoli gate at
locations Apy), Byij, and Ppj;. After the computation, Ay, and By;) will retain
their value. Py will get transformed according to the equations given below.

o [Pl i 8 < .,
|Pj) if [Ap)) =0

Steps 2a and 2b execute concurrently.

5. Step 3 Apply a 3 x 3 Toffoli gate at locations Ay, Bjy—1], and Pj2,—1) . This
step is required in order to store the final carry out after n qubit addition. After
the computation, P[2,—1j stores final carry out.

By, — if A =
|P[2n_1])=[| =) 1 A ©)

1
‘P[znfl]) if ‘A[m]> =0
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In other words, Pj2,—1] stores the final carry out only if the control line that is
corresponding to the multiplier qubit Ay, is high; otherwise, it will restore the
previous value present in it, that means, it will retain the previous carry value
stored in Pj2,,—1] from the previous computation.

6. Computation Phase 2
The steps in this phase contribute to the generation of the final product value P
and the regeneration of the contents of multiplicand B .

7. Step4aFor2n —2 > j>n—1landn —1>1i > 0, apply a 3 x 3 Fredkin
gate at locations P[;} , By;}, and Zcin. After the computation, the value at P[;
will be retained as it is whereas Zcin and By;) will get modified according to the
equations shown in Computation Phase 1, Step 2a.

8. Step4bFor2n —2 > j>n—1landn—1>i > 0, apply a 3 x 3 Toffoli
gate at locations Ay}, Zcin, and Pjj). At the end of computation, A} and Zcin
will retain its value; whereas, P;} will get modified according to the equation
mentioned below.

1Py = [|Zcin) @ |Py) i [Apn) = ©

1
| Pj) if |Apm) =0

Steps 4a and 4b execute sequentially.

5.2 Rotate right reversible circuit design

The reversible circuit for the rotate right operation is shown in Fig. 8. The circuit
takes no ancilla and rotates the data to the right from MSB qubits to LSB qubits
by 1 position (ROR). The reversible rotate circuit is designed using Swap gates and
performs a rotate operation with constant delay. For clarity of understanding, we have
shown eight qubit ROR circuit design. The product register qubits Pjgj to P[7] are given
as input. After one rotate operation, Pjo; occupies Pj7)th qubit position and qubits from
P71 to Py shift to the right by one position. The quantum cost of Swap gate is 3.
The delay in performing the rotation operation involves two Swap gates in series;
therefore, the constant delay of 6 is obtained by considering each cycle individually
and decomposing it into two sets of disjoint swaps. The gates shown in the dotted
boxes are executed in parallel. The rotator design is motivated by the property proven
in [2]. According to the authors, any permutation is the composition of two set of
disjoint transpositions. This is illustrated in Fig. 6, which also shows that the cycle
is a composition of two reflections. The authors have proven that any permutation of
n qubits can be performed in 4 layers (levels or logic depth) of CNOT gates with n
ancilla input qubits, or in six layers with no ancilla input qubits (delay of two Swap
gates). If we had opted for first technique of multiplication in which the multiplicand
(n bit operand) is shifted, it leaves the multiplicand altered, which in turn will yield
garbage or garbage output.

The rotate circuit proposed performs an unconditional rotate operation in the sense
that irrespective of multiplier qubit value, a rotation is performed. Another option
that we explored was to use a conventional multiplication technique that needs con-
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Fig. 8 Reversible rotate right e————— e |
circuit (ROR) Py 1 | P
|/ AN [
| L |
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ditional shift or rotate circuit. A controlled Swap gate or Fredkin gate instead of
Swap gate can be used to rotate the qubits. The rotate operation is controlled by A
qubit. The same control qubit is used by all the Fredkin gates in the rotate circuit
as shown in Fig. 9. Here, the computation becomes sequential and the delay will
increase with the size of the rotate circuit unlike our proposed design. Another reason
for ignoring the design shown in Fig. 9 is that the quantum cost of Fredkin gate is
more than the Swap gate. To optimize the delay and quantum cost, we omitted this
option. If the delay has to be maintained constant, then one has to store the con-
trol lines for these Fredkin gates and use them in parallel. This will again increase
the number of ancilla lines, thus violating our objective of minimizing the ancilla
lines.

5.3 Reversible multiplier circuit design methodology

In this section, we illustrate the design steps of a reversible multiplier show in
Fig. 10.

1. Form = 0to n — 2 repeat Step-1 and Step-2.

2. Step 1: ADD or NOP
Apply the data qubits A}, Zcin, product register P[,—1.,—1], and the multipli-
cand register contents B[,_1.0] to ADD/NOP block. After the computation, the
contents of Aj,,], Zcin, and B are restored; whereas, the P register contents will
get modified according to the computation equations mentioned in the Section
V-A. ADD/NOQORP circuit will perform the addition on P and B register contents
if A, =high; otherwise, the contents of those registers are retained.
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Fig. 9 Alternative reversible At PARPNIPAIPA *—o—o A'm]
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Fig. 10 Reversible multiplier circuit

3. Step 2: rotate right (ROR)
Apply the P register contents to ROR (ROR-1 block indicates rotate right by 1
position) block, which performs a rotate right operation with a constant delay of
6. The computation is carried out as follows:

Pon-1:01) < |Pon—1:01) O 1.

4. Step 3: update m = n — 1, repeat Step-1.

6 Performance parameters calculation
In this section, we discuss the performance parameters and the calculation for each

circuit used in the reversible multiplier design. As a final part of the calculation, we
show the overall calculation of the reversible multiplier.
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6.1 Performance parameters of ADD/NOP block

The equations shown below are with respect to the design mentioned in Fig. 7. The
calculation of quantum cost (QC) is shown below.

QC(ADD/NOP) = 5 x No. of TG 4+ 5 x No. of FRG
=5xQ2n+1)+5x (2n)
=20n+5 (7N

The ancilla inputs include the product register qubits (n 4+ 1) which are initially set to
ancilla 0 and Zcin used for carry propagation initialized to ancilla 0. So the ancilla
for n qubit ADD/NOP block is given below.

AI(ADD/NOP) = n + 2 ®)

The delay of ADD/NOP block includes the critical path delay. To find the critical path,
the design has been divided into stages where each stage is sequential in execution.
This is illustrated in Fig. 11 in vertical lines. The computation stages are divided into
Phase 1 and Phase 2. The Phase 1 consists of the computation of half sum and final
carry out. In Phase 2, the full sum is computed and the content of the B register is
regenerated. There are 3n4-2 stages. We have computed the number of stages involving
Toffoli gates and Fredkin gates. Since the delay is proportional to the quantum gates
present in each reversible gate, the total delay of ADD/NOP circuit can be found by
using the equation shown below.

A(ADD/NOP) = Delay of single stage x No. of stages
=5xBn+2)
=151+ 10 €))

6.2 Performance parameter of ROR block

The performance parameters are estimated for the rotate right reversible circuit (ROR).
Itis discussed in the previous sections that to perform one-time rotation, two phases of
swap operations are carried out. The swapping of qubits in each phase are computed
parallely. The rotate circuit presented has no garbage outputs and no ancilla input
qubits. Qcost (QC) and delay (A) are calculated as follows:

QC(ROR) = 3 x No. of SG
=3xm-—1)
=3n-3 (10)
The above equation is for a generalized rotate circuit design. For our work, we feed the

2n qubits of the product register contents to the rotate block. The modified equation
is shown below.
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Fig. 11 Critical path computation

QC(ROR) = 3 x No. of SG

=3x@2n—1)
=6n—3 (11)
A(ROR) = 6 (12)

6.3 Performance parameters of N x N reversible multiplier block

The performance parameters calculation for N x N reversible multiplier block is
generated by summing up the calculations of ADD/NOP and rotate right block (ROR)
components.

QC(Mul) = n x QC(ADD/NOP) + (n — 1) x QC(ROR)
=nxQ20m+5+m—1) x (6n—3)
=260’ —4n+3 (13)
Although the ancilla inputs of the rotate right circuit is nil, the input to the ADD/NOP

block and ROR circuit is the P register contents, and all the 2n qubit locations of P
register which are initialized with ancilla O qubits.

AI(Mul) = AI(ADD/NOP) + AI(ROR)
=2n+1 (14)

The delay of the multiplier is the summation of delay of ADD/NOP block and rotate
right circuit.

A(Mul) = n x A(ADD/NOP) + (n — 1) x A(ROR)
=nx{5n+10)+m—1)x6
= 152>+ 16n — 6 (15)
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7 Comparison results

In the literature, there are more designs presented for a 4 x 4 reversible multiplier.
It is necessary to design a circuit which is scalable to any size. Hence, we compared
our design with other N x N reversible designs that are available in the literature.
The designs proposed in [38,39] show the calculation for N x N reversible multiplier.
In both of these papers, the authors have shown only the ancilla inputs and garbage
outputs calculations; the comparisons shown in Tables 1 and 2 list only ancilla inputs
and garbage outputs for these papers. It is clear from the result shown in Table 1 that
as the operands size increases, the percentage of improvement also increases. Our
proposed design showed a better improvement in terms of the ancilla inputs resulting
in saving the chip area since the number of lines are reduced.

We have listed the garbage outputs of the designs proposed in [38,39]. Our design
outperforms the existing designs because it is 100 % better in terms of garbage outputs

Table 1 Ancilla inputs comparison of N x N reversible multiplier

N Ancillainputs  Ancilla inputs in ~ Ancillainputsin =~ % Imp over [38] % Imp over [39]
in proposed Kotiyal etal. [38] Zhou et al. [39]
design
4 9 23 28 60.86 67.85
17 83 120 79.51 85.83
16 33 303 496 89.10 93.34
32 65 1135 2016 94.27 96.77
64 129 4351 8128 97.03 98.41
128 257 16,959 32,640 98.48 99.21
256 513 66,815 130,816 99.23 99.60
512 1025 264,959 523,776 99.61 99.80
1024 2049 1,054,719 2,096,128 99.80 99.90

Table 2 Garbage outputs comparison for N x N reversible multiplier

N Garbage outputs in Garbage outputs in % Imp over [38,39]
Kotiyal et al. [38] Zhou et al. [39]

4 22 36

8 81 168

16 300 720

32 1131 2976

64 4346 12,096 100
128 16,953 48,768

256 66,808 195,840

512 264,951 784,896

1024 1,054,719 3,142,656
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Table 3 Comparison with

Karatsuba recursive multiplier Designs Gate count Ancilla inputs Delay
K(1) O (n'°223) 6n o)
K(2) 0 (n'°2206) 4n 0 (n'°220)
K(3) O (n'o223) 5n+n/2+1 O (nlo223)

K (1), K(2), K(3), and K (4) K(4) 0 (n10%20) 3n+n/2 0 (n10%20)

indicates Karatsuba designs 1, 2, Proposed 0(n2) 1 0(n2)

3, and 4 proposed in [40]

since our design produces no garbage. We compared our design with another garbage-
less reversible multiplier design using the recursive scheme in [40]. Here, we compare
our work with Karatsuba multiplier design presented in [40]. The comparison for gate
count, ancilla inputs, and delay is shown in Table 3. The design of Karatsuba (1) shown
in Table 3 follows Bennet’s first scheme. An extra register is used to store the result
and the circuit is run backward. The parallel recursive calls are made to reduce the
time complexity. The design of Karatsuba (2) also uses parallel recursive call, but the
design does not follow Bennet’s first scheme, instead it follows a recursive garbage
disposal scheme. The multiplication is computed parallel to garbage disposal. But
the trade-off is that the number of gates increases due to the different design blocks
adapted in the garbage disposal design process. The design of Karatsuba (3) follows
Bennet’s first scheme for garbage disposal. The only difference with respect to the
design of Karatsuba (1) is that the recursive calls are sequential rather than parallel.
Karatsuba (4) is designed using the recursive scheme similar to the one adapted in
Karatsuba (2), but recursive calls are sequential. For the designs presented in [40],
we considered the minimum bound on ancilla inputs calculation. It is observed from
Table 3 that with the slight increase in the delay and gate count, the proposed design
has improved the ancilla inputs compared to all the Karatsuba designs.

8 Conclusion

In this work, we have proposed ADD and rotate based on an N x N reversible multi-
plier design. We presented the general behavioral model of the design. The proposed
multiplier is compared with the relevant existing reversible multiplier designs in the
literature. We presented the generalized equations for the performance parameters of
the proposed reversible multiplier. It is observed from comparison results that our
work outperforms the other designs in terms of the ancilla inputs and zero garbage
outputs. The proposed design can be integrated in a larger data path subsystem designs
where the garbage outputs and ancilla inputs reductions are the major concerns.
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