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Abstract Apache Hadoop becomes ubiquitous for cloud computing which provides
resources as services for multi-tenant applications. YARN (a.k.a. MapReduce 2.0)
is one of the key features in the second-generation Hadoop, which provides resource
management and scheduling for large-scaleMapReduce environments. Two enormous
challenges in the YARN scheduler are the abilities to automatically tailor and control
resource allocations to different jobs for achieving their Service Level Agreements
(SLAs), and minimize energy consumption of the overall cloud computing system.
In this work, we propose an SLA-aware energy-efficient scheduling scheme which
allocates appropriate amount of resources to MapReduce applications with YARN
architecture. In our task scheduling policy, We consider the data locality informa-
tion to save the MapReduce network traffic. Furthermore, the slack time between
the actual execution time of completed tasks and expected completion time of the
application is utilized to improve the energy-efficiency of the system. An online
userspace governor-based dynamic voltage and frequency scaling (DVFS) scheme
is designed in the YARN per-application ApplicationMaster to dynamically change
the CPU frequency for upcoming tasks given the slack time from previous com-
pleted tasks. Experimental evaluation shows that our proposed scheme outperforms
the existing MapReduce scheduling policies in terms of both resource ultization and
energy-efficiency.
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1 Introduction

MapReduce [1] is a data-driven programming model originally proposed by Google
to handle large-scale web search applications. It allows automatic parallelization of
tasks on a large cluster and has been proved to be especially well suited for dis-
tributed data-analytic applications. Therefore, an increasing number of companies
are following the new trend of using MapReduce and its most popular open-source
implementation Apache Hadoop [2], which is designed to be deployed on low-cost
hardware, to offer cloud computing services. Although Hadoop has become one of the
widely-adopted cluster computing frameworks for managing Big Data, it has some
limitations in terms of scalability, reliability, and resource utilization. Hadoop pro-
posed Yet Another Resource Negotiator (YARN, a.k.a. MapReduce 2.0) in 2013 to
overcome such limitations [3]. YARN utilizes a global ResourceManager (RM) and
per-application ApplicationMaster (AM) to replace the centralized JobTracker for
resource management and job scheduling/monitoring. Furthermore, instead of sepa-
rated map or reduce slots, it adopts a resource abstract called container for resource
provisioning,which encapsulatesmultidimensional resources of a node includingCPU
and memory.

In a cloud computing environment, it is particularly important for service providers
to meet the deadlines specified in the Service Level Agreements (SLAs). Furthermore,
the ever-increasing and large-scale deployments of High-Performance Computing
(HPC) systems bring in huge energy consumption and contribute to a significant elec-
tric bill, making the reduction of energy cost a high priority. According to the results
in [4], the electricity consumption of worldwide data centers in 2012 was about 270
TWh, which corresponds to almost 2% of the global electricity consumption and
has an approximated annual growth rate of 4.3%. So generally, the providers always
expect to ensure a high level of adherence to the SLAs while taking up as little cost
as possible.

Resource schedulers available in Hadoop YARN include the simple First-In-First-
Out (FIFO) Scheduler, the Capacity Scheduler [5], and the Hadoop Fair Scheduler
(HFS) [6]. The Capacity Scheduler allows multiple tenants to make the best possi-
ble use of a large cluster, governed by the constraints of allocated capacities. HFS
is a method of assigning resources such that all applications can get an equal share
of resources over time. However, the current YARN schedulers provide no comple-
tion time guarantee for individual MapReduce applications, and ignore the impact of
resource provisioning on the system energy consumption. Over the last decades, many
works on real-time and/or energy-efficient scheduling schemes for general distributed
systems or the first generation of MapReduce have been proposed. However, many
existing scheduling strategies may not be applicable to YARN environment due to
the differences of system architecture and resource management mechanism; while
some othersmay lead to sub-optimal scheduling and resource allocation decisions. For
example, [7] shows that current CPU dynamic voltage and frequency scaling (DVFS)
techniques fail to reflect respective design goal and may even become ineffective to
manage the power consumption in Hadoop clusters.

In this paper, we propose a framework of resource management and scheduling in
the YARN environment. For a given MapReduce application (job) and its profiling
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information, the scheduler tries its best to allocate enough resources (containers) to
meet the (soft) deadline specified in the application’s SLA. Meanwhile, since many
map/reduce tasksmay complete earlier than theworst case completion time obtained in
the profiling, we integrate a userspace governor-basedDVFS controller into theYARN
resource provisioning in order to utilize the slack time for system energy optimization.
To the best of our knowledge, this is the first work on SLA-aware and energy-efficient
scheduling for Hadoop YARN. The main contributions of this paper are as follows.

• We adopt the job profiling technique in [8] to characterize the performance of
an application during its map, shuffle, and reduce phases. Instead of the average
completion time for each task phase, we adopt the worst-case completion time
during resource provisioning to achieve higher SLA conformance.

• Wemake themost of data locality inHadoop for savingMapReduce network traffic,
which can improve the performance of applications and produce more slack time.
And our proposed resource scheduler can avoid accepting jobs that will lead to
deadline misses and improve the cluster utilization.

• We design an online userspace governor-based DVFS scheme, which utilizes the
slack time between the actual completion time during task execution and the esti-
mated completion time for energy optimization.

• We have integrated the proposed framework into Hadoop 2.2.0 (with YARN) to
obtain task profiling information with various CPU frequencies. Based on the
profiling information, we use CloudSim [9] to simulate and evaluate the overall
performance and energy consumption of the proposed scheduling scheme. Exper-
imental results show that our framework leads to better SLA conformance and
energy consumption compared with [8].

The remainder of the paper is organized as follows. We discuss the related work in
Sect. 2 and give the research motivation in Sect. 3. In Sect. 4, we introduce the SLA-
aware framework forHadoopand its five interacting components. InSect. 5,Wepresent
two algorithms for SLA-aware resource allocation and DVFS-based task scheduling,
continuingwith an evaluation of the proposed framework in Sect. 6. Finally, we discuss
our future work and conclude the paper in Sect. 7.

2 Related work

Resource provision inMapReduce environments is a relatively new research topic, but
it has already received much attention in the last few years. Polo et al. [10] introduced
a new task scheduler that dynamically collects the performance data of MapReduce
jobs and adjusts the resource allocation accordingly. But they only focus on the map
phase and have no control over the reduce phase. Jockey [11] is designed for single
job to maximize its economic utility while minimizing the impact on the data parallel
clusters. While Jockey is effective at guaranteeing job latency, it lacks scheduling
mechanism amongmultiple jobs. In [12], task dependencies betweenMapReduce jobs
have been considered in the resource allocation to minimize the overall completion
time of the application. Verma [8] proposed a framework, called ARIA, to estimate
and allocate appropriate number of map and reduce slots for MapReduce applications
so that they can meet their required deadlines. However, the job’s actual execution
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time in ARIA may exceed 7% of the deadline because of inaccurate predictions and
various uncertainties. Besides, all of these studies only support resource inference and
allocation, and give no consideration to overtime budget and energy cost.

Hard real-time scheduling policies for multiprocessor systems have been well-
studied in the past decade [13]. For heterogenous multi-core systems with Quality
of Service (QoS) requirements, the execution time variation of tasks on different
processing elements has been considered to achieve a optimal system resource alloca-
tion for general-purpose applications [14]. Furthermore [15], presents an evaluation
framework which measures the robustness of heterogeneous multi-core scheduling
policies if the input statistical execution time information is inaccurate. Driven by
ever-increasing operating costs and awareness of energy conservation, many energy-
aware approaches have been developed to improve the energy efficiency of a system.
AlthoughDVFSwas originally designed for energy-efficient task scheduling on single
processor platform [16,17], it was shown that clever scheduling of CPU power modes
can save significant amounts of energy in parallel and distributed computing systems
as well [18,19]. In [20], DVS (Dynamic Voltage Scaling) and DPM (Dynamic Power
Management) schemes have been proposed for energy optimization of real-time steam-
ing tasks on multiprocessor System-on-Chip. Wirtz and Ge [21] compared the energy
efficiency among three DVFS scheduling policies for MapReduce framework. Their
experimental results indicate that intelligent DVFS scheduling can achieve significant
energy savings for computation intensive applications, and show that CPUMiser [22]
works best for systems with large idle power as it seeks performance oriented energy
savings by collecting fine grain CPU activity information. However, CPU Miser only
supports setting the same frequency for all cores of a node and has to be run on every
node in the cluster, which is inefficiency and a waste of resources.

Modern processors are usually equipped with the per-core DVFS technique, which
enables each core of the processors to be operated at multiple frequencies under differ-
ent supply voltages. The research in [23] shows that depending on the heterogeneity
of workload characteristics, per-core DVFS offers substantial additional savings com-
pared to global DVFS schemes by better adapting to the different requirements of each
core. But to precisely control all of the CPU cores in a cluster is quite a challenging
job. Another research in [7] investigates the impact of existing DVFS governors on the
performance and energy consumption of a Hadoop cluster. It reveals that some CPU
governors do not exactly reflect their design goal and may even become ineffective to
manage the power consumption.

Our work differs from the previous studies in several respects. In this work, we
take into account both resource provision and energy conservation, and give a clear
framework for the trade-off between hardware resource and energy consumption in
MapReduce environments. We apply our own strategy in adjusting the per-core fre-
quency through the CPUFreq subsystem, and implement macro-control of all running
applications. Besides, wemake the most of data locality in Hadoop for savingMapRe-
duce network traffic, which can improve the performance of applications and produce
more slack time. And our proposed resource scheduler can avoid accepting jobs that
will lead to deadline misses and improve the cluster utilization.

Many of the recent works also focus on data placement [24], virtual machine place-
ment [25], single VM migration and dynamic VM consolidation [26] in cloud data
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centers, as well as on parameters optimization [27] and testbed configurations [28].
While theseworks are orthogonal to our research, they play an important role in energy
efficiency optimization of MapReduce framework.

3 Background

AMapReduce job is composed of two kinds of subtasks: map tasks and reduce tasks.
Map tasks read input data blocks and generate intermediate results, which become
input data for reduce tasks. Reduce tasks consist of three phases: shuffle, sort, and
reduce. They merge associated intermediate results and generate the final results of
the application. Since the shuffle and sort phases are interleaved, we do not consider
the sort phase separately.

As shown in Fig. 1, the map phase and shuffle phase are running in parallel, while
the shuffle phase and reduce phase are running in serial. And in a realistic MapReduce
environment, reduce tasks usually cannot be launched until the number of finishedmap
tasks exceeds a certain value, which can make the most of free containers and improve
the cluster utilization. It is obvious that the parallelism degree of tasks can drastically
impact the job progress in parallel computing model. As for MapReduce, there are
two parallelism metrics (PM/PR) for map phase and reduce phase respectively. When
the number of map and reduce tasks is in given conditions, low level of parallelism
may lead to missed deadlines while high level of parallelism is certainly a waste of
resources.

It is not easy to infer and allocate appropriate resources to different applications for
meeting their completion deadlines. Because the execution time of each map/reduce
task can be very different even though all the tasks performed the same function.
This can be caused by the uncertainty of data locality, network traffic, cache hit ratio,
memory access latency and so on. To deal with this problem, we need to extract
some performance metrics from the past application executions, or we can execute
the application on a smaller input dataset to get some necessary information. Then,
we can figure out the minimum value of P j

M + P j
R based on the predicted completion

time for jobs.
Verma proposed three bounds for the prediction of completion time, and employed

the average bound which is the mean value of lower bound and upper bound in ARIA

map
shuffle
reduce

Start Job DeadlineStart Reducers

Fig. 1 Three phases of a MapReduce job
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Fig. 2 Normalized execution time of reduce tasks and energy performance ratio of different frequencies

[8]. In this paper, we optimize the way of prediction and take the advantage of upper
bound. However, the upper bound usually leads to larger parallelism and results in a
job completion time that is much smaller than upper bound. AsDVFS has already been
incorporated into recent commodity processors and become one of themost commonly
used power reduction techniques, we can integrate DVFS to achieve energy savings
by running tasks during slack times without affecting applications’ SLAs.

Previous approaches usually use the past CPU utilizations to predict future CPU
requirements, which can lead to missed deadlines because of inaccurate predictions.
In this work, we propose a new slack reclamation algorithm to deal with this problem
from a different angle. First, we need to maintain an appropriate execution frequency
for map tasks according to the expected completion time of the map phase. Then, we
make themost of data locality of reduce tasks for saving network traffic and improving
performance in shuffle phase. Finally, we can dynamically adjust the execution time of
remaining reduce tasks by using the slack time of already completed reduce tasks and
the shuffle stage. This idea was inspired by the master/slave architecture of MapRe-
duce, and it works well based on the observation that a program’s execution time is
not inversely proportional to each available frequency [29]. We verify this conclusion
by an experimental approach in the following work.

We execute Sort benchmark andMatrixMultiplication (MM)withmultiple settings,
where each setting is identified by a different frequency. TheMapReduce implementa-
tion of MatrixMultiplication splits input matrices into sub-matrices and uses blocking
technique to take advantage ofmemory cache locality [30]. Figure 2a gives the normal-
ized execution time of reduce tasks at different frequencies. The experimental results
show that the execution time is not inversely proportional to each available frequency.
As the CPU frequency drops down, the execution time increases slowly at first, and
then faster.

The power consumption of modern multi-core based systems has rarely been mod-
eled due to the difficulty of building precise analytical models for multi-core CPUs.
Therefore, instead of using an analytical model of power consumption by a server,
we utilize real data of IBM server X3250 (Intel Xeon 3480, 4 cores×3067 MHz, 8
GB). The configuration and power consumption characteristics of the server are shown
in Table 1. Based on the normalized task execution time (as shown in Fig. 2a) and
power consumption, we give the (normalized) energy performance ratio of different
frequencies in Fig. 2b, where the energy performance ratio of a job j running on a
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Table 1 Server’s power consumption at different load levels in Watts

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

IbmX3250XeonX3480 42.3 46.7 49.7 55.4 61.8 69.3 76.1 87 96.1 106 113

CPU with frequency fi is computed as

(Pfi − Pf0) × Tj (1)

In general, a higher energy performance ratio indicates that completion of a task at the
corresponding CPU frequency requires a potentially higher energy consumption. In
practice, the energy performance ratio is co-related to both the characteristics of the
application (e.g., data or control intensive application, locality of memory accesses,
etc.) and the technology of the hardware server (e.g., CPU technologies, memory sys-
tem design, etc.). ExistingDVFSwork show that running the CPU at a lower frequency
is typically more energy-efficient compared with completing the task execution at full
capacity and remain idle for the rest of time [16,17].

4 Framework

4.1 Framework structure

Considering the importance of SLA in MapReduce environments, we design and
implement an SLA-aware framework for Hadoop 2.0. The idea is to make rational use
of hardware resources and reduce energy consumptionwhilemeeting the requirements
of SLA.

As shown in Fig. 3, ResourceManager (RM) is responsible for unified management
and allocation of all resources in the cluster, it receives information from each Node-
Managers (NM) and assigns resources to per-application ApplicationMaster (AM)
in accordance with a certain strategy. AM is responsible for negotiating appropriate
resource containers from the RM and working with NMs. In this paper, our framework
adds five interacting components: a job profiler, a parallelism estimator, an SLA-aware
scheduler, a performance monitor, and a frequency estimator. We will introduce them
one by one in the following subsections.

4.2 Job profiler

In this work, we define J = (I, M, R, D, PM , PR) is a MapReduce job, where I
donates the input dataset, M/R donates map/reduce task set, D donates deadline of
the job and PM/PR donates the minimum degree of parallelism of map/reduce tasks.
In cloud computing clusters, each job j is associated with a completion time goal
(Dj ). The number of map tasks Mj is defined by the size of input dataset I j and the
number of reduce tasks R j is specified by users. If j is expected to be completed
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Fig. 3 An SLA-aware framework for Hadoop

Table 2 Performance metrics of MapReduce jobs

Phase Metric Description

Initialize Imax The maximum duration of initialization

Map Mavg The average duration of map tasks

Mmax The maximum duration of map tasks

SelectivityM The ratio of map output size to the input size

Shuffle Sh1max The maximum duration of first shuffle

Shtypavg The average duration of typical shuffle

Shtypmax The maximum duration of typical shuffle

Reduce Ravg The average duration of reduce tasks

Rmax The maximum duration of reduce tasks

SelectivityR The ratio of the reduce output size to its input

before Dj , its minimum parallelism of map/reduce tasks (P j
M/P j

R) should be given by
the parallelism estimator.

The job profiler is in charge of parsing performance metrics of jobs from the past
logs. Alternatively, profiling can be done by executing a given application with a
smaller input dataset than the original one. All the performance metrics (see Table 2)
are independent of the amount of resources and can reflect all phases of the given job:
initialization,map, shuffle and reduce. Besides, we also need to extract the associations
between performance and frequency of map/reduce tasks.

4.3 Parallelism estimator

We adopt the module of parallelism estimator as proposed in [8]. The parallelism
estimator is in charge of calculating the minimum parallelism of map/reduce tasks
to refine the job model. For simplicity of explanation, we omit the step of measured
durations with respect to SelectivityM and SelectivityR . When a job is submitted and
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added to the queue, the parallelism estimator will estimate the upper bound for the
duration of the job j (T up

j ) as Eq. (1) according to Makespan Theorem as proposed in
[8]. As shown in [8], the profiling based estimator is stable (with less the 5% execu-
tion time variation) for various benchmarks executed with different dataset in various
environments. Furthermore, compared with the average execution time bound as used
in [8], we choose the upper bound in the estimation so that the SLA is guaranteed to be
satisfied. Based on the upper bound, we can figure out the minimum value of P j

M + P j
R

over Eq. (2). Finally, a job may complete before its estimated upper execution time
bound, which leads to a slack in the scheduling to be potentially utilized by DVFS for
energy-efficient system design.

T up
j = A

P j
M

+ B

P j
R

+ Q (2)

A

P j
M

+ B

P j
R

= C (3)

where A = (Mj − 1) × Mavg, B = (R j − 1) × (Shtypavg + Ravg), Q = Imax + Mmax +
Rmax + Sh1max + Shtypmax − Shtypavg, and C = Dj − Q. Then, we can work out P j

M and

P j
R by the Lagrange’s method. Remember to round up the values because P j

M/P j
R has

to be integral in practice.

P j
M =

√
A × (

√
A + √

B)

C
(4)

P j
R =

√
B × (

√
A + √

B)

C
(5)

4.4 SLA-aware scheduler

Resource scheduler is one of the most crucial components of YARN. It is a plug-in
and defines a set of interface specifications as necessary so that users can achieve
their own scheduler. We follow the interface specification and write a new resource
schedulełthe SLA-aware scheduler which assigns tasks according to the results of
parallelism estimator. Workers periodically send a heartbeat to the RM reporting their
available resources. In response, the SLA-aware scheduler returns a list of tasks to be
assigned to theworkers. The detailed resource allocation and task scheduling algorithm
will be discussed in Sect. 5.

4.5 Performance monitor

In per-application AM, there is a performance monitor that can collect information for
the currently running job and divide the job’s map/reduce tasks into already completed
tasks (Cm

j /C
r
j ), not yet started tasks (Um

j /U
r
j ) and currently running tasks (Rm

j /R
r
j ),

where Mj = Cm
j + Rm

j + Um
j and R j = Cr

j + Rr
j + Ur

j . When a map/reduce task
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of job j is going to be launched, the performance monitor will figure out the “ideal”
execution time of remaining tasks (umj /u

r
j ) pursuant to P j

M /P j
R and Dj . Suppose the

upper bound of completion times for the map phase is denoted as T up
M and the current

time is T , we have

T up
M = (Mj − 1) × Mavg

P j
M

+ Mmax (6)

umj = T up
M − T⌈
Rm
j +Um

j

P j
M

⌉ (7)

urj = Dj − T⌈
Rr
j+Ur

j

P j
R

⌉ − Shtypavg (8)

Specifically, when �(Rr
j +Ur

j )/P
j
R� = 2, let the execution time of N j reduce tasks

twice longer than the others, where N j = 2P j
R − (Rr

j +Ur
j ).

4.6 Frequency estimator

Startingwith the 2.6.0 Linux kernel, users can dynamically scale processor frequencies
through the CPUFreq subsystem. The DVFS technique enables processors to be oper-
ated atmultiple frequencies under different supply voltages, thus gives opportunities to
reduce the energy consumption of high performance computing by scaling processor
supply voltages. The theoretical basis of the technique is the following formula:

E = P × t = αCV 2F × t (9)

From the above formula,we can see that the energy consumptionwill not be reduced
unless the frequency and voltage are reduced at the same time. Because for a given task,
F × t is a constant. Fortunately, the frequency scaling of CPUFreq module is based
on the ACPI driver of each CPU manufacturers (such as Intel’s SpeedStep and AMD
PowerNow), these advanced power management drivers can automatically adjust the
voltage of motherboard depending on the CPU operating frequency.

The frequency estimator needs to get the associations between performance and
frequency when a job was submitted and identify the target processor speed ( f mj / f

r
j )

based on the performancemonitor. For a cloud computing cluster equippedwithDVFS
cores, we assume each of its compute nodes has N processor frequencies available:
{ f0, f1, . . . , fn}, satisfying f0 < f1 < · · · < fn = fmax. Since the processor only
supports a finite set of frequencies, we set f mj = f2 to guarantee the completion
time when ∀ f mj ⊆ [ f 1, f 2], where f1 and f2 is a pair of adjacent available CPU
frequencies. The settings of f rj is the same with f mj .
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5 SLA-aware scheduler

5.1 Data locality

MapReduce applications can get better performance if map tasks run on the nodes
that store the input data, which is referred as the data locality optimization. However,
Hadoop does not consider data locality when scheduling reduce tasks, because the
input to a reduce task is typically the output of many map tasks generated at multiple
nodes while the input to a map task exists at a solo node. The flow of data between
map tasks and reduce tasks is called shuffle, and this might lead to increased network
traffic which is typically a bottleneck in MapReduce-based systems.

Hadoop assumes a master-slave architecture and a tree-style network topology. The
single master and multiple worker nodes are spread over different racks contained
in one or more data centers. Figure 4 demonstrates a data center with two racks
each including five nodes. Each rack switch has uplinks connected to the core switch
connecting the other rack with uniform bandwidth. The bandwidth between two nodes
is dependent on their relative locations in the network topology.

The total network distance of a reduce task (Ri) includes the network distance
required to shuffle all partitions to Ri . In this paper, we define the total network
distance of Ri as TNDRi like [31]. Apparently, the bigger TNDRi is, the more time
will be taken to shuffle Ri’s partitions, and the network bandwidth will be dissipated
additionally. Suppose there are 6 map tasks Mi (1 ≤ i ≤ 6) and 4 reduce tasks Ri
(1 ≤ i ≤ 4) scheduled on distinct nodes as shown in Fig. 5, and every map task is
feeding every reduce task. Assuming the distance from a node to its parent is 1 and the
distance between any two nodes can be calculated by adding up their distances to their

Core 
Switch

Rack
Switch

Rack
Switch

N2 N3 N4 N5N1 N8N7N6 N9 N10

Fig. 4 A tree-style network topology of Hadoop

Fig. 5 The nodes at which
Hadoop schedules tasks

Rack 1 Rack 2

N2 N3 N4 N5N1 N8N7N6 N9 N10

M1 M2 M3 M4 M5 M6

R1 R2 R3 R4

Data
Center
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closest common ancestor, we can ultimately get the total network distance of reduce
tasks TNDRi (1 ≤ i ≤ 4): TNDR0 = 14, TNDR1 = 16, TNDR2 = 18, and TNDR3 = 20.

From the above, we can see that the total network distance of reduce tasks can be
very different caused by different locations, which shows that reduce tasks also have
the advantage of data locality. But unlike map tasks, reduce tasks care more about the
data on a whole rack than that on a single node. And we found that a reduce task can
get the best performance on the rack that has the most feeding map tasks of it. Actu-
ally, Hadoop divides the data locality into three grades: node locality, rack locality,
and data center locality (temporarily not implemented). When per-application Appli-
cationMaster applies to ResourceManager for resources, it needs to send a resource
request list which describes the needs of each resource unit in detail. Each resource
request can be seen as a serialized Java object, and then the resource scheduler will
return a description of the allocated containers to ApplicationMaster.

In this paper, we make the most of data locality in Hadoop for saving MapReduce
network traffic. Suppose every map task has a resource request priority defined as
PRIMi , and every reduce task has a resource request priority defined as PRIRi . Our
ApplicationMaster will give the desired node for each map task and the desired rack
for each reduce task in the resource request list when applying for resources. Then the
SLA-aware scheduler can allocate resources according to the request list.

5.2 Deadline constraint

Generally, the number of datanodes determines the computing power of a Hadoop
cluster, and workloads that exceed the computing capacity may lead to missed dead-
lines for any jobs. To solve this problem, the Deadline Constraint scheduler [32] was
proposed to ensure deadlines for real-time MapReduce jobs, which, however, may
lead to resource under-utilization as well as deadline violations. He et al. developed
a RTMR scheduler [33] to avoid accepting jobs that may lead to deadline misses,
but the RTMR scheduler is not applicable to YARN environment. In this paper, our
proposed SLA-aware scheduler determines whether the job can be completed within
the specified deadline before a job is added to the job queue.

For convenience, the total required resources of job j are denoted as f (P j
M , P j

R), and

the number of residual containers in the cluster are denoted asCr , where f (P j
M , P j

R) =
P j
M + P j

R . The SLA-aware scheduler is able to achieve control of frequency scaling
leveraging a boolean variable (FX). FX is set to 1 by default, and in this case, per-
application ApplicationMasters can dynamically adjust CPU frequencies for energy
saving. When FX is set to 0, it indicates insufficient resources in the current status
of the cluster, and the SLA-aware scheduler will notify all ApplicationMasters to run
tasks at the highest frequency ( fmax).

When job j is submitted, if its total required resources ( f (P j
M , P j

R)) are no more
than the number of residual containers (Cr ) in the cluster, the SLA-aware scheduler
will add j to the job queue and allocate resources to it according to its degree of
parallelism. Conversely, if f (P j

M , P j
R) is greater than Cr , there will be two cases. In

the first case, job j can be completed in time if all jobs stop controlling the frequencies
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of CPU cores and set their processors to the highest frequency available. Meanwhile,
FX will be set to 0 until the total required resources of a new job are less than Cr .
As for the second case, it is impossible to finish job j no matter what we do, so the
SLA-aware scheduler will not change the value of FX and reject job j .

Through the above analysis, here comes a question: how does the SLA-aware
scheduler manage to distinguish between the two cases? In this paper, the parallelism
of map/reduce phase is expected to remain unchanged during the job’s execution,
so we first check whether there are enough resources for the map phase of job j .
If Cr < P j

M , the SLA-aware scheduler will simply reject job j for its unreasonable

deadline. Instead, if P j
M ≤ Cr < f (P j

M , P j
R), we will need to estimate whether

there are enough resources to start the reduce phase while other jobs accelerate their
progress.

Although all running applications accelerate their progress for job j , we only care
about the jobs that can be finished before starting the reduce phase. Given that reduce
tasks cannot be launched until the number of finished map tasks exceeds a certain
value (denoted as CMFR), now the question becomes how many free containers are
available at the point when the number of finished map tasks reaches CMFR. Let
T up
CMFR be the upper bound of completion times for CMFR numbers of map tasks, we

have

T up
CMFR = (CMFR − 1) × Mavg

P j
M

+ Mmax (10)

Suppose there are N numbers of jobs that can be finished before T up
CMFR, then job

j can make full use of the containers released by these jobs, which is denoted as RC .
Let ECr be the estimated residual containers in the cluster when starting the reduce
phase, and apparently RC is part of ECr, then we can calculate the value of RC and
ECr by the following formulas.

RC =
N∑
j=0

P j
R(0 ≤ j ≤ N ) (11)

ECr = Cr − P j
M + RC. (12)

5.3 Resource allocation

The SLA-aware scheduler needs to refine the job model through the parallelism esti-
mator after job j is submitted and determine whether job j can be completed within
the specified deadline or not before it is added to the job queue. The SLA-aware
Resource Allocation Algorithm orders jobs by the Earliest Deadline First (EDF) algo-
rithm, which is an optimal dynamic scheduling algorithm for real-time processing.
The detailed resource allocation schema is shown in Algorithm 1. (For job j , Mr

j rep-
resents the number of running map tasks, Rr

j represents the number of running reduce

tasks, M f
j represents the number of finished map tasks, Cr represents the number of
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Algorithm 1 SLA-aware Resource Allocation
Input:

jobQueue: job queue;
f reeContainers: number of free containers;

Output:
assignedContainers: assigned container list;

1: When job j is submitted:

2: Refine the job model (I j , Mj , R j , Dj , P
j
M , P j

R );

3: if f (P j
M , P j

R) ≤ Cr then
4: Set FX = 1 and add j to the jobQueue;

5: else if P j
M ≤ Cr & P j

R ≤ ECr then
6: Set FX = 0 and add j to the jobQueue;
7: else
8: Reject job j ;
9: end if
10: Sort jobQueue in order of earliest deadline;
11: while f reeContainers > 0 do
12: for each free container c in f reeContainers do
13: for each job j in jobQueue do

14: if Mr
j < P j

M then
15: Allocate c to AM for running the map task that has the highest PRIMi ;
16: assignedContainers.add(mapTask);

17: else if M f
j > CMFR and Rrj < P j

R then
18: Allocate c to AM for running the reduce task that has the highest PRIRi ;
19: assignedContainers.add(reduceTask);
20: end if
21: end for
22: end for
23: end while
24: return assignedContainers

residual containers in the cluster, CMFR represents the threshold at which to start the
reduce phase, and f (P j

M , P j
R) = P j

M + P j
R).

As shown in Line 11–23, for each free container and each job, if the number of
running map tasks of job j is lesser than P j

M in the job model , a new task is launched.
As long as the number of finished map tasks reaches the pre-set threshold, reduce
tasks can be launched as required. Preference is given to map tasks which have node
locality to the worker node, while the assignment of reduce tasks is more concerned
about rack locality.

5.4 Task scheduling

YARN uses a double-layer resource scheduling model: in the first layer, the resource
scheduler in ResourceManager allocates resources to per-application Application-
Masters; then in the second layer, ApplicationMasters will allocate containers to
each task of their jobs. The SLA-aware scheduler is focused on resource allocation
in the first layer. As for the task scheduling of the second layer, it is completely
determined by per-application ApplicationMasters. In this work, we implement an
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Algorithm 2 DVFS-based Task Scheduling
Input:

assignedContainers: assigned container list;
unassignedTasks: unassigned task list of job j ;

Output:
assignedTasks: assigned task list of job j ;

1: When job j is started:
2: Add Mj and R j to the monitor set;
3: Set f mj = f rj = fmax;
4: for each free container c in assignedContainers do
5: if c is for map tasks then
6: Performance monitor gives umj ;

7: Frequency estimator resets f mj ;

8: Launch map task on c with f mj ;
9: assignedTasks.add(mapTask);
10: else if c is for reduce tasks then
11: Performance monitor gives urj ;

12: Frequency estimator resets f rj ;

13: Launch reduce task on c with f rj ;
14: assignedTasks.add(reduceTask);
15: end if
16: end for
17: return assignedTasks

DVFS-based ApplicationMaster with the performance monitor and frequency estima-
tor. The detailed task scheduling schema is shown in Algorithm 2.

As stated earlier, wewant to implement an application-centric DVFS schemewhich
applies macro-control to the whole map/reduce phase. To guarantee the performance
goal for MapReduce jobs, we will keep the parallelism of map/reduce tasks constant
during an application’s execution. When assigning new map/reduce tasks of a job:
the performance monitor will figure out umj /urj at first; then, frequency estimator can
reset the target frequency f mj / f rj ; finally, ApplicationMaster will treat f mj / f rj as one
of the environment variables that are encapsulated into the container launch context.
By this way, multiple cores on the same node can be tuned to different frequencies,
and the task scheduling control loop ensures efficiency of the framework.

According to Algorithm 1 and 2, Fig. 6 shows an example task scheduling for
the matrix multiplication example discussed in Sect. 3. Assume that the parallelism
estimator determines at least two nodes are required to meet the deadline (D = 120)
of a particular MapReduce application with 6 map tasks and 4 reduce tasks, based
on the upper bound execution time of the jobs given by the job profiler. Figure 6a
show the task execution without DFVS, where both nodes run at the highest CPU
frequency. Since some of the map tasks may complete their execution before the
estimated upper bound, there is an aggregated slack time between the time when all
map tasks finish (i.e., 60) and the required completion time of map task in order for the
entire application to meet its SLA (i.e., T up

M = 75). The execution of reduce tasks is
similar, and the entire application is finished at time 95, which is energy-inefficient. On
the other hand, with the DVFS-based scheduling, the CPU frequency is dynamically
altered to achieve energy saving. In particular, given the current slack time resulted

123



SLA-aware energy-efficient scheduling scheme for Hadoop YARN 3541

m1 m3 m5 r1 r3

m2 m4 m6
r2 r4

m3 m5 r1 r3

m2 m4 m6 r2 r4

75 D = 120

20 40 60 80 95

75 D = 120

20 35 70 90 115

m1

time(s)

frequency(GHz)

time(s)

frequency(GHz)

(a) before DVFS

(b) a�er DVFS

3.0

3.0

3.0
1.5

0

0

0

3.0
1.5

0

Fig. 6 Task scheduling example

from m1’s early completion, m3 can be executed at a lower frequency of 2.4GHz,
which still guarantees that all map tasks will be completed before T up

M . Similarly, the
minimal possible execution frequency is determined for each map task according to
T up
M , as well as the reduce tasks according the the overall deadline of the application.

6 Evaluation

6.1 Experimental setup

We evaluate the performance and energy efficiency of the proposed scheduling frame-
work via CloudSim simulator [9], which supportsmodeling and simulation of different
resource provisioning schemes and power management techniques like DVFS. Based
on the ideas presented in [34], we extend CloudSim with YARN resource manage-
ment and scheduler.We create aYARNenvironment inCloudSimwith 30 homogenous
physical servers and the network speeds among each machine are randomly generated
between 100 MBps and 200 MBps. Each server is equipped with a Intel Xeon X3480
(4-core) CPU with capacity computation power of 3000 MIPS. Since we focus on
CPU utilization in this work, we assume each YARN resource container has 1 core
and unlimited memory space. Based on the energy performance ratio of servers stated
in the built-in power model of CloudSim, we select the following five different CPU
frequency scaling levels: {0.9, 1.2, 1.8, 2.4, 3.0 GHz}.

We use the MapReduce version ofMatrix Multiplication [30] and the Sort Bench-
mark from Hadoop distribution for our experimental evaluation. Each benchmark is
associated with four different deadlines of 4, 5, 6, and 7 min. For each benchmark, we
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profile and obtained the execution time of itsmap and reduce tasks under different CPU
frequency levels, which are used to determine the minimum parallelism of jobs based
on various SLA deadlines. For a comparison, we have also implemented the ARIA
approach which uses the average completion time (average bound) for MapReduce
resource provisioning [8] and running on fixed 3.0 GHz CPU frequency.

There are two basic metrics used in our analysis: execution time (T ) as performance
metric, and the work-induced energy (EW ) for energy metric similarly as in [21]. The
power consumption of servers in a cloud computing cluster is mostly determined by
the CPU, memory, disk storage, power supplies and cooling systems [35]. As the
idle power Pidle can account for up to 40% of the system power under load in our
cluster, we use the work-induced energy to provide a more direct indication of energy
consumption by running applications. In particular, the work-induced energy EW can
be defined as the following equation, where E is the overall energy consumption of
the cluster.

EW = E − T × Pidle (13)

6.2 Experimental results

In order to prove the validity of data locality, we first evaluate the network bandwidth
requirements of Sort benchmark in two cases. In the first case, we have a group of
applications that run on the original Hadoop cluster which does not consider data
locality when scheduling reduce tasks; in the second case, we improve the resource
allocation algorithm and adopt rack locality for reduce tasks. Figure 7a reveals that the
network accesses are very active during most of the execution period, especially in the
beginning. But when we look at it in detail, we find that the network accesses of reduce
phase are very different in the two cases while the network accesses of map phase are
about the same. In fact, our improved algorithm can decrease network traffics of the
shuffle phase by about 12%. Then we compare the performance of Sort benchmarks
that are specified with different deadlines and give the contrast data in Fig. 7b. As the
experimental results suggest, our scheme can improve the performance of applications
by 9%, which produces more slack time for the reduce phase.
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Table 3 The parallelism of sort
and matrix multiplication

Deadline(s) Sort Matrix multiplication

Ours ARIA Ours ARIA

240 (56, 68) (48, 62) (63, 50) (43, 34)

300 (43, 52) (38, 47) (48, 38) (32, 25)

360 (34, 44) (30, 41) (34, 27) (25, 20)

420 (28, 38) (25, 33) (27, 21) (21, 17)

(a) Comple�on �me of Sort (b) Induced energy of Sort (c) Comple�on �me of MM (d) Induced energy of MM
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Fig. 8 The execution time and energy consumption of Sort and Matrix Multiplication based on SLA and
ARIA

In Table 3, we compute the minimum parallelism of jobs based on SLA and ARIA
(average bound) accordingly. For example, the Sort benchmark with 240 s deadline
requires 56 and 68 containers in the map and reduce phases, respectively in our pro-
posed framework; while it requires 48 map slots and 62 reduce slots in ARIA. It is
because our framework considers the worst-case bound for resource provisioning,
compared with the average bound used in ARIA. We can also observe that resource
requirements for both approaches reduce with the relaxation of the deadline. Note
that high resource demands in our approach will not cause any performance issues
when the entire cluster is not heavily loaded. In a scenario with resource shortage,
our scheme runs high-priority applications with more CPU resources at the highest
possible frequency so that they will complete faster; then the vacant resources will be
assigned to the low-priority applications. However, ARIA may lead to better fairness
between applications in such scenarios.

The performance and energy consumption comparisons are shown in Fig. 8. For
Sort, our proposed scheme achieves better SLA conformance than ARIA(average) for
various deadline settings. For example, ARIAwith resource provisioning based on the
average task completion time (average bound) violate the SLAs with 300 and 420 s
deadlines.We have also shown the ARIA (upper) approach with resource provisioning
based on the worst-case task completion time. Although ARIA (upper) leads to a fast
completion time, it may not utilize the resource efficiently unless the entire cluster is
heavily loaded by various applications. In particular, keeping a CPU run at the highest
frequency to complete a task and idle it for the rest of time is not as energy-efficient as
running it at a lower frequency for a longer period (which is the fundamental reasoning
behind the DVFS technology).

Furthermore, we achieve significant improvement on the energy reduction with our
online DVFS scheme. The work-induced energy reduces by 36% (which is equivalent
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to a 8% total system energy saving) when the deadline is 240 s. With the increase of
available time, the resources needed to meet the deadline decreased, and the reduc-
tion ratio on work-induced energy over ARIA changes between 36 and 41% (Fig.
8b). Similarly forMatrix Multiplication, our policy reduces the work-induced energy
between 32 and 38% (Fig. 8d).

7 Conclusion

In this work, we proposed an SLA-aware energy-efficient scheduling scheme for
shared MapReduce applications in Hadoop YARN. Based on the job profiling infor-
mation, our scheduling scheme enables automatic resource inference and allocation
and makes the most of data locality in Hadoop for saving network traffic. Besides,
we integrate DVFS to reduce energy by running tasks at low CPU frequency during
slack times without violation of the application’s SLA. And our proposed SLA-aware
scheduler can avoid accepting jobs that will lead to deadline misses and improve the
cluster utilization. The experimental results show that our scheme achieves better SLA
conformance with low resource cost and energy consumption.

In the futurework,we plan to extend the proposed schemeonheterogeneous clusters
where the available resources and energy performance ratio may vary on different
nodes. As a result, the resource allocation scheme should be aware of the variation
of execution time when a job is assigned to different nodes. Moreover, the energy
performance ratio for a particular application running on various nodes need to be
incorporated into the DVFS-based task scheduling. While this paper have focused on
MapReduce tasks, we will study the scheduling problem of other types of applications
(e.g., Storm and Spark) which can be also deployed on YARN.

Acknowledgements This research is sponsored by the Natural Science Foundation of China (NSFC)
under Grant no. 61202015 and 61533011, Shandong Provincial Natural Science Foundation under Grant
no. ZR2013FM028 and ZR2015FM001, the Fundamental Research Funds of Shandong University under
no. 2015JC030.

References

1. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM
51(1):107–113

2. Apache Hadoop. http://hadoop.apache.org/. Accessed 5 Feb 2016
3. Vavilapalli VK et al (2013) Apache hadoop yarn: yet another resource negotiator. In: Proceedings of

the 4th annual Symposium on Cloud Computing. ACM, p 5
4. Van HeddeghemW et al (2014) Trends in worldwide ICT electricity consumption from 2007 to 2012.

Comput Commun 50:64–76
5. Capacity Scheduler. http://hadoop.apache.org/docs/current/hadoop-yarn/hadoopyarn-site/Capacity

Scheduler.html. Accessed 5 Feb 2016
6. Fair Scheduler. http://hadoop.apache.org/docs/current/hadoop-yarn/hadoopyarn-site/FairScheduler.

html. Accessed 5 Feb 2016
7. Ibrahim S et al (2014) Towards efficient power management in MapReduce: investigation of CPU-

frequencies scaling on power efficiency in Hadoop. In: Adaptive resource management and scheduling
for cloud computing. Springer, pp 147–164

8. Verma A, Cherkasova L, Campbell RH (2011) ARIA: automatic resource inference and allocation
for mapreduce environments. In: Proceedings of the 8th ACM international conference on Autonomic
computing. ACM, pp 235–244

123

http://hadoop.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoopyarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoopyarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoopyarn-site/FairScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoopyarn-site/FairScheduler.html


SLA-aware energy-efficient scheduling scheme for Hadoop YARN 3545

9. Calheiros RN, Ranjan R, BeloglazovA, DeRose CA, BuyyaR (2011) Cloudsim: a toolkit formodeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Softw Pract Exp 41(1):23–50

10. Polo J, et al (2010) Performance-driven task co-scheduling for mapreduce environments. In: Network
operations and management symposium (NOMS). IEEE, pp 373–380

11. Ferguson AD, Bodik P, Kandula S, Boutin E, Fonseca R (2012) Jockey: guaranteed job latency in data
parallel clusters. In: Proceedings of the 7th ACM european conference on Computer Systems. ACM,
pp 99–112

12. Yao Y,Wang J, Sheng B, Lin J, Mi N (2014) Haste: Hadoop yarn scheduling based on task-dependency
and resource-demand. In: IEEE 7th International Conference on Cloud Computing (CLOUD). IEEE,
pp 184–191

13. Davis RI, Burns A (2011) A survey of hard real-time scheduling for multiprocessor systems. ACM
Comput Surv (CSUR) 43(4):35

14. Qiu M, Sha EH-M (2009) Cost minimization while satisfying hard/soft timing constraints for hetero-
geneous embedded systems. ACM Trans Des Autom Electron Syst (TODAES) 14(2):25

15. Li J, Ming Z, Qiu M, Quan G, Qin X, Chen T (2011) Resource allocation robustness in multi-core
embedded systems with inaccurate information. J Syst Archit 57(9):840–849

16. Krishna CM, Lee Y-H (2000) Voltage-clock-scaling adaptive scheduling techniques for low power in
hard real-time systems. In: 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, pp 156–156

17. KimW, Shin D, Yun H-S, Kim J, Min SL (2002) Performance comparison of dynamic voltage scaling
algorithms for hard real-time systems. In: Proceedings of the Eighth IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, pp 219–228

18. Ge R et al (2010) Powerpack: energy profiling and analysis of high-performance systems and applica-
tions. IEEE Trans Parallel Distrib Syst 21(5):658–671

19. Wang L, Von Laszewski G, Dayal J, Wang F (2010) Towards energy aware scheduling for precedence
constrained parallel tasks in a cluster with DVFS. In: IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid). IEEE, pp 368–377

20. Wang Y, Liu H, Liu D, Qin Z, Shao Z, Sha EH-M (2011) Overhead-aware energy optimization for
real-time streaming applications on multiprocessor system-on-chip. ACM Trans Des Autom Electron
Syst (TODAES) 16(2):14

21. Wirtz T, Ge R (2011) Improving mapreduce energy efficiency for computation intensive workloads.
In: 2011 International Green Computing Conference and Workshops (IGCC). IEEE, pp 1–8

22. Ge R, Feng X, Feng W-C, Cameron KW (2007) Cpu miser: A performance-directed, run-time system
for power-aware clusters. In: International Conference on Parallel Processing (ICPP). IEEE, pp 18–18

23. Kim W, Gupta MS, Wei G-Y, Brooks D (2008) System level analysis of fast, per-core DVFS using
on-chip switching regulators. In: IEEE 14th International Symposium on High Performance Computer
Architecture. IEEE, pp 123–134

24. Maheshwari N, Nanduri R, Varma V (2012) Dynamic energy efficient data placement and cluster
reconfiguration algorithm for MapReduce framework. Future Gener Comput Syst 28(1):119–127

25. Cardosa M, Singh A, Pucha H, Chandra A (2012) Exploiting spatio-temporal tradeoffs for energy-
aware mapreduce in the cloud. IEEE Trans Comput 61(12):1737–1751

26. Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation of virtual machines in cloud data centers.
Concurr Comput Pract Exp 24(13):1397–1420

27. Babu S (2010) Towards automatic optimization of MapReduce programs. In: Proceedings of the 1st
ACM symposium on Cloud computing. ACM, pp 137–142

28. Belalem G, Tayeb FZ, Zaoui W (2010) Approaches to improve the resources management in the
simulator CloudSim. In: Information computing and applications. Springer, pp 189–196

29. Singleton LC, Poellabauer C, Schwan K (2005) Monitoring of cache miss rates for accurate dynamic
voltage and frequency scaling. In: Electronic imaging 2005. International Society for Optics and
Photonics, pp 121–125

30. Norstad J (2009) A MapReduce algorithm for matrix multiplication. http://www.norstad.org/
matrix-multiply/. Accessed 5 Feb 2016

31. HammoudM, RehmanMS, Sakr MF (2012) Center-of-gravity reduce task scheduling to lower mapre-
duce network traffic. In: International Conference on Cloud Computing (CLOUD). IEEE, pp 49–58

123

http://www.norstad.org/matrix-multiply/
http://www.norstad.org/matrix-multiply/


3546 X. Cai et al.

32. Kc K, Anyanwu K (2010) Scheduling hadoop jobs to meet deadlines. In: 2010 IEEE Second Interna-
tional Conference on Cloud Computing Technology and Science. IEEE, pp 388–392

33. He C, Lu Y, Swanson D (2013) Real-time scheduling in mapreduce clusters. In: High performance
computing and communications and embedded and ubiquitous computing (HPCC_EUC). IEEE, pp
1536–1544

34. Jung J, Kim H (2012) MR-CloudSim: Designing and implementing MapReduce computing model on
CloudSim. In: 2012 International Conference on ICT Convergence (ICTC). IEEE, pp 504–509

35. Minas L, Ellison B (2009) Energy efficiency for information technology: how to reduce power con-
sumption in servers and data centers. Intel Press

123


	SLA-aware energy-efficient scheduling scheme  for Hadoop YARN
	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Framework
	4.1 Framework structure
	4.2 Job profiler
	4.3 Parallelism estimator
	4.4 SLA-aware scheduler
	4.5 Performance monitor
	4.6 Frequency estimator

	5 SLA-aware scheduler
	5.1 Data locality
	5.2 Deadline constraint
	5.3 Resource allocation
	5.4 Task scheduling

	6 Evaluation
	6.1 Experimental setup
	6.2 Experimental results

	7 Conclusion
	Acknowledgements
	References




