
J Supercomput (2016) 72:3927–3959
DOI 10.1007/s11227-016-1639-5

Improvised methods for tackling big data streammining
challenges: case study of human activity recognition

Simon Fong1 · Kexing Liu1 · Kyungeun Cho2 ·
Raymond Wong3 · Sabah Mohammed4 ·
Jinan Fiaidhi4

Published online: 16 February 2016
© Springer Science+Business Media New York 2016

Abstract Big data stream is a new hype but a practical computational challenge
founded on data streams that are prevalent in applications nowadays. It is quite well
known that data streams that are originated and collected from monitoring sensors
accumulate continuously to a very huge amount making traditional batch-basedmodel
induction algorithms infeasible for real-time data mining or just-in-time data analyt-
ics. In this position paper, following a new data stream mining methodology, namely
stream-based holistic analytics and reasoning in parallel (SHARP), a list of data ana-
lytic challenges as well as improvisedmethods are looked into. In particular, two types
of decision tree algorithms, batch-mode and incremental-mode, are put under test at
sensor data that represents a typical big data stream.We investigatewhether and towhat
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extent of two improvised methods—outlier removal and balancing imbalanced class
distributions—affect the prediction performance in big data stream mining. SHARP
is founded on incremental learning which does not require all the training to be loaded
into the memory. This important fundamental concept needs to be supported not only
by the decision tree algorithms, but by the other improvised methods usually at the
preprocessing stage as well. This paper sheds some light into this area which is often
overlooked by data analysts when it comes to big data stream mining.

Keywords Data stream mining · Big data · Very fast decision tree · Resampling ·
Sensor data

1 Introduction

Recently the term “big data”was hyped up very largely bymedia in computing domain,
as it is introducing three problematic issues infamously known as the 3V challenges:
Velocity issue that leads to a huge amount of data to be processed at high speed; Variety
issue that makes data processing and prediction model induction difficult because the
data come from various sources in various formats; and Volume problem that makes
archiving, processing, and analysis challenging, especially if a large bulk of data needs
to be stored in the runtime memory for preprocessing.

In views of these 3V challenges, the traditional data mining approaches which are
inherited from the full batch-mode learning may run short of satisfying the demand
of analytic efficiency. That is due to the burden that the traditional data mining model
construction techniques necessitate loading in the full set of data, and then the data set
is partitioned by divide-and-conquer strategy. Two typical algorithms are classification
and regression tree induction [1] and rough-set discrimination [2].Whenever fresh data
arrive, the size of the total training dataset increases, the traditional learning algorithm
needs to re-run, and the current model needs to be re-built embracing the new data.

In contrast, a new breed of learning algorithms, called data stream mining methods
[3], are capable of minimizing the impacts of the 3V big data problems. Data stream
mining algorithm does not need to load up the full set of data. Rather it works by
inducing a classification or prediction model incrementally by a bottom-up approach.
Each segment of arriving data from the data streams prompts the model to update itself
by only the current data segment. This type of read-and-forget design in data stream
mining algorithms frees the system from reloading the whole data; hence it is able
to handle big data streams that potentially accumulate to infinity without bound. This
feature allows the data streammining process run in limited runtimememory, learning
and recognizing patterns from the data streams on the fly. Consequently, data stream
mining methods are regarded as one of the big data analytics approaches to subside
big data problems. Researchers agree lately that data stream mining algorithms are
effective approaches to induce a prediction model from big data [4,5].

Recently a holistic data stream mining approach in gathering different auxiliary
parts of data stream mining with a common aim of improving the ultimate predic-
tion performance was proposed [6]. It is called stream-based holistic analytics and
reasoning in parallel (or SHARP in short) which is based on principles of incremen-
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tal learning and lightweight processing. SHARP is comprised of several components
which cover a typical data-mining model construction process. They are lightweight
feature selection, one-pass incremental decision tree induction, and incremental swarm
optimization. Each one of these components in SHARP is supposed to complement
each other towards the common objective of improving the classification/prediction
performance as a whole. SHARP is scalable in computation; additional CPUs can be
included in parallel for increasing the execution threads of independent performance
enhancement. The benefits of SHARP include attaining the highest possible prediction
accuracy while maintaining the computation as lightweight as possible; some com-
ponents can be run independently, thereby allowing parallel processing and scalable
solution. The operation of SHARP is in stochastic manner implying the longer it runs
for, the better the performance it can achieve.

In this paper, we investigate the gaps between the proposed holistic methodology
and the currently available so-called improvisedmethods in solving typical problems in
datamining.As a pioneer attempt,we try subside the data outliers and imbalanced class
distributions problems on the tradition decision tree algorithm and very fast decision
tree algorithms. The effects of removing outliers and balancing imbalanced class distri-
bution over the two types of algorithms aremeasured for comparison. The former algo-
rithm is based on CART which represents traditional data mining, and the latter one is
a classical algorithm in data streammining. Do these improvised methods that worked
for traditional mining algorithm still work for data streammining? This is the research
question inmindwhichwould be answered, by conducting computer simulation exper-
iment with a case study of human activity recognition over sensor data streams.

The remainder of the paper is structured as follows: Section 2 offers a background
about the SHARPmethodology and its components. Section 3 presents the challenges
associated with human activity recognition and challenges in big data stream mining.
The technological gaps between SHARP and improvised methods are identified too.
The experimentation is described in detail in Sect. 4. Section 5 concludes the paper.

2 Background of SHARP methodology

A model of SHARP for data stream mining is shown in Fig. 1. It is comprised of
several components that work cooperatively together during the data stream mining
operation: (1) Cache receiver (CR); (2) Incremental classifier (IC); (3) Incremental
feature selection module (IFS); (4) Factor analysis module (FA); and (5) Swarm opti-
mizer (SO). The methodology offers a holistic approach which takes care of most
if not all the possible aspects in data mining for improving performance. These five
components aim at achieving the following objectives: CR-objective is to subside
the problems of missing/incomplete data; IC-objective is to enable stream forecast-
ing/prediction/classification by incremental learning manner; IFS and FA-objective
is to understand the reasons and influences of the respective data attributes towards
the predicted class; and SO- objective is to fine-tune the parameter values including
selecting the optimal feature subset regularly. All these components contribute to the
overall performance improvement, and they can function concurrently as the data
stream in.
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Fig. 1 SHARP processes

The multiple rectangles in Fig. 1 that represent IC and SO, respectively, depict the
possibility that these processes can run concurrently over some parallel computing
devices. The components are briefly described as follows: It is acknowledged that
there exist many possible solutions or algorithms for implementing these components.
Our discussion, however, highlights only some of the state-of-the-art components
developed fromour previous projects. Themethodology serves as an abstract guideline
on the possible integration of several data streaming components, discussing their
functions (rather than implementation), interfaces, and advantages.

2.1 Cache receiver (CO)

The cache receiver is a front-end pre-processing mechanism that holds certain amount
of data from the incoming data stream for a while. The main function is to mini-
mize the latency of data arrivals as it is possible and likely that data streams that
are being aggregated from various sources would be received at different speeds. CO
acts as a delay regulator and buffer allowing opportunities for efficient data cleansing
mechanism to operate upon, in real-time. It is not uncommon that data streams are
stained with noise and incomplete information; techniques have been proposed and
studied previously. The techniques mainly centered on delivering and synchronizing
the cache-buckets, estimatingmissing data, and detecting and alleviating concept-drift
problems, etc. CO also handles other basic data pre-processing tasks similar to those
for traditional data mining in the KDD process. Data stream is partitioned into two
portions: one for training that goes to the IFS and the other for testing at the IC. Some
improvised methods mentioned in this paper such as outlier detection, missing-data
estimations, class data rebalancing, and redundant data removal are implemented at
CO, that is, where pre-processing by these improvised methods take place.
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2.2 Incremental classifier (IC)

Many choices exist when it comes to data stream mining algorithms such as those
which are available on massive online analysis (MOA) [7] developed by University of
Waikato, New Zealand. Some popular algorithms include, but not limited to, decision
stump, Hoeffding tree, Hoeffding option tree, Hoeffding adaptive tree, and ADWIN,
etc. The algorithms have a common design basis that works by incremental learning
approach. The model gets rebuilt partially by only seeing enough samples that are
qualified (or biased) for growing an additional decision tree branch (or rule). In such
way, the model in induced progressively from scratch to a full-grown mature decision
tree, which has seen enough data stream samples, being able to recognize themappings
between the attributes and the target classes.

2.3 Incremental feature selection module (IFS)

The objective of this module is twofold; one is supposed to shrink down the total
combination of feature subsets by simple selection algorithm, the other is to reason
about the importance of the attributes with respect to the predicted classes, such as
attribute scoring. There are plenty of available algorithms for incremental feature
selection. Some popular ones include Grafting [8] which is based on the heuristic of
gradient descent in function space, some are based on rough set theory on dynamic
incomplete dataset [9], and the incremental feature ranking method over dynamic
feature space [10], to just name a few. One of the latest state-of-art algorithms, called
clustering coefficients, of variation (CCV) [11] is relatively simple and hence suitable
for lightweight computation in SHARP. In the case of SHARP, CCV helps to shrink
the feature space by eliminating the disqualified features and the combinations of such
features. The feature space that has been reduced in size will then been used by the
SO for finding the most optimal feature subset by metaheuristics search algorithms.

2.4 Factor analysis module (FA)

IFS and FA usually work together (or in parallel as in SHARP), IFS producing the
selected features and FA offering insights into the significance of attributes to the pre-
dicted classes. In general, this method is to correlate a large number of features in a
dynamic dataset with an outcome variable, such as the predicted class. Computation-
ally this is done by scoring each feature by some statistical means (correlation is one
of them). The other types of feature scoring exist such as gain ratio, information gain,
Chi-square evaluation, etc. that have similar methods for scoring. As a result of FA, a
list of features sorted by values in ascending or descending order would be produced;
their rankings could be visualized too. It offers insights to users about the importance
of each attribute for inquisitives.

2.5 Swarm optimizer (SO)

A swarm optimizer is essentially a search module that looks for optimal parameter
values of the classifier in use and the optimal feature subset for the IC module. SO
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takes the output of IFS which is a reduced search space of feasible combinations of
feature subsets as input. Multiple search agents, which often are inspired by natural
phenomena or behaviors of biological creatures, scout over the search space for the
optimum solution. The search operation is in parallel as these multiple agents are
working autonomously but collectively through some stochastic process. The search
iterates through generations, thereby evolving the solution to an optimum one at the
end. Some researchers call such methods meta-heuristics as it is meant to be a high-
level strategy (therefore the name meta-) that guides the underlying heuristic search
in achieving a goal. In the SHARP methodology, SO is an optimizer implemented by
Swarm Search [12]. Swarm search is designed for finding the optimum feature subset
using metaheuristics from large datasets.

Swarm Search is particularly useful for datasets that are characterized by a very
large amount dimensionalities, so called features. Although the meta-heuristics is
generic which is able to integrate any type of bio-inspired optimization algorithms
into any type of classifier (at least theoretically), the work by [12] tested nine different
combinations—three classifiers: neural network, decision tree, and Naïve Bayes, and
three bio-inspired optimization algorithms: Wolf Search Algorithm, Particle Swarm
Optimization, and Bat Algorithm.

For SHARP that demands for incremental learning and, therefore, progressive
search for the best feature subset, Swarm Search should be configured to embed with
only incremental algorithm. Depending on the setup at IC which may be an ensem-
ble method where multiple classifiers are being tested, the most accurate model got
selected, SO should operate in parallel too having each execution thread that corre-
sponds to each candidate classifier as in IC. The composite optimization applies where
the possible parameter values and the possible feature subset search space are blended
together into a large search space, over which the Swarm Search attempts to find the
best combination. This approach was pioneered by Iztok et al. in [13].

3 Computational challenges in mining sensor data stream

According to Google Trends, as shown in Fig. 2, in the past 9 years, the field of
human activity recognition in the topic of gesture recognition has grown dramati-
cally, reflecting its importance inmany high-impact societal applications. They include
smart surveillance, behavioral analysis, quality-of-life devices for elderly people, and
human–computer interfaces.

At about the same time, data stream mining in the topic of stream processing
emerged as a research trend that supports real-time incremental learning and fast
data analysis. These two trends emerge and intertwine at almost the same period of
time, indicating strong research interests over the years. By the forecast of the Google
Trends, the futures of these two trends seem to meet again.

In the CVPR 2014 Tutorial on Emerging Topics in Human Activity Recognition,
Michael Ryoo (NASA, ETRI, KAIST) gave an example of human activity recognition
using CCTV video captures as sources of sensor data. Picture frames which are cap-
tured at the frame rate of dozens per second are analyzed and used to train a classifier to
recognize a particular kind of human activity, e.g. whether the two people are pushing
or not pushing by measuring their standing positions apart.
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Fig. 2 Interest trends of human activity recognition and data stream mining

Ryoo advocated that human activity recognition, therefore, is comprised of the fol-
lowing computational tasks, if such complex activities are to be recognized bymachine
learning. The tasks are in four levels of abstractions and escalating complexities: (1)
Tracking which keeps monitoring and estimating locations of human body parts of the
subject; (2) Features—thebodilymovementswouldhave to be convertedquantitatively
into numerical status within a body part. e.g. lifting an elbow and swinging an elbow
give rise to different numeric digests; (3) Action is a sequence of features that are nar-
rated in the time domain; (4) Interaction is a composite of action sequences involving
more than one party. Ryoo and his colleagues [14–16] summarized the various types
of human activities to be recognized by computers: Gestures, Actions, Human-object
interactions, Human–human interactions, and Group activities, as shown in Fig. 4.
They are in different levels of complexities and, therefore, require different levels of
information and computation methods.

We generalize these activities and their computational requirements, in the context
of data mining, into the following: Increase of complexity in pattern recognition

Outlines→Features→Spatial information→Temporal sequence→Group contexts

The outlines and features of a gesture, e.g. hand gestures must be extracted into
training/testing datasets for machine learning algorithms to understand and to learn.
Gesture data are typically numeric data that are generated from somemotion sensors as
continuous data sequences in temporal domain.Usually the details of an image of a ges-
ture is omitted, leaving only the outline of the subject and itsmotions.Gestures concern
about merely the outline of the movement like hand sign language. Features are higher
level information that usually comes with some semantics which are extracted from
the raw outline data. Spatial information is important as it would be used in relation to
the motion data of the subject. It adds meanings and references to the gesture data as
well as bodily data and even group interaction data. Moreover, for better understand-
ing the data, temporal sequence offers clues on the timing information and temporal
relations among data segments when they are streaming in some ordered sequence.
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Human-to-object recognition can be facilitated using RFID technology labeled on the
object, tracking and analyzing both positions simultaneously. Note that computational
complexity escalates as the level rises for recognizing human activities. At the end,
given the context of groups, such as teams of players playing basketballs, high-level
information like playing strategies, patterns of scoring or losing, can be derived fromall
these activity patterns made available from all the parties and environments involved.

Given the computational requirements of the human activity recognition, we relate
them to the requirements in the context of data streammining. Therefore, we formulate
the following requirements for a future breed of data stream mining algorithms:

A new generation of data “stream” mining algorithms is needed:

1. Fast and accurate learner.
2. Learns details + sequences.
3. Learns changes dynamically.
4. Learns meta-information (the big picture).
5. Learns in parallel.

The five features are the ‘must-have’ elements to satisfy the data stream mining tasks
for recognizing human activities by machines. Referring to Fig. 3, the rule induction
process must consist of the five features so as to be able to handle the complex data
stream mining tasks as indicated in Fig. 4 by Ryoo et al.

The algorithms in the rule induction process must be able to learn the activities
from training data, fast and accurate. Speed and accuracy are usually in contradiction.
Full learning requires processing all the data and this takes time, and vice-versa. Meta-
learning is to be able to see the full picture. As shown in Fig. 5, the human activity
recognition task can be viewed at different levels with different types of details. If a
decision tree is to recognize the fine details like hand gesture, for example, the macro
view may get missed out. In the example of a jigsaw puzzle in Fig. 5, it is analogous
to build a decision tree to only recognize a single piece of jigsaw puzzle, e.g. when
there is only a piece of green puzzle, it is inferred to just grass; when there is a cluster
of puzzle pieces, it is inferred to a garden. Only when they are pieced together, they

Fig. 3 Example of human activity recognition—push or not push, using CCTV captures
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Fig. 4 Various types and levels of human activities

Time scale

Hours

Minutes

Seconds

Gestures / Movements
- Moving a body part
- Details of expressions

Individual ac�vi�es
- Sequence of movements
- E.g. walking, si�ng, dancing

Group ac�vi�es / ecosystem
- Collec�on of ac�vi�es by different individuals
- E.g. soccer, orchestra, team building

Full view

Par�al view

Micro view

Fig. 5 Meta-learning is necessary to see the full picture

show a rabbit in a garden. It is hard to see the full picture, until when they are all
pieced together. They show a face of smiley.

To sum up further from the desired list of new generation of data stream mining,
existing improvised methods are proposed. By the definition from Oxford Dictionary,
improvised means “produce or make (something) from whatever is available”. Since
early 70s over hundreds of methods (as evidenced by DM research publications) have
been developed, yet there is no single perfect algorithm or a combination of standard
algorithms that guarantees maximum performance. Ironically, speed and accuracy do
contradict most of the times.

Some popular improvised methods include (but never limit to) the following:

• Outlier detection: For removing noise or finding salient features.
• Class balancing : For training a classifier that learns minority of samples.
• Feature selection: For finding a subset of significant features.
• Efficient rule induction: For generating a compact set of useful rules.

The contribution of this paper is to investigate the possibilities of applying the impro-
vised methods for building a most appealing classifier which is fast and accurate.
These improvised methods, outlier detection, class balancing and feature selection
have been popularly used as preprocessing in traditional data mining. Now the same
are applied on data stream mining models for inducing decision trees that recognize
human activities.
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4 Experiments

Two experiments are designed and conducted for verifying the efficacy of traditional
decision tree (J48) and incremental decision tree, called very fast decision tree (VFDT),
which classically represent the tree induction algorithms for batch data mining and
data stream mining, respectively.

4.1 Experiment settings

Two sensor datasets which are generated from two types of motion detection are used
for building decision trees for human activity recognition. The first data, which we
term simply “3D” data, are collected from a smartphone with spatial information of
X-Y-Z. The second data, more complicated, called “Kinect” data, are collected from
Microsoft Kinect motion sensor. Both data have a target class called “Activity” with
information labels that describe what the human activities are with respect to the
instances of multi-attribute data. The 3D has 162,500 data instances. The Kinect data
has 81,000 data instances. With such large data volumes and their streaming nature,
these datasets are regarded as big data streams.

However, 3D data have only three attributes from the three spatial axes, X, Y, and
Z that describe six human activities such as WALKING, WALKING_UPSTAIRS,
WALKING_DOWNSTAIRS, SITTING, STANDING, and LAYING. The data are
collected from volunteers who were wearing a smartphone (Samsung Galaxy SII)
strapped on the waist. Using its embedded accelerometer and gyroscope, 3-axial linear
acceleration and 3-axial angular velocity are captured at a constant rate of 50 Hz by
the smartphone. The experiments have been video-recorded to label the data manually
by a human annotator as a post-processing task. This type of data represents a scenario
where data stream that is characterised by few spatial attributes is collected. The ratio
of attributes to the categories of activities to be predicted is 3:6 (1:2). The data volume
is double of that of Kinect data.

The Kinect data, on the other hand, are more complex, having 64 attributes that
describe 30 different human activities. The attribute data are spatial X-Y-Z information
of various parts of a human body such as head, shoulder, elbow, wrist, hand, spine, hip,
knee, ankle, and foot, etc. The ratio of attributes to activities is 64:30 (2.13:1). They
are downloaded from the Data Repository of D-lab of King Mongkut’s University
of Technology Thonburi,1 Thailand. A volunteer performed in front of five Kinect
cameras placed at different positions doing the 30 postures; the visual postures are
coded according to 64 human-to-camera spatial information. The data of each position
(x) was divided into test and train files (P(x)testingset.csv and P(x)trainingset.csv).
The Kinect sensor was placed at five different positions facing the subject at five
different angles. They are 0, 45, 90, 135, and 180 degrees. P(x) stands for positive
of camera at the x th angle of five different degrees used. An illustration that shows
the five positions of the P(x) Kinect sensors is shown in Fig. 6. This arrangement of
sensors was chosen deliberately by testing the efficacy of human activity recognition

1 https://dlab.sit.kmutt.ac.th/index.php/human-posture-datasets/.
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Fig. 6 Arrangement of Kinect sensors in the experiment

from sensors that may be placed randomly near the participant. The objective of the
original applicationwhich built on theKinect sensor data is to detect whether a user has
been siting in the same posture for too long. The sensing data was used as a monitoring
signal for preventing potential spine injury. From the group of Kinect sensor data, we
adopted only a part called ‘P(5) training’ in the performance evaluation experiment.
Classification model is built by using only P(5) which is the human activity data
collected from one camera angle. Then we test how effective the classification model
can recognize sensor data that were collected from the other angles. This arrangement
is to simulate real-life situation where monitoring cameras may likely be placed at
different positions during application deployment from the camera which was used to
register the training dataset from the human participant.

These two data streams, 3D data and Kinect data, pose different computational
challenges in the context of human activity recognition. 3D data have attribute-to-
activity ratio of 1:2, little attributes for predicting more activities; Kinect data have
attribute-to-activity ratio of approximately 2:1 which is the other way round, where
more attributes are to predict less activities, relatively.

In particular, as the objective of this paper was to investigate the impacts of impro-
vised methods in data mining, the two datasets offer insights about the effects of the
improvised methods on big data streams that are generated from different types of
sensors with different attribute-to-activity ratios. Two different types of mining algo-
rithms are tested too, batch mode and incremental mode. In the context of human
activity recognition, the research questions we want to ponder on are as follows: (1)
How effective are the improvised methods on sensor data streams that have different
data dimensions (scaled by the number of data attributes/data descriptors)? (2) How
effective are the improvised methods on the data mining modes, batch learning mode,
and incremental learning model, with respect to decision tree induction?

Four improvised methods are applied in the experimentation, mainly in testing
with the two types of stream datasets by batch data mining and data stream mining.
The common aim of applying the improvised methods is to develop an “accurate and
fast” classifier. Accurate, in general means good classification performance, which
is refined by a number of performance criteria, such as accuracy, kappa, coverage,
precision, recall, and F-measure. Accuracy is simply the number of instance that has
been correctly classified divided by the total number of instances. Kappa andCoverage
are statistically measures of how generalized the classificationmodel is when different
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testing datasets are to be used. Precision and recall are often used if there is a large
skew in the class distribution, meaning the class that we are interested in is of minority,
e.g. in CCTV surveillance security, there are many normal human activities, but rare
ones like those of alarming violence. Precision and recall focus on the performance of
the models over the rare events, while the accurate predictions of those uninteresting
class are ignored. Precision measures the ratios of correctly predicted events by the
classification model that are really of interest. Recall measures the ratios of predicting
events occurring in the class that are generally learnt by themodels, whichmay include
those false alarm signals from other uninteresting classes. A single weighted score is
the F-measure which serves as a balance of the two measures.

In the hope of improving the performance, we wanted to apply FS on 3D data
and Kinect Data. However, due to the fact that 3D data have only a few attributes
this improvised method of FS is not applicable for 3D data but suitable for Kinect
data that have a large number of 64 attributes. The two new improvised FS methods,
namely Swarm-FS and Accelerated Swarm-FS, are applied only on Kinect data in the
experimentation. For the 3D data, outlier removal method and class balancing method
are applied, which are suitable to the nature of the 3D data that carries certain outliers
and the class distribution is imbalanced. Different datasets are tested with different
types of improvised methods where they are applicable for high- or low-dimensional
datasets, and lengthy or relatively few data instances.

The experiments are run on an Intel Core i7 CPU at 2.2 GHz, x64-based processor;
the benchmarking data mining software programs in use are WEKA for batch mode
data mining, and MOA for data stream mining. WEKA2 is collection of machine
learning algorithms, implemented as a popular benchmarking platform for datamining
tasks. MOA3 which stands for Massive Online Analysis is also a similar benchmark-
ing simulation framework for data stream mining. Both WEKA and MOA are written
in JAVA programming language as open source, by the University of Waikato, New
Zealand.

4.2 Mining 3D sensor data streams

The 3D dataset is characterized mainly by its sheer volume of data but by a relatively
few number of attributes; there are only three attribute information, x , y and z. There-
fore, improved methods like feature selection may not be applicable. Other methods
such as outlier detection/removal and class balancing techniques would be applied.
By simply visualizing the 3D sensor data, it can be seen that certain outliers do exist.
There are data instances situated far away from the main data clusters, especially the
two items of class Working_at_Computer that have exceptionally large y-axis values.
Plotting the data distributions on statistical box-plots confirms that a large amount
of outliers are present at the y-axis, as shown in Fig. 7. Removing them is the first
pre-processing step prior to model construction from these data.

2 http://www.cs.waikato.ac.nz/ml/weka/.
3 http://moa.cms.waikato.ac.nz/.
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Fig. 7 Visualization of 3D sensor data

Fig. 8 Visualization of the class distributions; (left) imbalanced before SMOTE; (right) balanced after
SMOTE

The second improvisedmethod applied in the 3D sensor data is the class rebalancing
filter, namely SMOTE [17] that stands for syntheticminority over-sampling technique.
The filter helps to rebalance the uneven data distributions by artificially inflating the
samples from the minority class. However, this function may not guarantee the best
performance because the most suitable of parameter values and the exact proportion
of the majority and minority data distributions for yielding the maximum performance
are unknown in advance. One contemporary method is to use swarm search method
to find the best combinations of SMOTE parameter values [18] in lieu of brute-force.
Figure 8 below shows the snapshots of visualizations of the class distribution before
and after the rebalancing.

By now the dataset has been pre-processed and improved from potential problems
of noise and imbalanced class distributions. The dataset is now subject to two decision
tree induction algorithms, J48 and VFDT. Three basic performance measures are
observed: accuracy in percentage, time taken to construct the models, and the sizes of
the resultant decision trees. The results are tabulated in Table 1.

In general, the J48 decision tree has always higher accuracy than the VFDT—(84.8
vs 83.9) before being balanced, and (85.9 vs 84.1) after being balanced. The marginal
gain in accuracy by J48 has a high cost of training time spent on building up the
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Table 1 Performance results of
building decision trees by J48
and VFDT, before and applied
SMOTE

J48 decision tree Very fast decision tree

Before balanced

Accuracy (%) 84.7828 83.9286

Time (s) 29.76 2.66

Tree size 3663 47

After balanced

Accuracy (%) 85.9237 84.0769

Time (s) 47.09 2.77

Tree size 11279 64

Fig. 9 Decision trees generated by J48 (left) and VFDT (right)

decision tree in batch training mode. VFDT, on the other hand, is fast in terms of
incremental model refresh. It requires only less than 10 % of time in tree induction
for VFDT compared to J48. This phenomenon is more apparent after the rebalancing
filter is applied; the time cost by J48 soared from 58 % to 47 s. In comparison, VFDT
has only a slight increase in time consumption from 2.66 to 2.77 s. This is due to
the fact that J48 works by considering the full set of training data; training a tree
with a collection of evenly distributed class samples requires a long processing time.
Substantial amounts of decision rules are to be learnt from each distribution of class
data, and there are nowmultiple of them in contrast to a singular large data distribution
from the majority class beforehand.

The tree sizes have an implication of required memory storage size possibly in the
operating system. Tree size is defined by summing up the number of testing nodes
and predicted target classes in the decision tree. The larger the tree size the more
memory space is required for storing them in real-time, usually in the random-access
memory. Figure 9 shows the screen captures of the two generated decision trees by
J48 and VFDT. Essentially the J48 is bushy having many tree branches whereby
the tree should be able to cover most of the decision cases. Hence a slightly higher
classification accuracy can be yielded. The decision tree is quite balanced as it can
be seen by its overall shape. On the other hand, VFDT tree has a compact structure
that is composed of conditional testing nodes that are significantly contributing to the
predictive power of the decision tree. The compact tree size means that VFDT is able
to produce decision rules that are compact and suitable for embedded system that has
stringent memory size constraint.
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4.3 Mining Kinect sensor data streams

Feature selection as an improvedmethod is applied in this case, because Kinect dataset
has a relatively large number of attributes or features. The high dimensionality of the
dataset give rises to a very large number of feature subsets, 264 = 1.8 × 1019 which
is almost computationally forbidden if all these combinations would have to be tried
sequentially. For this reason, swarm search which does not require searching through
the whole search space is employed in coupling with the classifier-wrapped type of
feature selection (FS) method.

In this set of experiment, one part of the Kinect data, namely P5 (which is by the
camera at the 5th capturing positon), is used for training a decision tree using J48 and
VFDT. Then the decision trees are tested with the other testing data generated by the
other camera positions from P1 to P4. In this scenario, the decision trees are trained
by the postures of the person from one capturing position, and we attempt to put the
recognition ability of the decision trees under test by trying to recognize the unseen
postures data taken from the other camera positions. As seen in the Table 2 the training
accuracy for inducing a decision tree is almost perfect (99.88 %) using J48. Testing
the decision tree against the testing posture data collected from the same position, P5,
yields an almost perfect accuracy andKappa that represent the generality of the data, at
99.6 %. The accuracy and Kappa and other performance criteria decline dramatically
when the decision tree that was built from posture data of one position is tested against
those from the other positions. For instance, when it came to testing the classification
models with the human activity data of P4, the classification accuracy rates of VFDT
and J48 models dropped to 29.35% and 29.9% respectively. This indicates a situation
where effective data pre-processing must be done as a remedy. Hence, optimization-
based FS such as Swarm-FS and A-Swarm-FS that stand for swarm-search feature
selection [12] and accelerated swarm-search feature selection [19], respectively, are
applied, in an attempt to select only a subset of useful features for building a more
accurate decision tree recognition model. The results of the Swarm-FS models are
compared with CFS-FS model. CFS (stands for correlation-based feature selection)
is a popular FS scheme which measures the worthiness of the attributes and attribute
groups with respect to their correlation to the predicted target class. CFS is, therefore,
used as a comparison benchmark here versus the Swarm type of FS [20]. CFS is known
to be fast but it often finds a feature subset with minimum feature set size, though it
yields good results in most cases.

The recognition results in terms of a spectrum of performance criteria are tabulated
in Tables 2, 3, 4, 5, 6, 7, 8 and 9, and the means of the results are charted in bar-charts
in Figs. 10 and 11 and in radar-charts in Figs. 12 and 13, respectively, over the two
types of decision tree induction algorithms, J48 and VFDT.

It is generally observed that FS, regardless of which kind, has improvement over
the performance of both J48 and VFDT indeed. One exception is A-Swarm-FS for
J48 where its performance is worse than that of the original data without any FS
applied. In contrast, A-Swarm-FS has great improvement for VFDTwhere the normal
Swarm-FS has only slight increase in performance for VFDT. It can be seen that FS
of all kinds have consistent but marginal performance improvement in J48, whereas
they have large but varying performance gains in VFDT. These observations show
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Fig. 10 Bar chart of performance comparison of different J48 models over Kinect sensor data

Fig. 11 Bar chart of performance comparison of different VFDT models over Kinect sensor data

Fig. 12 Radar chart of performance comparison of different J48 models over Kinect sensor data
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Fig. 13 Radar chart of performance comparison of different VFDT models over Kinect sensor data

an important implication—Swarm-FS works best with J48 and A-Swarm-PS works
best with VFDT instead. This phenomenon is largely due to the natures of the mining
algorithms; Swarm-FS in batch learning mode is able to find the best subset when all
the data are available at the same time. This, however, is not true when it comes to data
stream mining in incremental learning where the data are only partially available. In
fact, the overall decision tree performance in VFDT is down-rated by approximately
20 % when compared to the full data training in J48. In data stream mining model,
when the training/testing datasets possess a large number of attributes, full swarm
optimization over finding the ideal subset has an edge in performance. The full swarm
optimization loses its appeal when the training goes incremental. Even simple FS like
CFS which is based on the correlation measures outperforms Swarm-FS. The search
space for finding the best feature subset in VFDT is incomplete as only a segment
of data is available during the training process, thereby limiting the efficacy of the
Swarm-FS. Swarm-FS was designed to work with a complete search space assuming
all the full set of training data is available.

However, A-Swarm-FS is capable in yielding the best overall performance in data
stream mining mode for VFDT. The merit of A-Swarm-FS comes from the initializa-
tion process where the starting positions of the metaheuristic search are not taken in
random. Rather, the starting positions of A-Swarm-FS are inherited by the heuristics
from the best found positions from the last generation of optimization cycles. The
retained starting positions contribute to speed-up in the subsequent swarm search of
ideal feature subset (therefore, the name accelerated swarm), as well as making the
FS adaptive to the incoming of new training samples by swarm search.

Overall, as revealed from the radar charts, FS is certainly effective for both J48 and
VFDT. However, the effects of FS are more prominent in VFDT than in J48, because
the incremental learning by VFDT is dynamic, finding the appropriate features is
important to VFDT. In contrast J48 manages to build decision paths from the full
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dataset according to the information gain principle; it is able to grow a good quality
decision tree in all test cases of data even without any FS applied.

4.4 Pattern analysis over the sensor data

It is intellectually interesting to try find out the cause of the accuracy declines along
the data stream. The accuracy curve of training with the P5 dataset using VFDT
algorithm is plotted in Fig. 14. It was empowered by a data stream mining software
benchmarking platform, calledMassive Online Analysis. The accuracy curve is a real-
time information curve produced by the VFDT model incrementally learnt from the
data stream feed. As it can be seen clearly from the curve, there are many sudden drops
in accuracy, indicating that the VFDTmodel failed many times to recognize the newly
arrived data. Initially, the classifier is able to achieve a perfect 100 % accuracy; soon
it dips to close to zero when new data comes. Then the model picks up the learning
again, refreshes the decision tree embracing the new data, and the accuracy bounces
back to high. These drastic fluctuations are largely due to the emerging new concepts
introduced by the new arriving data. The classifier that learnt the existing concept from
the old data is unable to cope with accurate prediction.

To further verify this situation ,the Kinect dataset, P5, is plotted as a time-series
in Figs. 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24 for visual inspection. The time-
series charts show a subset of patterns from the 3-axis information of some selected

Fig. 14 Accuracy curve of Kinect data produced by MOA using VFDT algorithm

Fig. 15 Time series plot of the Kinect data, the head only

123



Improvised methods for tackling big data stream. . . 3953

Fig. 16 Time series plot of the Kinect data, the center shoulder only

Fig. 17 Time series plot of the Kinect data, the left shoulder only

Fig. 18 Time series plot of the Kinect data, the shoulder right only
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Fig. 19 Time series plot of the Kinect data, the left hand only

Fig. 20 Time series plot of the Kinect data, the right hand only

body parts, head, shoulder, hand, knee, and foot. In the time series, the patterns were
kind of fragmented intermittently along the whole data sequence. That shows certain
activities have been changed at different times as reflected by the fragmented patterns.
Nevertheless, the purpose of showing the accuracy curve of the incremental classifier
by data stream mining and just the data series is to compare and contrast vis-à-vis
the two patterns. It is, however, observed that the accuracy dips and rises somehow
correspond to the changes of concepts (target classes) which are the activity labels in
the data sequence. In other words, when the subject is switching the activity from one
to another, new concept needs to be learnt, and that is reflected by a sudden decline
of the accuracy curve. In particular, the data values of the hand movements, as shown
in Figs. 19 and 20, fluctuate very often when compared to those of other body parts.
Relatively, the other body parts do not fluctuate so much, and their data form almost
flat lines especially for the head foot. It is deduced that performing the activities do not
require much movements from the head and feet but involve many hand movements.

The phenomenon of relation between activity changes and accuracy drops is further
validated using the 3D sensor datawhich is simpler in attributes but longer in sequence.
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Fig. 21 Time series plot of the Kinect data, the left knee only

Fig. 22 Time series plot of the Kinect data, the right knee only

Fig. 23 Time series plot of the Kinect data, the left foot only
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Fig. 24 Time series plot of the Kinect data, the right foot only

Fig. 25 Accuracy curve of 3D data produced by MOA using VFDT algorithm

The accuracy curve by data stream mining the 3D sensor data is shown in Fig. 25.
The 3D sensor data series are plotted in Fig. 26. One can notice easily that the valleys
of the accuracy curve correspond right to the changes of activities in the 3D sensor
data sequence. During the data collection process, the volunteer performed a series of
different actions at different stages of time. The different actions were captured and
correspondingly reflected on the sequential pattern of the sensor data. The two cases
of 3D sensor and Kinect sensor data confirm concordantly that the accuracy in data
stream mining is largely related to the changes of activities in the context of human
activity recognition.
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Fig. 26 Time series plot of the 3D sensor data

5 Conclusion

In this is paper a holistic methodology of data stream mining, called SHARP, is
reviewed. Following the proposed methodology, data stream mining experiments are
conducted with a case of human activity recognition. Two types of data streams with
one type representing a long but low-dimensional data stream, and the other type
representing a high-dimensional data streams are put under test using a collection of
improvised methods discussed in this paper. The improvised methods are classical
data mining methods; however, they might not have been tested extensively in data
stream mining. Therefore, the objective of this paper was to shed some light on apply-
ing improvised methods on data stream mining; these methods range from outlier
detection, class rebalancing to feature selection. Two contemporary types of feature
selection methods based on swarm search have been applied in data stream mining in
the context of human activity recognition. The swarm search feature selection meth-
ods are both shown to improve performance of data stream mining. This finding is
important because a major challenge in big data stream mining is lack of suitable
tools in reducing the dimensionality of the data streams in quick and effective ways,
whereas brute-force is out of the question given the sheer volume of data stream. The
experimentation results indicate that the improvised methods indeed have advantages
in improving the VFDT decision tree performance. Comparing to traditional deci-
sion tree by batch learning, improvised methods, especially the swarm type of feature
selections, have significant enhancement in performance for data stream mining. In
other words, data stream mining may need such feature selection more desperately
than traditional data stream mining. This work has proven the concept of SHARP
methodology as a success example. It is a step towards the progress of implementing a
scalable and efficient data stream mining framework. Further works include detecting
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concept drifts in real-time, as well as migrating the codes from CPU to GPU that
stands for graphics processing unit (or other distributed computing environment) for
parallelizing the executions of several optimization components that involve stochastic
operations. GPU computing helps to speed up the extra computational loads incurred
by the improvised methods in pre-processing in real-time. As future work, the priority
is on quickly finding suitable feature subset out of high-dimensional sensor data. The
feature selection process is to be empowered by GPU programming which boosts par-
allel execution. Finding optimal feature subset by swarm intelligence is known to be a
NP-hard combinatorial problem that needs to be solved before SHARP methodology
can reach its full efficacy.
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