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Abstract Increasing demand for acquiring diverse range of services has led to the
establishment of huge energy hungry cloud data centers all around the world. Cloud
providers face withmajor concerns to reduce their energy consumption while ensuring
high quality of service based on the Service Level Agreement (SLA). Consolidation
is proposed as one of the most effective techniques for online energy saving in cloud
environments with dynamic workloads. This paper proposes novel proactive online
resource management policies to optimize energy, SLA, and number of migrations
in cloud data centers. More precisely, this paper proposes new prediction algorithm
for determination of overloaded hosts as well as novel multi-criteria decision making
techniques to select virtual machines. The results of simulations using CloudSim
simulator shows up to 98.11 % reduction in the output metric which is representative
of energy consumption, SLA violation, and number of migrations, in comparison with
state of the art.
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1 Introduction

Cloud computing is one of themost popular buzzwords in today’s enterprise [1]. Cloud
computing brings modern technologies together to provide a vast range of service
types for diverse users. Cloud computing is the use of cloud resources (hardware and
software) that are delivered as a service over a network (typically the Internet) [2].
Cloud provides amanaged pool of resources which includes storage, processing power
and software services [3].As a key feature ofCloud computing, consumers only pay for
the services used and as offered by cloud providers that intelligently provide computing
capabilities to quickly increase or decrease computing power as business needs change
[4]. The research and development community has quickly reached consensus on
core concepts of Cloud computing such as on-demand computing, elastic scaling,
elimination of up-front capital and operational expenses, and establishing pay-as-you-
go business model for information technology services [5]. A cloud typically consists
of multiple resources possibly distributed and heterogeneous [6]. However, capacity
management and demand prediction in cloud environments, where applications have
variable and dynamic needs, are especially complicated and consequently resource
management in Cloud computing is one of the most important challenges [7].

Considering various goals that sometimes are contradicted with each other makes
the resource management problem in cloud data centers a challenging issue which
needs tuning some trade-offs between targets [8]. The two most important require-
ments that have to be considered for resource allocation in cloud environments are
energy consumption and Service Level Agreements (SLA) fulfillment. The SLA is
an agreement that specifies the quality of service (QoS) between a service provider
and service consumer, and usually includes the service price, with the level of QoS
adjusted by the price of the service [9]. On the other hand, continuous increase in
energy consumption of modern data centers raises a great concern for both govern-
ments and service providers [8]. Apart from the overwhelming operating costs and the
total cost of acquisition (TCA) caused by high energy consumption, another concern
is the environmental impact in terms of carbon dioxide (CO2) emissions [10].

Due to the heterogeneity of cloud resources, and also the fact that the cloud users
may have sporadic and dynamic resource usage, the cloud environment is highly
dynamic [8]. However, virtualization technology which is the platform of Cloud
computing facilitates the process of resource management in cloud environments. Vir-
tualization is an important feature of Cloud computing that allows providing multiple
Virtual Machines (VMs) on a single physical machine as well as migration of VMs
[11]. Various kinds of applications running simultaneously on a Physical Machine
(PM) have different resource requirements which lead to variable workloads on PMs.
Hence, it is prevalent that VMs do not consume their maximum amount of resources
all the time. Therefore, the actual resource utilization is much less than the installed
capacity in a data centre. On the other hand, PMs consume their near maximum power
consumptionwhen they are idle. Therefore, consolidation of VMs on the least possible
PMs and switching idle PMs off is the most novel method to save energy which is
made true by the arisen of live migration technology in which VMs can be reallocated
in an on-linemanner [12–15]. However, the obligation of providing high quality of ser-
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vice to cloud customers leads to the necessity in dealing with the energy-performance
trade-off, as aggressive consolidations may lead to performance degradation [12].

Consolidation is on-line optimization of VMs placements on PMs for progressive
online resource allocation in cloud data centers. The basic online consolidation prob-
lem in cloud data centers is divided into four parts [12]: (1) distinguishing the time
that a host is overloaded; (2) distinguishing the time that a host is underloaded; (3)
selecting VMs for migration from overloaded hosts; and (4) VM placement for the
VMs that are selected formigration. This paper focuses on the first and the third phases
and proposes novel heuristics for them.

One criticism of much of the literature on resource management problem in cloud
environments is that they focus onCPUas themain systemparameter and develop their
models and algorithms based on only the CPU consumption rate. However, ignoring
other important system parameters such as RAM and network bandwidth leads to
wrong allocations. For instance, a PM could be idle in terms of CPU but overloaded in
terms of memory for example, leading a wrong decision. Besides, modern multi-core
processors aremuchmore power-efficient than previous generations, whereasmemory
technology does not show any significant improvements in energy efficiency [16]. The
increased number of cores in servers combinedwith the rapid adoption of virtualization
technologies creates the ever growing demand to memory and makes memory one of
the most important components of focus in the power and energy usage optimization
[17]. The same condition can be applied to disk storage and network devices inmodern
cloud data centers. These facts unveil that it is essential to take into account the usage
of multiple system resources in the energy-aware resource management [16]. The
main contributions of this paper are proposing Window Moving Average (WMA)
policy for determination of overloadedPMs andMulti-criteria TOPSISwith Prediction
VM Selection (MTPVS) policy for VM selection from overloaded PMs. WMA and
MTPVS investigate energy-performance efficient solutions by considering important
input resource parameters including CPU, RAM, and network bandwidth. MPTVS
takes advantage of a multi-criteria algorithms based on a modified version of the
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [18] for
VM selection in cloud data centers which not only eliminates the hotspot quickly, but
also minimizes the SLA violations due to VM migrations. Besides, MTPVS selects
VMs based on their predicted resource capacities rather than their current utilizations,
which notably improves the output results.

The main contributions of this paper are:

• Proposing a novel multi-criteria VM selection method namelyMulti-criteria TOP-
SIS with Prediction VM Selection (MTPVS) policy that selects the VMs to be
migrated from overloaded PMs to both eliminating the hotspots quickly and min-
imizing the SLA violations due to VM migrations.

• Proposing Window Moving Average Policy (WMA) for detection of overloaded
PMs that considers all input criteria including CPU, RAM, and network bandwidth
in decision process and reduces the occurrence of VMs’ migrations caused by
instantaneous load peaks.

• Considering all important parameters as well as their weights in MTPVS policy.
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• Proposing a simple and functional mechanism to compute weights of different
resource types.

This paper begins by reviewing related works in Sect. 2. It will then goes on to describe
the input parameters which are considered in resourcemanagement problem in Sect. 3.
Section 4 presents our system model. Section 5 presents our proposed resource man-
agement policies. Section 6 assesses the applicability of our proposed solutions using
CloudSim simulator. Finally, our concluding remarks and future directions are pre-
sented in Sect. 7.

2 Motivation and related work

There is a wide area of research that addresses the consolidation solution for energy
and performancemanagement in large scaled cloud data centers in which theworkload
is consolidated on a minimum number of PMs and the idle PMs are switched off. The
main targets for comparing the efficiency of the algorithms are energy consumption
by physical nodes and SLA violations, however, these targets are typically negatively
correlated as energy can usually be decreased by the cost of the increased level of
SLA violations [12]. In other words, energy consumption and SLA violation have
an intrinsic trade-off which requires meticulous resource management algorithms to
simultaneously minimize them.

The first work that have investigated large-scale virtualized data centers has been
proposed in [19]. In addition to the hardware scaling and VMs consolidation, they
have proposed a new power management method for virtualized systems called “soft
resource scaling”. In addition, they have suggested dividing the resource management
problem into local and global levels. In the local level, the algorithms monitor power
management of guest VMs. On the other hand, global policies coordinate multiple
physical machines. In this paper, the target system is heterogeneous, theworkload used
to validate the system is arbitrary, and the goal of the proposed model is minimizing
energy consumption as well as satisfying performance requirements.

The authors in [12] have conducted competitive analysis and proved competitive
ratios of optimal online deterministic algorithms for the single VM migration and
dynamic VM consolidation problems. They have divided the problem of dynamic VM
consolidation into four parts for thefirst time: (1) determiningwhen ahost is considered
as being overloaded; (2) determining when a host is considered as being underloaded;
(3) selection ofVMs that should bemigrated from an overloaded host; and (4) finding a
newplacement of theVMs selected formigration from the overloaded and underloaded
hosts. They have proposed novel adaptive heuristics for all parts. They have used Power
Aware Best Fit Decreasing (PABFD) algorithm to solve resource allocation problem
in the fourth part which is similar to MBFD policy that they adopted in their previous
work [16].

The authors in [8] have proposed Enhanced Optimization (EO) policy as a novel
resourcemanagement procedure in cloud data centers. Themain idea behindEOpolicy
is solving the resource allocation problem for the VMs that are selected to be migrated
from either overloaded or underloaded PMs in one step rather than in separate steps
for each one. Besides, they have introduced a solution based on Technique for Order of
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Preference by Similarity to Ideal Solution (TOPSIS) for optimizing different targets in
cloud data centers at the same time including energy consumption, SLA violation, and
number of VMmigrations. Based on this idea, they have proposed TOPSIS Power and
SLA Aware Allocation (TPSA) and TOPSIS-Available Capacity-Number of VMs-
Migration Delay (TACND) policies as novel multi-criteria algorithms for resource
allocation and determination of underloaded PMs in cloud data centers, respectively.

The authors in [6] have presented two energy-conscious task consolidation heuris-
tics, which aim to maximize resource utilization and explicitly take into account both
active and idle energy consumption. Their heuristics assign each task to the resource
on which the energy consumption for executing the task is explicitly or implicitly min-
imized without the performance degradation of that task. They have considered that
CPU utilization directly relates to energy consumption and based on this assumption
they have developed two energy-conscious task consolidation heuristics.

The authors in [20] have presented an efficient cloud resource provisioning
approach, which is beneficial for the Software as a Service (SaaS) users, SaaS provider
and cloud resource provider. They have modeled a cloud ecosystem in which the SaaS
provider leases resources from cloud providers and also leases software as services to
SaaS users. The SaaS providers aim at minimizing the payment of using VMs from
cloud providers, and want to maximize the profit earned through serving the SaaS
users’ requests. The cloud provider is to maximize the profit without exceeding the
upper bound of energy consumption of cloud provider for provisioning VMs to SaaS
provider. Their proposed optimal cloud resource provisioning algorithm includes two
sub-algorithms at different levels: interaction between the SaaS user and SaaS provider
at the application layer and interaction between the SaaS provider and cloud resource
provider at the resource layer.

The authors in [11] have proposed efficient consolidation algorithms which can
reduce energy consumption and at the same time the SLA violations in some cases.
They have introduced an efficient SLA-aware resource allocation algorithm that con-
siders the trade-off between energy consumption and performance. Their proposed
resource allocation algorithm takes into account both host utilization and correlation
between the resources of a VM with the VMs present on the host. Moreover, they
have proposed a novel algorithm for determination of underloaded PMs in the process
of resource management in cloud data centers considering host CPU utilization and
number of VMs on the host.

The authors in [21] have investigated the problem of power- and performance-
efficient resourcemanagement in virtualized data center environments. The goal of this
paper is to maximize the resource provider’s revenue by minimizing power consump-
tion and SLAviolation simultaneously. They have addressed the resourcemanagement
problem using a sequential optimization model and proposed solutions using a limited
look-ahead control to estimate future system states over a prediction slot by the help of
Kalman filter. They have explored a heterogeneous environment and their considered
workload is arbitrary. Decision goals to be optimized are the following: the number
of VMs to be provisioned for each service; the CPU share allocated to each VM; the
number of servers to switch on or off; and a fraction of the incoming workload to
distribute across the servers hosting each service.
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The authors in [7] have proposed performance analysis based resource allocation
scheme for the efficient allocation of virtual machines on the cloud infrastructure.
They have proposed an efficient algorithm that follows a best fit strategy for allocation
of virtual machine requests to the physical host nodes. To achieve this, they have
designed a performance analysis scheme of each host node considering the number of
cores and specification of CPU and memory size.

The authors in [22] have explored the problem of dynamic placement of applica-
tions in virtualized systems. Their goal is to minimize the power consumption while
meeting the requested SLA. The proposed solution contains three managers and an
arbitrator. The arbiter coordinates managers’ actions and makes allocation decisions.
Performance manager gathers applications information and resize VMs according to
current resource requirements and the SLA. Power manager handles hardware power
states and applies DVFS when it is necessary. Migration manager coordinates live
migration of VMs. The considered target system is heterogeneous and the proposed
model is for arbitrary workloads.

The authors in [16] have proposed an architectural framework and principles for
energy-efficient Cloud computing aimed at the development of energy-efficient pro-
visioning of cloud resources, while meeting QoS requirements defined by the SLA.
They divided the VM allocation problem in two parts: the first part is the admission of
new requests for VM provisioning and placing the VMs on hosts, whereas the second
part is the optimization of the current VM allocation. They have modeled the first
part as a bin packing problem and solved it by Modified Best Fit Decreasing (MBFD)
algorithm in which they first sort all VMs in decreasing order of their current CPU
utilizations, and allocate each VM to a host that provides the least increase of power
consumption due to this allocation. Moreover, they have stated that the optimization
of the current VM allocation is carried out in two steps: at the first step they select
VMs that need to be migrated, at the second step the chosen VMs are placed on the
hosts using the MBFD algorithm.

In sum, the main drawback of all the aforementioned studies is lack of ability
to handle multiple system resources apart from CPU. However, this study not only
considers all important criteria, but also proposes novel algorithms for simultaneous
application of the predicted value of input criteria in decision process which notably
improves the output results.

3 Input system parameters

Since our target data center is heterogeneous, all effective system parameters should
be taken into consideration in decision making process. In our model, a server can
be overloaded with respect to one or more of system’s parameters. In other words, it
is viable that while a server is over utilized regarding to one specific parameter, the
utilization of other system parameters be normal. For instance, network interface may
become the bottleneck of the system when there are some network-intensive virtual
machine operations that concurrently transmit large data. Consequently, to balance
overall system response time, all important parameters should be considered. Six
major parameters, considered in this study in decision making process, are listed in
Table 1. CCPU specifies the computational power of machines which is determined
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Table 1 Input parameters for resource management

No. Parameter Description Unit

1 CCPU CPU clock speed multiplied by the number
of CPU cores

MIPS

2 CRAM RAM capacity GB

3 CNET Network bandwidth Gbps

4 PCPU Division of requested CPU MIPS of a VM
by the available CPU MIPS in a PM

%

5 PRAM Division of requested RAM capacity of a
VM by the available RAM capacity in a
PM

%

6 PNET Division of requested network bandwidth of
a VM by the available network bandwidth
in a PM

%

as CPU clock speed multiplied by the number of CPU cores defined in MIPS. CRAM
defines the capacity of RAM. CNET symbolizes capacity of network bandwidth which
determines the amount of data that can pass through a network interface per unit
of time. PCPU is the percentage of CPU utilization that is computed by dividing the
requestedCPUof aVMby the available CPUcapacity in a PM. PRAM is the percentage
of RAM utilization that is computed by dividing the requested RAM capacity of a VM
by the available RAM capacity in a PM. PNET is the percentage of network bandwidth
utilization that is computed by dividing requested network bandwidth of a VM by the
available network bandwidth in a PM.

4 System model

The target systemconsists of data centerswith heterogeneous resourceswhich are hosts
of various users with different applications who want to run multiple heterogeneous
VMs on data center nodes, resulting in a dynamic mixed workload on each PM.
VMs and PMs are characterized with CPU computation power defined in Millions
Instructions Per Second (MIPS), RAM, Disk capacity, and Network bandwidth. The
target system model is shown in Fig. 1. This model is defined in [8] and is a modified
version of the model described in [8,12]. The central manager is the resource manager
for the whole data center that manages resource distribution among VMs in the data
center. In addition, it resizes VMs according to their resource needs, and decides when
and which VMs should be migrated from PMs. The agents which are implemented
in hypervisors are connected to the central manager through network interfaces and
have responsibility for monitoring PMs as well as sending gathered information to the
central manager. Hypervisor performs actual resizing and migration of VMs as well as
changes in power modes of the PMs. Our system model includes two important parts:
a central manager similar to the global manager defined in [12] and the agents similar
to the local manager defined in [12]. The main difference between our model and the
one proposed in [12] is that both the decision on VMs resizing and also the decision
on when and which VMs should be migrated are made in central manager rather than
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Fig. 1 System model [8]

in agents which results in having a more holistic view in the decision making process.
However, if the central manager runs on a single PM and that PM fails, there is no
fault-tolerant policy. Therefore, we propose running the central manager on a VM
instead of a PM and use FT (fault tolerance) and HA (High Available) capabilities
which are possible; thanks to virtualization technology.

4.1 Consolidation procedure

This study adopts the resource management procedure defined in [12] which divides
the process of on-line consolidation problem in cloud data centers into four main
phases. Algorithm 1 depicts the consolidation procedure based on these four phases.

First, PMs are searched one by one to find overloaded PMs until there is no more
hotspot. Resource utilization values of each PM are predicted based on the resource
utilization history of PMs, using the proposed prediction algorithm. If the prediction
algorithm forecasts for a PM that its utilization will becomemore than 100%, then this
PM is determined as an overloaded PM. After that, some VMs residing on overloaded
PMs are selected for migration based on the proposed policy for VM selection from
overloaded PMs until elimination of hot spots. In the following step, selected VMs are
categorized based on their CPU utilization. Then, a resource allocation procedure is
executed for the sortedVMs tofind theirmigration destination usingPABFDallocation
policy [12,16]. PABFD policy finds the PM that both have enough resource to host the
VM as well as the least power increase after allocation of a VM. If the control system
finds a proper destination for a VM, then the couple of VM and its new host are added
to the migration map.

Following that, underloaded PMs are determined. In this step, overloaded PMs,
switched off PMs, and the PMs that are to be the migration destination in the migration
map are excluded from the searching list of underutilized PMs. Moreover, overloaded
PMs, and switched off PMs are excluded from the list of PMs for finding new VM
placement. In each searching step to find underloaded PMs, the defined policy for
determination of underloaded PMs is executed and a PM is selected as a candidate
of being underloaded. VMs from underloaded PMs are added to the migration list
until the controlling system cannot find any underloaded PM. In the following step,
selected VMs from underloaded PMs are sorted based on their CPU utilization. If
the control system can find proper PMs as probable migration destinations for all the
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VMs residing on an underloaded PM using PABFD policy, then all its VMs and their
founded hosts are added to the VM’s migration list. Otherwise, none of the VMs are
added to the VM’s migration list. Finally, the migration process is initiated based on
the final migration map.

Algorithm 1: Consolidation Procedure.
1 Input: all PMs and VMs.
2 Output: migrationMap.
3 overUtilizedHosts = getOverUtilizedHosts(getHostList());
4 vmsToMigrate = getVmsToMigrateFromOverUtilizedHosts(overUtilizedHosts);
5 sortedVmsToMigrate = sortVmsToMigrate(vmsToMigrate);
6 migrationMap = getNewVmPlacement(sortedVmsToMigrate, overUtilizedHosts);
7 excludedHostsForFindingUnderUtilizedHost.addAll(overUtilizedHosts);
8 excludedHostsForFindingUnderUtilizedHost.addAll(switchedOffHosts);
9 excludedHostsForFindingUnderUtilizedHost.addAll(extractHostListFromMigrationMap(migrationMap));
10 excludedHostsForFindingNewVmPlacement.addAll(overUtilizedHosts);
11 excludedHostsForFindingNewVmPlacement.addAll(switchedOffHosts);
12 While (true) {
13 if (numberOfHosts == excludedHostsForFindingUnderUtilizedHost.size())
14 break;
15 underUtilizedHost = getUnderUtilizedHost(excludedHostsForFindingUnderUtilizedHost);
16 if (underUtilizedHost == null) 
17 break;
18 excludedHostsForFindingUnderUtilizedHost.add(underUtilizedHost);
19 excludedHostsForFindingNewVmPlacement.add(underUtilizedHost);
20 vmsToMigrateFromUnderUtilizedHost=getVmsToMigrateFromUnderUtilizedHost(underUtilizedHost);
21 if (vmsToMigrateFromUnderUtilizedHost.isEmpty())
22 continue;
23 sortedVmsToMigrateFromUnderUtilizedHost=sortVmsToMigrate(vmsToMigrateFromUnderUtilizedHost);

24 newVmPlacement=getNewVmPlacementFromUnderUtilizedHost(vmsToMigrateFromUnderUtilizedHost,exc
ludedHostsForFindingNewVmPlacement);

25 excludedHostsForFindingUnderUtilizedHost.addAll(extractHostListFromMigrationMap(newVmPlacement));
26 migrationMap.addAll(newVmPlacementFromUnderUtilizedHosts);
27 }end
28 return migrationMap;

4.2 Power and energy models

Traditionally, recent studies [16,21] have subscribed to the belief that power consump-
tion by servers can be approximated by a linear relationship with CPU utilization.
This approximation comes from the idea that CPU is the major power consumer in a
data center. A serious weakness with this argument, however, is that by introducing
multi-core CPUs with modern power management techniques, as well as utilization
of virtualization technique, CPU is not the only major power consumer in data centers
anymore [12]. This fact combined with the difficulty of modeling power consumption
in modern data centers, makes building precise analytical models a complex research
problem [12]. Hence, instead of using a complex analytical model for power consump-
tion of a server, we utilize real data on power consumption provided by the results of
the SPECpower benchmark [6]. Table 2 shows the power consumption of the servers
used in this study which is provided in [12].

In addition, energy consumption is modeled as the summation of power consumed
during a period of time according to Eq. (1) which is widely used in the literature such
as [12,16].

E(t) =
∫
t
P(t) dt (1)
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Table 2 Power consumption of considered servers for different loads (kW) [12]

Server Idle 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

HP ProLiant G3 105 112 118 125 131 137 147 153 157 164 169

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117

HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

IBM Server x3250 41.6 46.7 52.3 57.9 65.4 73 80.7 89.5 99.6 105 113

4.3 SLA violation metrics

Quality of service requirements are commonly formalized in the form of SLAs, which
can be determined in terms of such characteristics as minimum throughput or maxi-
mum response time delivered by the deployed system [12]. As these characteristics can
vary for different applications, it is necessary to define a workload independent metric
that can be used to evaluate the SLA delivered to any VMdeployed in an Infrastructure
as a Service (IaaS) such as OTF (Overload Time Fraction) metric defined in [13]. In
this study, we use a modified version of SLA Violation (SLAV) metric introduced in
[12] as defined in Eq. (2) which is composed of multiplication of two metrics: the
SLA violation time per active host (SLATAH) and performance degradation due to
migration (PDM) as defined in Eq. (3).

SLAV = SLATAH × PDM (2)

SLATAH = 1

N

N∑
i=1

TSi
Tai

, PDM = 1

M

M∑
j=1

Cd j

Cr j
(3)

In the default SLATAH metric defined in [12], Tsi is the total time during which the
host i has experienced the utilization of 100%; however, we define Tsi as the total time
during which allocated resource to the VMs is lower than their requested resource;
This amendment to the default SLATAH metric is because that it is highly probable
that a PM experience the utilization of 100 % but at the same time all the VMs receive
their required resources leading to no SLA violations. In addition, it is probable that
although a PM is not experiencing the utilization of 100 %, but the allocated resource
to a VM be less than its requested resource. Tai is the total time during which the host
i has been in the active state; N is the number of PMs; Cd j is the estimate of the per-
formance degradation of the VM j caused by migrations which is estimated as 10 % of
the average CPU utilization in MIPS during all migrations of the VM j ; Cr j is the total
CPU capacity requested by the VM j during its lifetime; and M is the number of VMs.

5 Proposed policy for determination of overloaded PMs

In this section we present Window Moving Average (WMA) policy as a proposed
heuristic for determination of overloaded PMs which is one of the most important
resource management sub problems for consolidation of cloud data centers. One of
the key advantages of WMA policy is that it considers all important system’s criteria
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including CPU, RAM, and network bandwidth in determination of overloaded PMs.
Therefore, it is conscious of overutilization regarding all important system resource
types.

5.1 Window moving average (WMA) policy

Windowmoving average predicts the resource utilization for CPU, RAM, and network
bandwidth based on their saved utilization history. WMA policy is a modified version
of Moving Average algorithm, a well-known time series prediction technique that is
also used as a type of finite impulse response filter [23]. The performance of this
technique is widely evaluated in literature such as [23,24]. Moving Average model
is also a special case of general ARIMA model [25]. The default Moving Average
technique basically builds a linear model for forecasting using the current values.
But, what happens if there is some noise present in the given time series. The aim
of Window Moving Average (WMA) policy is basically elimination of the noise or
sudden spikes present in the resource utilization data of time series. WMA policy
takes noise into account when forecasting the data and reduces the effect of both noise
and sudden spikes by computing the average of two separate time interval windows.
More precisely, instead of considering only one recent value of utilization as the new
value of time series, average of recent values in a specific window size of time series
is considered as an estimation of the new value. Likewise, the average of old values in
a specific window size of time series is considered as an estimation of the old value.
Finally, similar to the default moving average technique, the final predicted utilization
value for CPU, RAM, and network bandwidth are computed by a combination of the
estimation of the old value and the estimation of the new value using Eqs. (4), (5), and
(6).

ÛCPU = k ×
∑

i∈Window 1U
i
CPU

Size (Window 1)
+ (1 − k) ×

∑
i∈Window 2U

i
CPU

Size (Window 2)
(4)

ÛRAM = k ×
∑

i∈Window 1U
i
RAM

Size (Window 1)
+ (1 − k) ×

∑
i∈Window 2U

i
RAM

Size (Window 2)
(5)

ÛNET = k ×
∑

i∈Window 1U
i
NET

Size (Window 1)
+ (1 − k) ×

∑
i∈Window 2U

i
NET

Size (Window 2)
(6)

where ÛCPU, ÛRAM, and ÛNET are the predicted utilization ofCPU,RAM, andnetwork
bandwidth, respectively; the coefficient k has the same function as the constant defined
in familiar moving average algorithm. More precisely, k is a coefficient that specifies
the weight of the estimation of the recent samples and the estimation of the old ones on
the predicted utilization of a specific resource type; and Ui

CPU,U
i
RAM, and Ui

NET are
the i th utilization value of CPU, RAM, and network bandwidth which are saved in the
history, respectively. WMA policy considers multi-criteria including CPU, RAM, and
network bandwidth. Therefore, if the WMA policy forecasts for a PM that utilization
of either one of its resource types (ÛCPU, ÛRAM, or ÛNET) will be more than 100 %,
then this PM is determined to be overloaded.
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6 Proposed policies for VM selection from overloaded PMs

In this sectionwe present our proposed policies forVMselection fromoverloaded PMs
including Maximum Requested Resource (MRR), Minimum Downtime Migration
(MDM), and Multi-Criteria TOPSIS with Prediction VM Selection (MTPVS). It is
important to note that all of these policies take advantage WMA policy for prediction
of resource utilizations. More precisely, one of the main strength of proposed policies
compared with state of the arts is that they select VMs for migration based on their
predicted utilizations rather than their current utilizations.

6.1 Maximum requested resource (MRR) policy

Maximum requested resource addresses the problem of minimizing SLA violation as
well as number of VMmigrations as depicted in algorithm 2. Since it is considered that
our target system faces mostly with CPU shortage, this policy selects VMs based on
their predicted CPU capacity request. This policy repeats the selection of a VM with
the highest predicted requested CPU capacity until the elimination of hotspot. Due to
selection of a VM with the highest requested CPU capacity, MRR quickly eliminates
the hotspot occurred by CPU shortage in a PM which decreases the SLA violation.
Besides, since this policy eliminates the hotspot with scheduling the migration of
lower number of VMs that have higher CPU capacities instead of migration of large
number of VMs with less CPU capacity, the number of VMs migrations decreases.

Algorithm 2: MRR policy for VM selection
1 Input: Candidate VMs to be selected for migration from overloaded PMs.
2 Output: Selected VMs to be migrated.
3 Maximum Requested CPU capacity = Min Value.
4 While(hotspot exist) {
5 For all the VMs hosting on the overloaded PM do{
6 If (Predicted Requested CPU capacity of this VM > Maximum Requested CPU capacity){
7 Maximum Requested CPU capacity = Requested CPU capacity of this VM.
8 Selected VM = this VM.
9 }end
10 }end
11 VMList.add(Selected VM).
12 }end
13 Return the VMList

6.2 Minimum downtime migration (MDM) policy

Live-migration is one of the key enablers of resource management in cloud data
centers. A live-migration instance usually takes a few seconds to a fewminutes to com-
plete. Among all procedures for live-migration, memory content transmission takes
the longest time and thus most affects the migration performance [26]. In order to be
effective, a live-migration technique should finish the migration process as fast as pos-
sible while minimizing the QoS degradations in the migrated VMs. Three prevalent
approaches for transferring memory contents used for VM migration are stop-and-
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copy, pre-copy, and post-copy migration schemes. A stop-and-copy migration method
transmits all memory contents before resuming the migrated VM on the destination
PM. A pre-copy approach iteratively transfers modified pages to the destination PM
and enables the VM in migration to suspend only for transferring a small number
of modified pages after copying the entire memory region to the destination node
[26]. In the post-copy migration scheme, the hypervisor sends only the minimal and
essential memory contents and information of a migrating VM to the destination and
resumes the execution of the VM [26]. In this approach when the migrated VM needs
to access untransferred pages, a page fault occurs. In response to the page fault, the
hypervisor in the destination node makes requests of the missing pages to the source
node, and in return the source node hypervisor transmits them to the destination [26].
Since famous hypervisors such as Xen utilize pre-copy scheme for live VM migra-
tion, which allows migrating an OS with near-zero downtime, a pre-copy approach is
implemented in this paper similar to [12]. Moreover, the migration time is estimated
as the amount of RAM utilized by the VM divided by the spare network bandwidth
available for the host. In all these migration techniques, two important parameters that
affect both the downtime of the migrating VM and the migration time are amount
of transferred memory as well as the available network bandwidth in source and
destination. Hence, as depicted in algorithm 3, the major goal of MDM is simulta-
neous minimization of the total downtime occurred during migration process as well
as migration duration. Therefore, MDM considers RAM, and network bandwidth
parameters in decision making process and selects a VM with the lowest migration
delay from an overloaded PM. The main difference between MDM and Minimum
Migration Time (MMT) policy proposed in [12] is that MDM makes decision based
on the predicted capacity of all resource types instead of the current CPU utiliza-
tion.

Algorithm 3: MDM policy for VM selection
1 Input: Candidate VMs to be selected for migration from overloaded PMs.
2 Output: Selected VMs to be migrated.
3 Minimum Migration Delay = Max Value.
4 While(hotspot exist){
5 For all the VMs hosting on the overloaded PM do{

6 Migration DelayVM = 
PM theofBandwidthNetwork  AvailablePredicted

RAMPredicted VM

6 If (Migration Delay of this VM < Minimum Delay){
7 Minimum Delay = Migration Delay of this VM.
8 Selected VM = this VM.
9 }end
10 }end
11 VMList.add(Selected VM).
12 }end
13 Return the VMList.

6.3 Multi-criteria TOPSIS with prediction VM selection (MTPVS) policy

Multi-criteria TOPSIS with prediction VM selection is proposed for multi-criteria
VM selection from overloaded PMs in consolidation process of cloud data centers.
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MTPVS takes advantage of a modified version of the Technique for Order of Prefer-
ence by Similarity to Ideal Solution (TOPSIS) [18] as a multi-criteria decision making
algorithm. MTPVS simultaneously apply the idea proposed in MRR and MDM poli-
cies by selecting the VMs that both have the highest predicted requested resource
and at the same time have the minimum predicted migration delay. By doing so, not
only the hotspot is eliminated quickly with less SLA violation and lower number of
VM migrations, but also the SLA violations due to migration process is minimized.
Besides,MTPVS selects VMs formigration based on the predicted utilizations of their
requested resource utilization usingWMA prediction method rather than superficially
based on the current CPU utilizations.

MTPVS is a multiple parameter method to identify solutions from a finite set of
alternatives based upon simultaneous distance minimization from an ideal point and
distance maximization from a nadir point [27]. More precisely, the chosen VM should
have the shortest distance from the ideal positive point (VM+) and the farthest distance
from the negative ideal point (VM−). VM+ and VM− are formed as composite of
best and worst values of different system parameters, respectively, among all the VMs.
Distance from each of these poles are measured in the Euclidean distance.

All the predicted information assigned to the virtual machines in time slot t form a
Decision Matrix

−→
DM as shown in Eq. (7).

−→
DM =

⎡
⎢⎢⎢⎢⎢⎣

PVM1

cpu PVM1

ram PVM1

net CVM1

cpu CVM1

ram CVM1

net
... ... ... ... ... ...

PVMi

cpu PVMi

ram PVMi

net CVMi

cpu CVMi

ram CVMi

net
... ... ... ... ... ...

PVMm

cpu PVMm

ram PVMm

net CVMm

cpu CVMm

ram CVMm

net

⎤
⎥⎥⎥⎥⎥⎦

(7)

Where VM1,VM2, . . . ,VMm are the VMs that MTPVS is to sort them; PVM j

res is

the resource utilization of j th VM in percent; CVM j

res is the resource capacity of j th

VM; and res can be CPU, RAM, or network bandwidth.
−−→
DM is the decision matrix

which consists of alternatives and criteria. Alternatives are VM1,VM2, . . . ,VMm ,
and criteria are the parameters defined in Table 1. Each value of

−−→
DM matrix indicates

the rating of a specific alternative according to one criterion.
To select the best VM for migration we go through the following steps:
Step 1: The data of the decision matrix

−−→
DM come from different sources, so it is

necessary to normalize it in order to transform it into a dimensionless matrix, which
allow the comparison of the various criteria. Therefore, we first normalize the decision
matrix

−−→
DM to have dimensionless decision matrix

−−→
DM . The purpose of decision

matrix normalization is to make matrix entries free of unit so that they can take part in
our computations. Therefore, the decision matrix is made dimensionless by dividing
each entry by maximum value of each column according to Eq. (8). After this step,
the

−−→
DM matrix consists of normalized values which represent the relative ratings of

the alternatives.
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−→
DM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PVM1
cpu
Pmax
cpu

PVM1
ram
Pmax
ram

PVM1
net
Pmax
net

CVM1
cpu

Cmax
cpu

CVM1
ram

Cmax
ram

CVM1
net

Cmax
net

... ... ... ... ... ...

PVMi
cpu
Pmax
cpu

PVMi
ram
Pmax
ram

PVMi
net
Pmax
net

CVMi
cpu

Cmax
cpu

CVMi
ram

Cmax
ram

CVMi
net

Cmax
net

... ... ... ... ... ...

PVMm
cpu
Pmax
cpu

PVMm
ram
Pmax
ram

PVMm
net
Pmax
net

CVMm
cpu
Cmax
cpu

CVMm
ram
Cmax
ram

CVMm
net
Cmax
net

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Step 2: In the next step, VM+ and VM− are determined. Before that, type of each
attribute should be defined. In general, the criteria can be classified into two types:
benefit and cost. The benefit criterion means that a higher value is better, while for
the cost criterion is the opposite. In other words, larger values for a benefit type
attribute leads to less distance from VM+ and more distance from VM−, while the
opposite condition is hold for a cost type variable. Since we want to select a VM
that has smaller data volume, RAM capacity is marked as cost type. In other words,
the more memory dedicated to a virtual machine, the more cost we should pay for
migration.Therefore,MTPVSalgorithmsearches for aVMthat has the lowestmemory
to avoid transferring large data over interconnection network. However, CPU andNET
parameters are considered to have benefit type. More precisely, MTPVS selects a VM
with higher predicted CPU capacity to quickly eliminate the hotspot and minimize
the SLA violation and number of VM migrations. Therefore, VM+

res and VM−
res are

defined using Eqs. (9) and (10) respectively.

VM+
res =

{
P+
cpu, P

−
ram, P

+
net,C

+
cpu,C

−
ram,C

+
net

}
(9)

VM−
res =

{
P−
cpu, P

+
ram, P

−
net,C

−
cpu,C

+
ram,C

−
net

}
(10)

Where P+ and C+ are the maximum values in each column of
−−→
DM , and P− and C−

are the minimum values in each column of
−−→
DM matrix.

Step 3: In this step, the score of each individual alternative regarding each criteria
is computed based on its relative distance from ideal solutions (VM+

res and VM−
res)

to make comparisons possible. The relative distance for each resource type of a VM
from VM+

res and VM−
res are calculated using Eq. (11).

ScoreVM
j

res =
√
(VM j

res − VM−
res)

2

√
(VM j

res − VM−
res)

2 +
√
(VM j

res − VM+
res)

2
(11)

Where ScoreVM
j

res shows the score of a specific resource type of j th VM, and res can
be any of the parameters defined in Table 1. The more distance a VM has from VM−,
the more the value of nominator of Eq. (11) becomes and consequently the score
value is larger. Similarly, the less distance a VM has from VM+, the less the value of
denominator of Eq. (11) becomes and accordingly the score value is larger.
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Step 4: In this step, the individual score of each alternative regarding different crite-
ria are combined to obtain an overall score for each alternative separately. In addition,
in this step, the importance of each criterion is considered in the score computations
by application of a weight for each criterion. Therefore, we compute the total score of
a VM using Eq. (12).

Score(VM j ) =
#Res∑
res=1

Weightres × ScoreVM
j

res (12)

where Score(VM j ) is the average closeness of j th VM to the ideal solutions,Weightres
is importance of each criterion of type res; res can be any of CPU, RAM, or network
bandwidth;Weightres is computed usingEq. (13); and #Res is the number of considered
resources.

Step 5: Rank the VMs according to their score and select the one with the highest
score. The VM with the highest score has the maximum distance from VM− and the
minimum distance from VM+.

6.3.1 Weight computation for different criteria

Different criteria considered in MTPVS policy have different importance in the final
score. However, finding an optimized weight for different criteria is a wide research
area by itself. In this study, we propose using a simple functional weighting procedure
which computes the weights of each parameter based on the average utilization of all
system resources in a data center according to Eq. (13). The idea behind the proposed
equation is that the higher the utilization of a specific resource type, the more likely
that the system confronted with hotspot along this resource type. Therefore, adoption
of the proposed weighting equation results in selection of the VMs that eliminate the
hotspot along this resource type faster.

WeightRes = ŪRes(t)∑#Res
res=1 Ūres(t)

(13)

where ŪRes(t) is the average utilization of a specific resource in a data center at
simulation time t , and #Res is the number of considered resources. Res can be either
of CPU, RAM, or network bandwidth.

7 Performance evaluation

In this section, we discuss a performance evaluation of the heuristics presented in
this paper. We compare our solutions with recent energy aware consolidation studies
which are close to our study including [12] and [11] as benchmarks. Similar to our
study, they consider the four phase resource management process introduced in [12].
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Table 3 Configuration of servers

Server CPU model Cores Frequency (MHz) RAM (GB)

HP ProLiant G3 Intel Pentium D930 2 3000 4

HP ProLiant G4 Intel Xeon 3040 2 1860 4

HP ProLiant G5 Intel Xeon 3075 2 2660 4

IBM Server x3250 Intel Xeon 3470 4 2933 8

Table 4 VM types (four
Amazon EC2 VM types) [4]

VM type CPU (MIPS) RAM (GB)

High-CPU medium instance 2500 0.85

Extra-large instance 2000 3.75

Small instance 1000 1.7

Micro instance 500 0.613

7.1 Experiment setup

Since our target system is a generic Cloud computing environment, it is vital to analyze
it on a large-scale virtualized data center infrastructure. However, implementing and
evaluating the proposed algorithms on such an infrastructure is very expensive and
time-consuming. Moreover, executing repeatable large-scale experiments to analyze
and compare the results of proposed algorithms is really hard. Therefore, we have used
simulation for performance evaluation. We have utilized an extension of CloudSim
toolkit [28] and its entire provided infrastructure as our simulation platform. Adopting
CloudSim toolkit enables us to perform repeatable experiments on large-scale virtu-
alized data centers. Besides, it is a modular and extensible open source toolkit which
has built-in capability to implement and compare energy aware algorithms in cloud
environments.

In our infrastructure setupwhich has real configurations, we have simulated a Cloud
computing infrastructure comprising a data center with 800 installed heterogeneous
physical machines including 200 HP ProLiant ML110 G3, 200 HP ProLiant ML110
G4, 200 HP ProLiant ML110 G5, and 200 IBM Server x3250. Characteristics of
these machines are depicted in Table 3. Power consumptions of physical machines are
computed based on the data described in Sect. 4.3. VMs are supposed to correspond
to four Amazon EC2 VM types as shown in Table 4. Since using real workload for
simulation experiments is important, we consider 10 days data of CoMon project
[29]. This data contains CPU utilization in 5-min intervals of more than a thousand
VMs that are located at more than 500 servers around the world (Table 5). During the
simulations, each VM is randomly assigned a workload trace from one of the VMs
from the corresponding day. WMA predicts future utilizations in which k is set to be
0.3; size of window 1 andwindow 2 are set to be 1

3 and
2
3 of history length respectively;

and the history length is equal to 30.
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Table 5 Workload data
characteristics (CPU utilization)
[29]

Date Number of VMs Mean (%) SD (%)

03/03/2011 1052 12.31 17.09

06/03/2011 898 11.44 16.83

09/03/2011 1061 10.70 15.57

22/03/2011 1516 9.26 12.78

25/03/2011 1078 10.56 14.14

03/04/2011 1463 12.39 16.55

09/04/2011 1358 11.12 15.09

11/04/2011 1233 11.56 15.07

12/04/2011 1054 11.54 15.15

20/04/2011 1033 10.43 15.21

7.2 Performance metrics

To make our results comparable with the algorithms presented by Beloglazov and
Buyya, we consider ESVmetric defined in [12] which is shown in Eq. (14). Moreover,
to assess the simultaneous minimization of energy, SLA violation, and number of
VMs’ migrations, we use the metric defined in [8] which is shown in Eq. (15).

ESV = Energy × SLAV (14)

ESM = ESV × Migrations count (15)

7.3 Simulation results

The default on-line consolidation process in cloud data centers include four main
phases [12]. In this section, a reference scenario consisting of a combination of the
best policies reported in [12] for these phases including Local Regression (LR) for the
first phase, a simple method (SM) for the second phase, Minimum Migration Time
for the third phase (MMT), and Power Aware Best Fit Decreasing (PABFD) policy for
the fourth phase is compared with the scenario described in [11] as well as with our
proposed policies. In Sect. 7.3.1 the policies for determination of overloaded PMs are
comparedwith each other; in Sect. 7.3.2 the policies for VM selection from overloaded
PMs are compared; and in Sect. 7.3.3 the combination of best policies proposed in
this study as well as in [12] and [11] are compared.

7.3.1 Evaluation of policies for determination of overloaded PMs

In this sectionwecompareour proposedWMApolicywith four other policies proposed
in [12] includingLocalRegression (LR), LocalRegressionRobust (LRR), interquartile
range (IQR), and Median Absolute Deviation (MAD). Ten experiments are executed
separately for the 10 days of workloads depicted in Table 5 and their median results
for energy consumption, SLA violation, number of VM migrations, execution time
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Table 6 Output results for different policies for determination of overloaded PMs

Policy LR WMA LRR IQR MAD

Energy consumption (Kwh) 46.03 44.49 46.56 46.62 46.41

SLAV (×10−5) 74.628 21.83 72.462 104.349 67.832

ESV(×10−3) 36.686 10.23 32.873 52.198 33.654

Number of VM migrations 7005 3217 6598 9182 6413

ESM 257.78 32.98 217.58 479.18 215.90

Execution time (s) 0.02996 0.02950 0.02902 0.03768 0.03164

Fig. 2 Energy consumption of
different policies for
determination of overloaded
PMs
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as well as ESV and ESM metrics are reported in Table 6. Figure 2 shows the energy
consumption; Fig. 3 shows the value of SLA violation; Fig. 4 depicts the value of ESV
metric; Fig. 5 shows the overall number of VM migrations; Fig. 6 depicts the ESM
metric; and Fig. 7 shows the median value for average execution time of the whole
resource management process.

As depicted in Figs. 2, 3, and 5, the results for WMA policy regarding energy
consumption, SLA violation, and number of VM migrations are prominently lower
than other policies. Consequently, ESV and also ESM metrics for WMA policy are
much less in comparison with LR, LRR, IQR, and MAD as shown in Figs. 4 and 6,
respectively. More precisely, it can be inferred from Table 6 that adoption of WMA
policy leads to 3.34, 70.74, 54.07, 72.11, and 87.2% reductions in energy consumption,
SLA violation, number of VMmigrations, ESVmetric, and ESMmetric, respectively,
in comparisonwith LR policy. This observation can be described by the fact thatWMA
policy both considers multiple resource types in decision process and also has more
accurate predictions of the resource utilizations which notably improve the output
results. In addition, it can be deduced from Fig. 7 that the execution times of all the
evaluated policies are near each other.
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Fig. 3 SLA violation of
different policies for
determination of overloaded
PMs
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Fig. 4 ESV of different policies
for determination of overloaded
PMs
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Fig. 5 Number of VM
Migrations of different policies
for determination of overloaded
PMs
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Fig. 6 ESM of different
policies for determination of
overloaded PMs
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Fig. 7 Execution time of
different policies for
determination of overloaded
PMs
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7.3.2 Evaluation of proposed policies for VM selection from overloaded PMs

In this section we compare our proposed policies for selection of VMs from over-
loaded PMs including MRR, MDM, and MTPVS with two other policy proposed in
[12] including Minimum Migration Time (MMT) and Maximum Correlation (MC).
Ten experiments are executed separately for the 10 days of workloads depicted in
Table 5 and their median results for energy consumption, SLA violation, number of
VM migrations, execution time as well as ESV and ESM metrics are reported in
Table 7. Figure 8 shows the energy consumption; Fig. 9 shows the value of SLA vio-
lation; Fig. 10 depicts the value of ESV metric; Fig. 11 shows the overall number of
VM migrations; Fig. 12 depicts the ESM metric; and Fig. 13 shows the median value
for average execution time of the whole resource management process.

MRR, MDM, and MTPVS policies have a global view of the system because
they take all important system parameters introduced in Table 1 into consideration.
Consequently, the ESV and ESM parameters for these policies are lower than other
policies, as shown in Figs. 10 and 12, respectively. Moreover, as depicted in Fig. 9,
due to consideration of all important system parameters as well as their importance in
decision process, the total SLA violation of MRR, MDM, and MTPVS is much less
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Table 7 Output results of different VM selection Policies

Policy MMT MRR MDM MTPVS MC

Energy consumption (Kwh) 46.03 45.00 45.78 43.51 45.25

SLAV (×10−5) 74.628 33.211 51.799 19.413 64.316

ESV (×10−3) 36.686 15.573 25.494 8.709 27.048

Number of VM migrations 7005.5 3650.5 5149 2644 5273.5

ESM 257.78 57.36 131.20 22.77 145.38

Execution time (s) 0.02996 0.02241 0.02497 0.02139 0.02803

Fig. 8 Energy consumption of
different VM selection policies
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than other policies. Likewise, the same condition is hold for ESV, the number of VM’s
migration, and ESM as depicted in Figs. 10, 11, and 12, respectively.

On the other hand, as depicted in Figs. 8, 9, and 11, the results for MTPVS policy
regarding energy consumption, SLA violation, and number of VM migrations are
prominently less than other policies. As a result, ESV and also ESM metrics for
MTPVS policy are much less in comparison with other policies as shown in Figs. 10
and 12, respectively. More precisely, it can be inferred from Table 7 that adoption of
MTPVS policy leads to 5.5, 72.05, 62.25, 76.26, and 91.16 % reductions in energy
consumption, SLAviolation, number ofVMmigrations, ESVmetric, andESMmetric,
respectively, in comparison with MMT policy. This observation can be described by
the fact that MTPVS policy aggregates the idea behind MRR and MDM policies to
select a VM with the highest predicted CPU capacity and the least migration delay.
In addition, MTPVS takes advantage of a multi-criteria decision making algorithm
which finds a solution through simultaneous distance maximization from a negative
ideal point as well as distance minimization from positive ideal point which notably
improves the output results. Besides, MTPVS selects VMs for migration based on the
predicted utilizations of their requested resource utilization using WMA prediction
method rather than superficially based on the current CPU utilizations. In addition,
MTPVSapplies the importanceof each system’s criteria in decisionprocess.Moreover,
it can be inferred from Fig. 13 that adoptingMTPVS policy leads to the least execution
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Fig. 9 SLA violation of
different VM selection policies
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Fig. 10 ESV of different VM
selection policies
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Fig. 11 Number of VM
migrations of different VM
selection policies
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time in comparison with other policies. This observation can be described by the fact
that MTPVS policy takes advantage of simpler mathematical calculations with lower
complexities in comparison with other policies.
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Fig. 12 ESM of different VM
selection policies
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Fig. 13 Average execution time
of different VM selection
policies
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7.3.3 Evaluation of combination of proposed policies for resource management

In this section we compare three scenarios consisting of combination of our best pro-
posed policies for resource consolidation process in cloud data centers with the ones
proposed in [12] and [11]. In this section we define a four segmented naming format,
depicted in Table 8, for the notation of the scenarios assessed in this section. The
sections of the naming format are arranged according to the four phases of consoli-
dation procedure proposed in [12]. The notations are constructed by connecting the
abbreviation of the policies used for each phase using slash lines.

Best combination of policies proposed in [12] include LR, SM, MMT, and
PABFD for four phases of consolidation process. Therefore, other scenarios are
compared with LR/SM/MMT/PABFD scenario (scenario 1) as a reference sce-
nario. The LR/VDT/MMT/UMC scenario (scenario 2) proposed in [11] is similar
to the ones proposed in [12] except that it uses VM-based dynamic threshold
(VDT) policy for determination of underloaded PMs and utilization and mini-
mum correlation (UMC) policy for resource allocation. The difference between our
WMA/SM/MTPVS/PABFD scenario (scenario 3) and the one proposed in [12] is that
it adopts WMA policy for determination of overloaded PMs as well as MTPVS policy
for VM selection from overloaded PMs. Ten experiments are executed separately for
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Table 8 The notation used for
combinations of best proposed
policies

Scenario number Policy abbreviation

Scenario 1 LR/SM/MMT/PABFD

Scenario 2 LR/VDT/MMT/UMC

Scenario 3 WMA/SM/MTPVS/PABFD

Table 9 Output results for combination of best policies for different phases of resource management
process

Policy LR/SM /MMT/PABFD LR/VDT/
MMT/UMC

WMA/SM/
MTPVS/PABFD

Energy consumption (Kwh) 46.03 45.39 51.39

SLAV (×10−5) 74.628 68.228 3.829

ESV (×10−3) 36.686 30.988 1.9993

Number of VM migrations 7005.5 5619.5 2334.5

ESM 257.78 174.83 4.85

Execution time (s) 0.02996 0.04576 0.05467

ESM improvement (%) 0 32.17 98.11

the 10 days of workloads depicted in Table 5 and their median results for energy con-
sumption, SLA violation, number of VM migrations, execution time as well as ESV
and ESM metrics are reported in Table 9. Figure 14 shows the energy consumption in
the data center; Fig. 15 shows the value of SLA violation incurred to the system due to
resource shortage as well as performance degradation due tomigration; Fig. 16 depicts
the value of ESV metric which can be used to infer the simultaneous improvement
of energy consumption and SLA violation; Fig. 17 shows the overall number of VM
migrations executed in the system during simulation time; Fig. 18 depicts the ESM
metric which can be used to measure simultaneous improvement of energy consump-
tion, SLA violation, and number of VM migrations; and Fig. 19 shows the median
value for average execution time of the whole resource management process.

It can be inferred from Figs. 15, 16, 17, and 18 that our proposed scenario (sce-
nario 3) prominently has the best performance regarding SLA violation, ESV metric,
number of VM migrations, and ESM metric, respectively. More precisely, it can be
inferred from Table 9 that adoption of scenario 3 leads to 58.68, 66.67, 94.5, and
98.11 % reductions in SLA violation, number of VM migrations, ESV metric, and
ESM metric, respectively, in comparison with the reference scenario (scenario 1).
However, as shown in Fig. 14, the total energy consumption of scenario 3 scenario is
slightly more than other policies. This observation can be described by the existence
of an intrinsic trade-off between energy consumption and SLA violation. More pre-
cisely, since energy and SLA violation are negatively correlated, the SLA violation is
decreased by the cost of a small increase in energy consumption. But, the objective
of a Cloud resource management system is simultaneous optimization of energy con-
sumption, SLA violation, and number of migrations which can be inferred from ESM
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Fig. 14 Energy consumption of
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Fig. 15 SLA violation of
combination of best policies for
resource management process
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Fig. 16 ESV of combination of
best policies for resource
management process
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metric. In this direction, scenario 3 shows the best performance in comparison with
other scenarios, as shown in Fig. 18. Moreover, it can be deduced from Fig. 19 that
adopting scenario 3 leads to a bit more execution time in comparison with other sce-
narios. This observation can be described by the fact that scenario 3 considers more
criteria in decision process in comparison with other policies which leads to more
execution time.
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Fig. 17 Number of VM
migrations of combination of
best policies for resource
management process
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Fig. 18 ESM of combination of
best policies for resource
management process
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Fig. 19 Average execution time
of combination of best policies
for resource management
process
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7.3.4 Statistical analysis

In this section a statistical analysis is presented for the best algorithm combina-
tions and benchmark algorithms. Based on the Ryan–Joiners normality test, ESM
values of all three type scenarios (LR/SM/MMT/PABFD, LR/VDT/MMT/UMC and
WMA/SM/MTPVS/PABFD) follow a normal distribution with the P > 0.1. Table 10
shows results based on paired t tests for all three aforementioned scenarios. Results
show that there is statistically significant difference between these algorithms. The t
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Table 10 Comparison of the algorithms using paired t tests

Policy 1 (ESM) Policy 2 (ESM) Difference (×103) P value

LR/SM/MMT/PABFD (257.78) WMA/SM/MTPVS/PABFD
(4.85)

0.271 (0.155, 0.387) <0.001

WMA/SM/MTPVS/
PABFD (4.85)

LR/VDT/MMT/UMC (174.83) 0.238 (0.111, 0.365) < 0.001

Table 11 Comparison of the best algorithmcombinations and benchmark algorithms regardingESMmetric

Policy ESM 95 % CI

LR/SM/MMT/PABFD 276.43717 159.9861, 392.8883

LR/VDT/MMT/UMC 243.58346 116.5291, 370.6379

WMA/SM/MTPVS/PABFD 4.9134504 4.212525, 5.614375

tests have shown that the usage of the WMA/SM/MTPVS/PABFD scenario leads to a
statistically significantly lower value of the ESMmetric with the P < 0.001. Table 11
compares the best algorithm combinations and benchmark algorithms regarding the
mean values of the ESM metric along with 95 % confidence intervals. From the
observed results, we can conclude that the WMA/SM/MTPVS/PABFD scenario has
the best performance regarding ESM metric.

8 Conclusion

There are serious concerns for cloud providers to reduce their energy consumption
while ensuring a high level of adherence to service level agreements. This paper
has focused on consolidation problem as an efficient resource management solution
to reduce energy consumption in cloud data centers. This study has proposed novel
heuristics for two main phases of consolidation problem including WMA policy for
determination of overloaded PMs and MRR, MDM, and MTPVS policies for VM
selection from overloaded PMs. One of the main strength of the proposed policies is
consideration of all important system’s criteria as well as their importance in decision
process. Another main advantage of proposed policies is decision making based on
the predicted capacity of the system’s criteria rather than their current utilizations.
Moreover, taking advantage of WMA policy, this paper has reached more accurate
prediction values for system’s resource types. Furthermore, this paper has proposed
a novel method for computation of weights of different system’s resource types. The
experimental results obtained from extensive evaluations using CloudSim simulator
have proven that our policies significantly outperform existing consolidation solutions
regarding energy consumption, SLA violation, and number of VMs’ migrations. The
research work is planned to be followed by implementing the proposed policies using
real cloud infrastructure management products such as OpenStack. Another direction
for future research is investigation of novel algorithms for on-line VM placement on
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heterogeneous data centers of different cloud service providers over wide area network
connections.
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