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Abstract Interconnects can limit the performance achieved by distributed and paral-
lel file systems due to message processing overheads, latencies, low bandwidths and
possible congestions. This is specially true for metadata operations, because of the
large number of small messages that they usually involve. These problems can be
addressed from a hardware approach, with better interconnects, or from a software
approach, by means of new designs and implementations. In this paper, we take the
software approach and propose to increase the rate of metadata operations by sending
several operations to a server in a single request. These metadata requests, that we
call batch operations (or batchops for short), are particularly useful for applications
that need to create, get the status information of and delete thousands or millions of
files. With batchops, performance is increased by saving network delays and round-
trips, and by reducing the number of messages, which, in turn, can mitigate possible
network congestions. We have implemented batchops in our Fusion Parallel File Sys-
tems (FPFS). Results show that batchops can increase the metadata performance of
FPFS by between 23 and 100%, depending on the metadata operation and backed file
system used. In absolute terms, batchops allow FPFS to create, stat and delete around
200,000, 300,000 and 200,000 files per second, respectively, with just 8 servers and a
regular Gigabyte network.
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1 Introduction

Currently, modern distributed storage systems have to deal with a growing number of
files [18,39,51,54], and an increasing use of huge directories with millions or billions
of entries accessed by thousands of clients at the same time [2,7,18,39]. To manage
both problems (or, at least, the growing number of files), some file systems use a small
cluster of specialized metadata servers [13,45,49,53], while others plan to provide a
similar service shortly [44].

Our Fusion Parallel File System (FPFS) uses Object-based Storage Device+
(OSD+) [3] to implement such a metadata cluster. OSD+s are improved Object-based
Storage Device (OSDs) that, in addition to handle data objects, as traditional OSDs
do, can also manage directory objects. Directory objects are a new type of object able
to store file names and attributes, and support metadata-related operations, like the
creation and deletion of regular files and directories. Using these OSD+ devices, an
FPFS metadata cluster is as large as its corresponding data cluster and effectively dis-
tributes metadata among as many nodes as OSD+s comprising the system. OSD+s are
implemented through a thin software layer on top of existing mainstream computers,
which leverages many features of the underlying file system. Thanks to this approach,
OSD+s have a small overhead and provide a large performance. Indeed, FPFS is able
to create, stat and delete thousands of files per second with a few OSD+ devices [3].
FPFS also supports huge directories by dynamically distributing them among several
OSD+s in the cluster. The OSD+s storing a distributed huge directory work indepen-
dently of each other, thereby improving the performance and scalability of the file
system.

Despite its great performance, FPFS shares with other distributed file systems one
of their limiting factors: the interconnect. The network latency and the overhead
introduced by the processing of messages and packets limit the number of meta-
data operations per second that a server can dispatch. Interconnect characteristics also
affect data operation, but, since applications can issue large data transfers, bandwidth
is the main limiting factor here. Therefore, to increase the metadata performance, we
can use a better interconnect or reduce the network processing overhead.

In this paper, we propose to reduce the processing overhead per message by sending
several metadata operations to a server in a single request that we call batch operation
(or batchops for short). Batching is not a new idea, and it has been used extensively
in network systems (see Sect. 6). However, to the best of our knowledge, this is the
first time that it is applied in the domain of parallel file systems. Batchops leverage
the directory objects of FPFS and embed hundreds to thousands of entries of the same
directory (i.e., samedirectoryobject) into a singlemessage toperformagivenoperation
on all of them.Applications use batchops throughnewPOSIX-alike functions (openv,
statv, etc.), following the idea that many exascale challenges need to be faced with
APIs beyond POSIX [12].
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We also show how batchops are integrated in FPFS and, specially, in its distributed
huge directories. This kind of directories makes the design and implementation of
batchops difficult because a regular directory can become distributed during a batch
request, and because we should take advantage of the distribution of huge directories
to efficiently implement batch operations on such directories.

Batchops are possible in FPFS because its namespace is distributed based on direc-
tories, which usually contain related files. Therefore, batchops are particularly useful
for applications that need to create, get the status information of or delete thousands or
millions of entries in the same directory. For instance, applications that use a directory
as a light-weight database [42], and operations like ls -l or rm -fr, can signifi-
cantly benefit from batchops. But batchops are also useful for parallel file systems that
need to migrate or distribute directories (hence, moving a large number of directory
entries), as FPFSdoes.Note, however, that file systems that distribute their namespaces
by means of other strategies, such as file hashing [9,29,52,55], make operations like
batchops difficult when not impossible.

Batch operations make a much more efficient use of the network, shifting the bot-
tleneck from the network to the servers in many cases. With batchops, FPFS improves
its metadata performance by saving network delays and round-trips, and by reducing
the number of messages, which, in turn, can mitigate a possible network congestion.

The present work contributes an extensive set of experimental results for batchops
on FPFS when using different backend file systems (Ext4 and ReiserFS) and devices
in a Linux environment. Specifically, since a metadata service’s performance largely
depends on the number of IOPS supported by the underlying storage [18], we have
compared results obtained by hard disks with those achieved by “seek-free” SSD
devices.

Results show that batchops can increase the performance of FPFS by 50% at least
when creating a single shared directory, achieving a 100% improvement in some
cases. For the stat operation, improvement provided by batchops is always around
25%. Finally, when deleting files, the backend file systems determine performance to
a large extent, being Ext4 the one that better leverages batchops with an improvement
of 60%, while ReiserFS obtains a 23%when using this kind of operations. In absolute
terms, batchops allow FPFS to create, stat and delete around 200,000, 300,000 and
200,000 files per second, respectively, with just 8 SSD-OSD+ devices (i.e., OSD+
devices supported by SSD drives) and a regular Gigabit interconnect. Unfortunately,
other available parallel file systems, such as Ceph [53], Lustre [36] or OrangeFS [49],
do not support batch or bulk operations, so we have not compared FPFS with them.

The rest of the paper is organized as follows. Section 2 describes the FPFS archi-
tecture. Section 3 details how batchops are designed and implemented. Results are
provided in Sects. 4 and 5. Related work is described in Sect. 6. Finally, Sect. 7
concludes the paper.

2 Architecture of FPFS

Generally, parallel file systems have three main components: clients, data servers and
metadata servers. Data servers are usually OSD [31] or OSD-alike devices that export
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Fig. 1 FPFS’s overview. Each
OSD+ supports both data and
metadata operations

Clients

OSD+ cluster

anobject interface.Metadata servers, however, frequently implement customized inter-
faces and permanently store metadata in private storage devices [8] or in objects
allocated in the data servers themselves [53].

Unlike thesefile systems, FPFS [3] uses a single kind of server that acts as both a data
and a metadata server (see Fig. 1), and it consequently enlarges the metadata cluster’s
capacity that becomes as large as the data cluster’s. Tomerge data andmetadata servers
into a single one, FPFSusesOSD+devices that are newenhancedOSDdevices.OSD+s
are capable ofmanaging not only data (as commonOSDs do), but alsometadata. These
new devices simplify the complexity of the storage system as well, since no difference
between two types of servers is made. In addition, having a single cluster increases
system’s performance and scalability.

2.1 OSD+

OSDs implement not only low-level block allocation functions, but alsomore complex
tasks by taking advantage of their intelligence [41,53]. OSD+s leverage this intelli-
gence too, taking it a step further by delegating metadata management to storage
devices.

Traditional OSDs deal with data objects that support operations like creating and
removing objects, and reading from and writing to a specific position in an object. Our
design extends this interface to define directory objects, capable of managing direc-
tories. OSD+ devices support metadata-related operations like creating and removing
directories and files, or getting directory entries. In addition to the usual operations
on directories, OSD+s also provide functions to internally deal with metadata oper-
ations that may involve the collaboration of several OSD+s (e.g., renames, directory
permission changes, and links).

Currently, there exist no commodity OSD-based disks, so mainstream computers
exporting an OSD-based interface through emulators [1], or other software elements,
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(a) (b)

Fig. 2 a OSD+ layers. b Mapping of an FPFS namespace to a 4-OSD+ cluster

are usually used.1 Internally, a local file system stores the objects; we take advantage
of this by directly mapping operations in FPFS to operations in the local file system.

Each OSD+ is composed of a user-space multithreaded process and a conventional
file system. The user-space multithreaded process uses the file system as storage back-
end. Figure 2a shows the layers that compose an OSD+. The local file system must be
POSIX-compliant and support extended attributes (used by our implementation). The
Linux syscall interface is used to access the local file system.

2.2 Clients

Clients are the processes accessing FPFS. For fast prototyping and evaluation, the
current implementation entirely runs clients in user-space. There exists an FPFS library
(libfpfs) that clients use to issue requests. This approach is similar to that used by
PVFS2/OrangeFS [49] and other file systems [44].

FPFS establishes communications between clients and OSD+s via TCP/IP con-
nections, and request/reply messages. Each OSD+ launches one thread to attend the
requests of a client, and to perform operations on the local disk on behalf of the client.
When an operation involves several OSD+s, the OSD+ contacted by a client carries
out the operation transparently to the client (see Sect. 2.4).

2.3 Namespace distribution

FPFS distributes directory objects (and so the file-system namespace) across the meta-
data cluster to make metadata operations scalable with the number of OSD+s, and to
provide a high-performancemetadata service. For the distribution FPFS uses the deter-
ministic pseudo-random function CRUSH [53]:

1 Recently, Seagate announced Kinetic [43], a drive that is a key/value server with Ethernet connectivity. It
has a limited object-oriented interface that supports a few operations on objects identified by keys. Kinetic
could be seen as an early implementation of something similar to Gibson’s proposal [20], but, due to its
limited design, it still needs a higher level layer like Swift [48] to carry out basic operations, such asmapping
large objects, coordinating race conditions on write operations, etc.
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oid = CRUSH(hash(dirname)). (1)

CRUSH receives the hash of a directory’s full pathname as input and returns the ID of
the OSD+ containing the corresponding directory object as output. This allows clients
to directly access any directory without performing a path resolution.

WechooseCRUSHbecause it guarantees a probabilistically balanceddistributionof
objects through the system.However, FPFSdoes not dependon a particular distribution
function, so other functions are also possible [33].

Hash partition strategies present different scalability problems on cluster resizings,
permission changes, and renames. FPFS addresses the first problem through CRUSH,
which minimizes migrations and imbalances when adding and removing devices.
FPFS manages renames and permission changes via lazy techniques [9]. Fortunately,
these operations are infrequent for directories [3,9], so they will not impact the overall
performance.

2.4 Directory objects

A directory object is implemented as a regular directory in the local file system of its
OSD+. In this way, any directory-object operation is directly translated to a regular
directory operation. The full pathname of the directory supporting a directory object
is the same as that of its corresponding directory in FPFS. Therefore, the directory
hierarchy of FPFS is imported within the OSD+s by partially replicating its global
namespace.

Internally, an OSD+ uses three types of directories, differentiated through extended
attributes. These directory types can be seen in Fig. 2b, which shows how an FPFS’s
directory hierarchy is mapped to a 4-OSD+ cluster. The first type (attribute o) is
assigned to directory objects stored in theOSD+, i.e., objects that CRUSHand their full
pathnames have assigned to the OSD+. The second type (attribute h) refers to empty
directories created in a directory object; they represent subdirectories and allow FPFS
to preserve the complete file-system hierarchy to provide standard directory semantics
(e.g., scan). The third one (no attribute) is for directories used for supporting the paths
of the directories implementing objects.

For each regular file that a directory has, the directory object stores its attributes,
and the number and location of the data objects that store the content of the file. In our
current implementation, these “embedded i-nodes” [19] are i-nodes of empty files. The
number and location of the data objects of a file are also stored in extended attributes of
its associated empty file. The exceptions are the size and modification time attributes
of the file, which are stored at its data object(s), so the directory object does not store
this information.

Therefore, an FPFS client first contacts the OSD+ storing the directory object of a
target file to obtain its data layout.With that information, the client can send read/write
operations to the OSD+s storing the corresponding data objects. The same procedure
is followed by other parallel file systems.

Implementing directory objects by means of regular directories in a local file sys-
tem has, at least, two important advantages. The first one is that the implementation
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is simpler and its overhead smaller since most part of the functionality is provided by
the underling file system. The second one is that, when a metadata operation is carried
out by a single OSD+ (creat, unlink, etc.), the backend file system itself ensures
its atomicity and POSIX semantics. Only for operations like rename or rmdir,
that usually involve two OSD+s, the participating OSD+s need to deal with concur-
rency and atomicity by themselves through a three-phase commit protocol (3PC) [46],
without client involvement.

2.5 Huge directories

FPFS also implements management for huge directories, or hugedirs for short. These
are directories with millions or billions of entries accessed by thousands of clients at
the same time. Hugedirs are common for some HPC applications, such as those that
create a file per thread/process [17,35], and those that use a directory as a light-weight
database (e.g. check pointing) [40]. Hugedirs can become a bottleneck; therefore, they
should be handled properly.

To efficiently manage hugedirs, FPFS proposes a dynamic distribution of its entries
among multiple OSD+s [4]. FPFS considers a directory is huge when it stores more
than a given number of files. Once this threshold is exceeded, the directory is shared
out among several nodes. The threshold can also be 0, thereby distributing a directory
right from the start. This is useful for directories known to be huge.

The subset of OSD+s supporting a hugedir is composed of a routing OSD+ and a
group of storing OSD+s. The former contains the routing directory object and is in
charge of providing clients with the hugedir’s distribution information. The latter has
the storing directory objects that store the directory’s content. The storing directory
objects are those OSD+s contacted by clients aware of the directory’s distribution. The
routing OSD+ can also be part of the storing group in case it keeps any directory’s
content. For small directories, the routing and storing objects are the same; hence, a
directory object can play both roles.

A client unaware of the distribution of a directory contacts its routing object using
Eq. 1, as it does with any other regular directory object. As reply, the client receives
the distribution list with the ids of the routing and storing OSD+s. Then, the client
retries the operation, but changes the previous directory-level function for a file-level
counterpart:

oid = osd_set[(hash( f ilename)%osd_count], (2)

where osd_set is the list of storing objects, and osd_count is the size of that list. As
index, we use the value returned by a hash applied on the file name. The result is the
storing OSD+ having the file entry.

The distribution list of a hugedir is cached by the client accessing the directory.
FPFS uses timestamps to detect when this cached information gets out of date due to
the rename or deletion of a hugedir. In that case, clients clean up the cached information
for the directory and retry the operation following Eq. 1. If the directory gets huge
again, clients will receive a new distribution list and will change to Eq. 2.

123



Batching operations to improve the performance of a… 661

3 Batch operations

In this section, we describe how FPFS increases the rate of metadata operations by
sending several operations to a server in a single request. These new requests, which
we call batch operations or batchops for short, are particularly useful for applications
that concurrently handle thousands or millions of files.

A batchop embeds hundreds or thousands of entries of a directory in a single request
to perform a given operation on all of them. A batchop is sent as a single network
message. The message for a batchop includes operation type, directory name, list
of directory entries, and operation parameters, whereas a regular operation includes
operation type, full pathname, and operation parameters. For creation operations, a
batchop also includes a semantics that indicates how to act on failures. Our current
implementation considers two options: perform-all-operations or stop-on-failure. The
first option tells a server to perform the operation for all the entries regardless of its
outcomes. The second option tells a server to stop on the first failed operation. Both
decisions are local to a server. Therefore, when a batchop is performed by several
OSD+s (see Sect. 3.1), each onewill locally apply the given semantics to the operations
it has to carry out.

As an example, Fig. 3a shows the format of a regular create operation, while Fig. 3b
depicts a batch create operation. The directory name is specified separately in a batch
operation, since it is the same for all the entries.

Once the message is received on the server’s side, the server performs the operation
for all the specified entries over the corresponding directory by taking into account the
semantics parameter. Operation results are batched as well, and the server sends this
information back when all the operations are completed or the first operation fails,
depending on the semantics parameter. Therefore, the semantics not only informs
servers about how to perform the batchop, but also informs clients about the reply
they will receive.

A reply message for a batchop includes three fields (see Fig. 4b): operation type,
#errno and list of errnos. #errno is the number of performed operations, which is also
the number of elements in the list of errno values. list of errnos contains the returned
errno value for each performed operation (actually, the errno is returned as a negative
number). The first value in this list corresponds to the operation on the first file in the
batch request, the second value to the second file, and so on.

The reply of some batchops contains additional fields. This is the case for stat,
where an operation returns not only the operation result but also information about

(a)

(b)

Fig. 3 Request messages for create operations
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(a)

(b)

(c)

Fig. 4 Reply message format for regular operations and batchops

int openv(const char *dirname, char **paths, int flags, mode_t mode,
semantics_t semantics, int *returnvalues, int count);

int closev(const int *fds, semantics_t semantic, int *returnvalues, int count);
int statv(const char *dirname, char **paths, semantics_t semantics,

int *returnvalues, struct stat *returnstats, int count);
int unlinkv(const char *dirname, char **paths, semantics_t semantics,

int *returnvalues, int count);

Fig. 5 Signatures of batchops supported by our current implementation of FPFS

the requested files. Therefore, the reply message for a stat includes two extra fields:
#succ values and list of infos. #succ values is the number of successful operations. list
of infos contains the stat information for each file, so the length of this list is the same
as #succ values. Figure 4c depicts the format of this kind of reply messages.

Operations supported by our current implementation of batchops are: openv,
closev, statv and unlinkv. Their signatures appear in Fig. 5. All of them,
except for closev, follow the message format previously described. In the case of
closev, instead of a directory name and list of file names, we send a list of open file
descriptors. The reply of closev follows the same format as the rest, with the lists
of successful values and errno values.

As we have said, the interconnect can become a bottleneck on many parallel file
systems. By introducing batchops, we significantly reduce the number of messages
transmitted between the client and the server and that, in turn, reduces the number
of packets transmitted through the TCP/IP stack. For instance, a batchop can create
8192 files in a directory with only 2 messages (one request and one reply) instead
of 16384 messages (8192 requests and 8192 replies); the number of network packets
transmitted will be significantly reduced as well, although it will depends on the size
of the batchop messages and the limit impossed by the TCP/IP stack.2 Therefore,
with batchops, we reduce the network traffic, optimize the network bandwidth, and
reduce the network overhead due to the processing of packets and messages. Indeed,
the improvement achieved by batchops is to a large extent due to the reduction of the

2 The Ethernet protocol limits the maximum payload of a frame to 1500 bytes by default (called Maximum
Transfer Unit (MTU)). Consequently, the transport layer limits to 1460 bytes the Maximum Segment Size
(MSS), so a message larger than 1460 bytes will be split into several segments to fit this requirement.
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network time obtained. Moreover, thanks to batchops, servers receive more work in
each batchop message, so they can operate more efficiently, making a better use of
caches, disks, etc. in many cases.

Finally, it is important to note that batchops are possible in FPFS because of the way
it implements directories. Since every directory corresponds with a directory object
(or a few directory objects if it is distributed), and every directory object is stored in
a single OSD+, it is easy and makes sense to bundle several related file operations
into a single message. Batchops, however, provide little (or none) benefit in other
file systems, such as those that distribute the namespace by hashing file names, since
every file of a directory can potentially be stored in a different server (hence, each file
operation will be issued in a separate message), and files stored in the same server are
not probably related.

3.1 Batchops over huge directories

As explained in Sect. 2.5, FPFS handles huge directories by storing them among a
group of OSD+ devices. Therefore, batchops on hugedirs have to be handled differ-
ently than on regular directories. To exploit the hugedir distribution, clients perform
a batchop on a hugedir by sending batch messages in parallel to every storing OSD+
composing the hugedir. Each of those messages contains the directory entries of the
original batch message that are stored on the destination OSD+. Once a client receives
all servers’ replies, it sorts them in the sameorder inwhich theywere initially requested.
Note that an application does not need to know whether a directory is distributed or
not in order to issue a batchop to it. The FPFS library (see Sect. 2.2) used by the
application takes care of the distribution, and transparently performs the requests in
parallel and reorganizes the replies when a directory is distributed.

We have explained that semantics are local to servers, and this is specially true for
the semantics stop-on-failure on hugedirs. For these directories, since requests are sent
in parallel to different servers, there is no way (at least, not without losing parallelism)
of stopping the processing of requests on the servers when an operation fails in one of
them. Therefore, the semantics should be necessarily local if we want to improve the
performance. This design decision also means that a client has to process the whole
list of errnos of the batchop reply to verify the return value of each operation.

To clarify the use of batchops on hugedirs, let’s look at the example in Fig. 6.
An application performs an open batch request (openv) to open sixteen files on the
directory /home/usr3 (step 1), which is distributed. The FPFS library in the client
is already aware of the distribution of the directory and has cached its corresponding
distribution list (0 as routing, and 2, 4, 8, 10 as storing OSD+s) (step 2). The library
composes four open batchop messages by calculating the storing OSD+ of each file
through the distribution list and the distribution function of hugedirs (see Eq. 2). Next,
client sends in parallel those four batch requests to the storing OSD+s (step 3). Once
the servers perform the operations, they send to the client the batchop reply with the
list of return values (step 4). In this example, we assume that the creation of f7 and
f12 files fails.We also assume a stop-on-failure semantics, so OSD+ 2 does not create
the f14 file after the failed creation of the f12 file, and OSD+ 8 does not create the
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Fig. 6 Example of a client requesting a batch open (openv) on a hugedir using semantics stop-on-failure.
The creation of files f7 and f12 fails, so files f10, f14 and f15 are not created. Reply reflects the result

f10 and f15 files after the failure on the f7 file. Finally, the FPFS library in the client
sorts the replies in the initial order in which they were requested by using again the
distribution list and the distribution function (step 5). For the sake of simplicity, we
have used 0 as the return value of a successful operation (it is actually a file descriptor),
a negative value (<0) for a failed operation, and N for an operation that has not been
performed due to the semantics.

Our implementation of batchops also considers the case when a regular directory
becomes huge during the processing of a batch request, particularly when such a batch
request creates hundreds or thousands of files. We manage this situation at the storing
OSD+ of the regular directory by processing one operation of the batch request at a
time. If the directory gets huge, the processing stops, the OSD+ distributes the hugedir
among the storing OSD+s, and a reply containing the results of the already completed
operations of the batch request and the distribution list of the now huge directory is sent
back to the client that issued the batch request. This client can then continue issuing
more batch requests, which will proceed in parallel as we have already described.

4 Experiments and methodology

To analyze the performance of a metadata cluster of FPFS supporting batchops, we
have run different benchmarks, and compared FPFS’ performance with and without
batch operations. This section describes the system under test, the benchmarks run to
carry out the analysis, and the objectives that our experiments pursue.

4.1 System under test

The testbed system is a cluster made up of 12 compute and 1 frontend nodes. Technical
specifications of each compute node are summarized in Table 1. Test disks support
OSD+ devices. We call HDD-OSD+ to an OSD+ device on a hard drive, and SSD-
OSD+ to an OSD+ device on a SSD drive.
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Table 1 Cluster nodes’
technical specifications Platform Supermicro X7DWT-INF

CPU Two Intel Xeon E5420 quad-core at 2.50 GHz

RAM 4 GB

System disk Seagate ST3250310NS (250 GB)

Test disks HDD: Seagate ST3250310NS (250 GB)

SSD: Intel 520 Series (240GB)

Operating system 64-bit Fedora 11

Interconnect Gigabit network

Switch D-Link DGS-1248T

As I/O scheduler, CFQ is set for HDDs, whereas Noop is set for SSDs. CFQ is the
default I/O scheduler in the Linux kernel since 2.6.23. Noop usually achieves the best
performance for SSDs compared to the other available Linux schedulers [14,28].

Since metadata performance depends on the backend file system, we use Ext4 and
ReiserFS as backend file systems; formatting and mounting options are also impor-
tant [3]. We format Ext4 file systems with options

-J size=400 -i 4096 -I 512 -O dir_index,extents,uninit_groups

which set the journal size, bytes-per-inode ratio, i-node size, and use of hashing in
directories, extents and some structures uninitiated, respectively. They follow options
used by Lustre when formatting its metadata server [47]. In the case of ReiserFS, we
use the option

--journal-size 32749

to set the journal to 32749 blocks (of 4 kB), which is its maximum allowed size
when not on a separate device. Mount options are quite similar for both file sys-
tems, and try to increase the metadata performance obtained by each one. For Ext4,
we use noatime, nodiratime and data=writeback, while we use notail,
noatime and nodiratime for ReiserFS.We have not used the discard option in
Ext4 for issuing trim commands to the SSD-OSD+s since ReiserFS does not support
this option.

The version of FPFS evaluated in this paper only supports metadata operations,
since we focus on improving that kind of operations.

4.2 Benchmarks

To evaluate the performance of batchops in metadata operations, we use the following
benchmarks:

– Create each process creates a subset of empty files in either shared or non-shared
directories. This benchmark basically generates a write-only metadata workload.
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– Stat each process gets the status of a subset of files in shared or non-shared
directories. This is a read-only metadata workload (remember that noatime and
nodiratime mount options are used).

– Unlink each process deletes a subset of files in shared or non-shared directories.
This is a read–write metadata workload.

Similar tests can be performed by means of well-known benchmarks such as
mdtest [34] and even HPCS-IO [11,35]. However, unlike those benchmarks, our tests
support batchops of different sizes. We have not considered benchmarks that involve
both data and metadata operations since, as aforementioned, we focus on metadata
operations only.

4.3 Objectives

Through the experiments, we aim to analyze four different aspects of batchops:

(a) Optimum number of operations per batch operation.
(b) Throughput and scalability for a single shared directory.
(c) Performance when several shared and non-shared hugedirs are accessed in par-

allel.
(d) Performance when there are one shared and one non-shared hugedir accessed

concurrently.

5 Results

The experiments evaluate the performance and scalability of batchops in FPFS con-
sidering the objectives described in the previous section. We use HDD-OSD+s and
SSD-OSD+s as storage devices, and Ext4 and ReiserFS as backend file systems.

Since it is usual to find many processes running and accessing the storage in an
HPC system, we use several clients (up to 256) in our experiments.

We use FPFS in all the test, since, to the best of our knowledge, no other similar file
system provides batch operations or equivalent mechanisms. Therefore, a comparison
between FPFS and other parallel file systems regarding batchops has not been possible.

Results shown for every system configuration are the average of at least five runs
of each benchmark. Confidence intervals are also shown as error bars, for a 95%
confidence level. We format the test disks before every run of the create test, and
unmount/remount them between tests for the rest.

Before discussing the results, we should mention an issue that has arisen during
the experiments. Theoretically, batchops provide some clear benefits: they reduce the
number of networkmessages interchanged and the network overhead, and increase the
amount of operations per second sent to servers. Due to this, batchops can reduce the
application time, which lessens the chance of a block of being rewritten, and hence,
decreases the number of writes to disk issued by the kernel flush daemon. However,
while batchops are usually beneficial for SSD-OSD+s, there are some cases where
they downgrade the performance when HDD-OSD+ devices are used.
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The problem with HDD-OSD+ devices is that more factors influence their perfor-
mance, and it is not clear how batchops affect the results as a whole in some cases. For
instance, the way files are allocated on disk can affect the performance. When files are
created with batchops, a set of i-nodes for the same client can be allocated together
on disk. However, if files are created without batchops, i-nodes are more likely to be
stored in an interleaved pattern. These two forms of allocation affect performance,
mainly because of two factors: head seeks and disk cache.

We have performed some internal tests (not shown here) to see the behavior of
the stat and unlink tests after creating files with and without batchops. Also, we have
calculated the number of read and write operations for each of these configurations.
In those tests, we have seen that:

– In the case of stat (read-only workloads), having the files created in an interleaved
pattern (no-batch) obtains better results due to the prefetching performed by dif-
ferent caches. This prefetching allows clients to help each other by bringing to
cache i-nodes from other clients. Conversely, when files are created with batch, a
client only helps itself in the stat test, reading mainly its i-nodes. The other clients
have to read their i-nodes, stored in different disk areas, by themselves; this causes
larger head seeks, and can also evict from the disk cache blocks that could use
other clients in the near future.

– In the case of unlink, both read andwrite factors affect the test. Here, batchops help
some configurations, but significantly downgrade performance in others. Reducing
the time of the test by sending more operations to the servers allows us to reduce
the number of writes (as in the create test), but we also need to consider the use of
caches for reads in this test (as in the stat case). Given all this, we cannot always
determine to what extent each factor affects.

Hence, considering the aforementionedfindings,weonlyprovide resultswithHDD-
OSD+s for a single shared hugedir (see Sect. 5.2). For the remaining benchmarks, we
only show results with SSD-OSD+ devices, as they always improve HDD-OSD+s’
results, and because the behavior of batchops ismore homogeneous with SSD-OSD+s.
Moreover, results with SSD-OSD+s have an easier explanation given that there are
less factors influencing the results (especially, there are no head seeks).

5.1 Size of batch operation

We start measuring the optimum number of operations embedded per batch request.
We perform a test where 256 clients create concurrently files in a single directory.
When the directory is shared out among several OSD+s (i.e., it is distributed), the
clients create N× 400,000 files altogether, where N is the number of OSD+s. In our
experiments, N is either 1, 2, 4 or 8, so the clients end up creating 400,000, 800,000,
1,600,000 or 3,200,000 files in total. Since the directory is uniformly distributed, every
OSD+ receives around 400,000 files. When the directory is stored in a single OSD+
(i.e., there is no distribution), the 256 clients also create either 400,000, 800,000,
1,600,000 or 3,200,000 files altogether, making it easy to compare the results when
the directory is distributed and not distributed.
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Figures 7 and 8 show the throughput in operations/s when not distributing and
dynamically distributing the directory, respectively. The figures show the performance
for different batchop sizes (see Table 2). These tests use SSD-OSD+ devices. Results
for HDD-OSD+s are equivalent, although they are not showed here.

Figure 7 shows that when the shared directory is not distributed, with 1000 oper-
ations per batchop we increase the performance between 34 and 73% for Ext4 with
respect to no-batch operations, and between 38 and 75% for ReiserFS, depending
on the test and number of OSD+s. We also see that we already achieve almost the
maximum possible improvement with only 50 operations per batchop, for both Ext4
and ReiserFS, and for any test. Indeed comparing Ba-50 with Ba-1000, although the
number of operations included in the batchop is increased by 20×, Ba-1000 only
improves performance by up to 21.5% and, on average, only 8.4%. Note that in this
test there is a single server receiving concurrent requests from 256 clients. Therefore,
the server is saturated and more operations per batch cannot improve the performance
further.

Regardless the number of operations per batch, the performance downgrades when
the size of the directory increases. This problem ismore evident in the unlink test when
the backend file system is Ext4. The problem is that Ext4 handles larger directories
worse than ReiserFS and, despite SSD-OSD+ devices help avoiding this problem by
removing seek latencies, it is still noticeable in this test.

Figure 8 depicts the results when dynamically distributing the directory. We use a
dynamic distribution that shares out the directory when it exceeds 8,000 files. Once
distributed, the directory object size becomes the same on each OSD+, resulting in
a balanced workload. The larger the number of operations per batch, the better the
throughput. In general, the largest performance is obtained at 500 or 1000 ops/batch,
although, similar to not distributed, Ba-1000 only improves on average 13.0% the
performance achieved by Ba-50.

Focusing on 1000 ops/batch, the largest improvements are obtained in the create
and stat tests. With Ext4, performance is improved between 39 and 88%, and with
ReiserFS, between 46 and 72%. With both file systems and only 8 SSD-OSD+s, and
thanks to batchops, we can produce more than 200,000 creates/s and 350,000 stats/s.

In the unlink test, batchops also improve performance significantly. With Ext4,
we gain between 25 and 55%. With ReiserFS, we obtain improvements between 21
and 23%. In the case of Ext4, thanks to batchops, we reach 200,000 unlinks/s with
just 8 SSD-OSD+ devices. There is, however, an odd behavior of Ba-10 on Ext4.
As aforementioned, although batchops always reduce the network time, there can
appear side effects that can improve the performance even more, or downgrade the
performance despite the reduction in network time, specially for small batchops. This
seems to be the case for Ba-10, which reduces the amount of byteswritten by 10%with
respect to NoBa when there are 8 OSD+s, but increases that amount by 8.6% when
using 4OSD+s, thereby eliminating the improvement that the reduction in the network
time could provide to the overall time. We have not found a satisfactory explanation
for this different behavior of Ba-10 yet.

To summarize, given these results, particularly when the directory is distributed,
embedding 500 or 1000 operations per batch request seems a good option. Larger
requests, although possible, would provide little benefit, since the improvement
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Fig. 7 Operations per second obtained by FPFS on SSD-OSD+s with different number of operations
embedded in a batchop, when 256 clients create, stat or unlink files on one non-distributed shared directory.
NoBa means that batching is not applied. Graphs on the left show results for Ext4 and those on the right
for ReiserFS. Note that the range of the Y axis can change from one test to another
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Fig. 8 Operations per second obtained by FPFS on SSD-OSD+s with different number of operations
embedded in a batchop, when 256 clients create, stat or unlink files on one distributed shared directory.
NoBa means that batching is not applied. Graphs on the left show results for Ext4 and those on the right
for ReiserFS. Each SSD-OSD+ ends up storing 400,000 files. Note that the range of the Y axis can change
from one test to another
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Table 2 Batch-operation sizes
evaluated

Note that 1 operation per
batchop is really equivalent to
not having batchops

Size (operations per batchop) Label in figures

1 NoBa

10 Ba-10

50 Ba-50

100 Ba-100

500 Ba-500

1000 Ba-1000

achieved when going from 500 to 1000 is usually small already, and even negative in
some cases. Indeed, Ba-1000 includes 2× more operations per batchop than Ba-500,
but it improves only by up to 6.1% the performance provided by Ba-500.

5.2 Single shared directory

Now, we compare the performance and scalability of batch and regular operations
on a single distributed shared huge directory. In this test, a hugedir is accessed by
256 clients at the same time to create, get the status of and delete files. In addition,
we evaluate the effect of the directory size by creating F × N files in the directory,
where F is either 200,000, 400,000 or 800,000, and N is the number of OSD+s. For
instance, when having 8 OSD+s, the directory has 1,600,000, 3,200,000 or 6,400,000
files, respectively, that are equally distributed among the 8 OSD+s. Unless otherwise
indicated, each batch request includes 1000 file operations.

For Ext4 and ReiserFS, Figs. 9 and 11 depict FPFS performance in operations/s
obtained with HDD-OSD+ and SSD-OSD+ devices, respectively. Figures 10 and 12
show the speedup achieved for the same devices. In the figures, results are labeled
as “N fi, Ba” and ”N fi, NoBa”, where N corresponds to the final number of files in
every directory object (or OSD+, since there is only one directory object per OSD+
in this test), and ”Ba” and “NoBa” stand for batching and no batching, respectively.

5.2.1 HDD-OSD+

Results for HDD-OSD+s and a single shared hugedir are depicted in Figs. 9 and 10.
As we advanced in the beginning of the section, with HDD-OSD+s there are more
factors involved in the results, and it is not always clear to what extent they affect the
different configurations. Moreover, since the behavior and performance observed here
are repeated in the other tests carried out with HDD-OSD+, conclusions showed here
can be extrapolated to a large extent.

For the create tests, Fig. 9a shows that batchops always performbetter than no-batch.
Namely, with Ext4, batchops improve performance over 50% for 8 OSD+s, whereas
with ReiserFS, the improvement of batchops is more than 40%. The configurations
with no-batch suffer the network limitation. In the create test, four network messages
are generated per file: two (request and reply) for an open or creat call, and another
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Fig. 9 Operations per second obtained by FPFSwith HDD-OSD+swhen using one shared hugedir.Graphs
on the left show results for Ext4 and those on the right for ReiserFS. Note that the range of the Y axis can
change from one test to another
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Fig. 10 Scalability obtained by FPFS with HDD-OSD+s when using one shared hugedir. Graphs on the
left show results for Ext4 and those on the right for ReiserFS. Note that the range of the Y axis can change
from one test to another
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two for closing the returned file descriptor. This significantly increases the amount of
networkmessages compared to the other tests, and, therefore, batchops aremore effec-
tive. For instance, when creating 200,000 files, FPFS interchanges 800,000 network
messages when regular operations are used, whereas with batchops only 800messages
are interchanged since each batch request includes 1000 operations. Moreover, this
benchmark only issues write requests that go to cache, instead of directly accessing
the disk. Therefore, batchops perform better than regular operations by sending more
requests in each message.

However, for stat and unlink, batchops are not always beneficial, and performance
of this test depends not only on the backend file system, but also on how files are
created, as we have already explained at the beginning of this Sect. 5.

For stat and Ext4, batchops improve performance compared to no-batch for small
directory objects (200,000 files), and for 4 and 8 OSD+s for larger directory objects,
where the reduction of network traffic and the higher number of operations per second
are more noticeable. For ReiserFS, batchops also improve for directory objects with
small number of files, and for 400,000 with 4 and 8 OSD+s, but not for 800,000 files.
In general, as directory objects are larger, batchops performance decreases mainly
because of the increase in head seeks, and the poor use of caches compared with no-
batch. To understand this fact, we should take into account the way files are created
and then read (see the beginning of Sect. 5). When we use no-batch, files are in an
interleaved pattern. Each disk block read by a client will probably help other clients
because it will probably contain some of their i-nodes. A side effect of this is that
clients roughly proceed at the same pace, so disk heads usually move forwards and
disk caches are more efficiently used too. When using batchops, each client only helps
itself, so the other clients have to issue read requests that produce large head seeks
forwards and, what is worse, backwards, incurring in large latencies. This behavior is
more noticeable as directory objects grow, and specially in ReiserFS, where batchops
perform 60% worse than regular requests.

In the unlink test, we have two different behaviors depending on the file system
(see Fig. 9c). Ext4 benefits from batchops for 4 and 8 OSD+s in any case, while
ReiserFS only benefits for 4 and 8 OSD+s when there are 200,000 files and 400,000
file per OSD+. As before, performance downgrades as the size of the directory grows.
Several factors are intervening here, particularly the type of workload, which mixes
reads (similar to those issued by stat) and writes. As we have just seen, both Ext4 and
ReiserFS downgrade performance with batchops for some configurations in stat, and
this problem also affects reads in this unlink test.

However, when it comes to writes, Ext4 benefits from batchops, since many disk
blocks are entirely modified in a short time (e.g., blocks full of i-nodes of files of the
same client), and are usually written to disk only once despite the frequent commits
in Ext4. This reduces the duration of the test, which in turn also reduces the chance of
a block of being modified several times and, therefore, it reduces (again) the amount
of writes. Without batchops, a disk block (e.g., a block with i-nodes from different
clients) can be modified at different moments, and written to disk several times. This
increases the number of writes and head seeks, so the test takes longer.

ReiserFS also reduces the number of write requests, but its performance is sig-
nificantly determined by its behavior for read requests, as that seen in the stat test.
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Therefore, batchops achieve better results when directories are smaller (200,000 files
per OSD+). ReiserFS uses a B-tree+ to store the directory and, apparently, that tree
produces a more random pattern to place files on disk, which later produces a worse
use of caches.

Figure 10 shows that for HDD-OSD+s scalability is super-linear, and usually bet-
ter with batchops than with regular requests. Directory size impacts performance,
therefore for non-distributed configurations performance with batchops significantly
downgrades. Scalability for ReiserFS is usually smaller than for Ext4, because Reis-
erFS is less sensitive to the directory size. For example, Ext4 achieves a scalability
higher than 30 for unlink, while ReiserFS slightly exceeds 20. Also, in the create test,
Ext4 achieves larger speedups than ReiserFS when the shared directory is large (that
is, when there are 8 OSD+s).

5.2.2 SSD-OSD+

Results for SSD-OSD+s and a single shared hugedir are depicted in Figs. 11 and 12.
Now, batchops perform better than regular operations for all the tests.

Batchops are specially helpful for the create test, because they reduce the network
traffic. Batchop significantly increases the number of requests per second for each
OSD+ by sending more requests to each server in each message, and sending them
in parallel to all the servers too. Thanks to batchops, FPFS is always able to improve
performance by 50% at least, doubling the number of operations per second in some
cases of the create test.

Ext4 takes more advantage of batchops with SSD-OSD+ devices than with HDD-
OSD+s in the create test. For instance, with 400,000 files per OSD+, batchops increase
the number of files created per second by 30% for SSD-OSD+s and Ext4 with respect
to the results obtained for HDD-OSD+s, while they only improve the results by 5%
when the backend file system is ReiserFS.

In the stat test, for both Ext4 and ReiserFS, batchops improve performance by, at
least, 25%. The improvement is smaller than in the create test because the reduction
in network traffic is smaller too, since stat already produces half the network traffic
than create.

In the unlink test, the backend file system determines the results to a large extent,
beingExt4 the file system that better leverages batchops. Specially for large directories,
Ext4 performs a 60% better with than without batchops, while ReiserFS achieves a
23% of improvement. This is because batchops cause a better use of the different
caches when Ext4 is the local file system. Batchops allow the serving threads in the
storage nodes to carry out a request immediately after the previous one,withoutwaiting
for a new request from a client after serving a request. This specially helps Ext4 which
reads and writes more blocks than ReiserFS. For 800,000 files, Ext4 exceeds RAM
capacity, and using batch helps reducing the number of written blocks. By writing
less, we also improve the reads performance, since there is less competition for disk.
In the case of ReiserFS, it does not exceed the maximum capacity of RAM for our
tests. Batchops still provide some benefits, but they are less noticeable.

Therefore, with batchops, disk blocks in the buffer cache, fetched during the
processing of a request, are likely to be used in the next request of the same thread
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Fig. 11 Operations per second obtained by FPFSwith SSD-OSD+swhen using one shared hugedir.Graphs
on the left show results for Ext4 and those on the right for ReiserFS. Note that the range of the Y axis can
change from one test to another
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Fig. 12 Scalability obtained by FPFS with SSD-OSD+s when using one shared hugedir. Graphs on the
left show results for Ext4 and those on the right for ReiserFS. Note that the range of the Y axis can change
from one test to another
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before being evicted by requests of other threads. For ReiserFS, batchops provide
a smaller benefit. Since ReiserFS produces a quite “random” access pattern from a
cache’s point of view [22], the improvement that can be obtained from the “aggregate
disk cache” is limited.

Figure 12 shows that batchops hardly affect scalability. For the create test, the most
noticeable change is for 800,000 files per OSD+, and 8 OSD+s, where scalability
is super-linear. In the stat test, however, batchops slightly reduce the scalability for
ReiserFS, and for unlink it remains super-linear for both Ext4 and ReiserFS. With
batchops, we significantly reduce the amount of network traffic, specially when the
directory is not distributed. Therefore, when we distribute a directory with batchops,
the network reduction is not as high as the one achieved with no-batchops.

These results diverge from the ones with HDD-OSD+s, where batchops signifi-
cantly increased the scalability. While, with batchops and HDD-OSD+s, the directory
size significantly affected several tests, with SSD drives, again, we remove all the head
seeks that provoked this increment.

5.3 Multiple hugedirs

Distribution is beneficial for a single hugedir accessed by hundreds or thousands of
clients. However, results can be rather different when several hugedirs are concurrently
accessed by a few clients. In this section we analyze the performance of batchops
when several huge directories are concurrently accessed by a few clients by using
SSD-OSD+ devices. The following tests use 8 directories (each containing 320,000
files) accessed by 1, 16 and 32 clients per directory. Note that, 1 client per directory
is an example for non-shared directories, and with 32 clients per directory, there are
256 clients altogether. Once again, each batchop request includes 1000 operations.

Tables 3 and 4 show, for each number of processes per directory, absolute appli-
cation times when hugedirs are never distributed in the first column. The column
labeled Dyn gives relative application-time variations, in percentage, with respect to
the absolute times, when hugedirs are distributed dynamically (i.e., when a directory
exceeds 8000 files). The column labeledAlw also gives relative application-time varia-
tions, in percentage,with respect to the absolute times, butwhen anydirectory is always
distributed (i.e., when threshold is 0). Confidence intervals (not showed) are smaller
than 10% of the mean. A positive/negative percentage means an increase/decrease
in time, and, hence, a worse/better performance. While Table 3 shows results for
SSD-OSD+s without batch operations, Table 4 shows results for SSD-OSD+s with
batchops.

The first thing we can observe is that, when comparing absolute times in columns
never, batchops improve performance in general (for both Ext4 and ReiserFS), spe-
cially when there is one client per directory. When directories are distributed, results
obtained by batchops are more variable, as it already happens with regular operations,
and they also depend on the number of OSD+s, number of processes per directory and
backend file system. However, there are some noticeable differences now with respect
to a system without batchops.
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Table 3 Performance obtained by FPFS on SSD-OSD+ devices with Ext4 and ReiserFS, when 8 hugedirs
are accessed concurrently and no-batch operations are used

Test #OSD+ 1 Client/directory 16 Clients/directory 32 Clients/directory

Never(s) Dyn (%) Alw(%) Never(s) Dyn (%) Alw (%) Never(s) Dyn (%) Alw (%)

(a) Ext4

Create 1 138.54 0.09 0.43 81.39 −0.15 −0.56 84.68 −0.35 −0.11

2 121.82 14.37 13.28 39.94 11.81 10.47 42.17 9.09 6.27

4 98.60 19.82 20.95 24.50 15.11 3.74 25.28 1.05 0.43

8 87.47 23.10 20.59 17.35 13.02 5.85 17.70 −2.00 −1.71

Stat 1 78.87 0.12 −0.66 33.13 0.08 −0.17 34.43 −1.28 −0.75

2 73.04 4.14 4.06 18.65 −2.84 −3.25 19.46 −6.94 −8.63

4 68.33 5.35 5.88 13.37 −4.23 −7.75 12.98 −15.95 −13.74

8 66.93 5.56 5.14 11.63 −4.26 −5.42 10.62 −3.80 −3.62

Unlink 1 122.82 1.12 −0.10 181.86 −2.12 −2.35 191.35 −0.13 2.10

2 75.69 10.86 10.84 52.63 50.63 38.98 53.59 83.65 60.73

4 65.79 19.15 18.75 24.59 91.18 65.92 25.23 95.39 81.80

8 56.31 24.29 22.06 14.57 5.19 3.88 14.57 25.36 5.29

(b) ReiserFS

Create 1 132.05 −0.92 −0.94 110.58 1.13 −0.44 113.07 1.66 0.57

2 119.86 9.13 8.50 51.14 8.30 5.91 53.81 8.15 6.43

4 99.84 10.34 10.50 25.61 9.40 6.47 26.07 9.05 6.19

8 88.52 10.94 11.28 16.46 3.19 −0.67 16.39 −4.87 −8.44

Stat 1 76.46 −0.18 −0.49 41.49 0.09 −0.26 42.84 −0.38 −0.09

2 70.89 4.87 3.90 20.16 4.41 4.21 21.10 3.43 1.45

4 68.08 3.90 4.35 11.68 1.00 1.70 11.69 −4.78 −4.84

8 66.64 4.39 5.67 10.57 1.11 0.25 9.77 1.82 2.07

Unlink 1 160.64 −0.58 −0.61 173.02 −1.10 1.10 190.02 −1.93 −1.06

2 84.53 1.88 1.68 82.98 5.02 2.79 86.80 12.23 11.26

4 67.13 7.53 9.42 40.43 5.11 5.76 40.99 17.83 15.03

8 62.70 5.89 6.08 20.93 5.17 3.08 21.55 10.21 10.18

For Ext4 and the create test, distribution and batchops improve results with respect
to never when there is 1 client per directory, but slightly downgrade them when the
number of clients per directory grows. However, absolute times are inferior now in
any case. For the stat operations, results are comparable with those without batchops,
except for 1 client per directory and 8 OSD+s, where the distribution with batchops
increments the application time from 5 to 56%. For the unlink test, distribution with
batchops behaves much better than without batchops, and now there is only a small
increase in the application time. Moreover, with 8 OSD+s, batchops are able to signif-
icantly reduce the application time. Exception appears for 1 process per directory and
2 OSD+s, although, considering absolute times, batchops still reduce the application
time considerably.
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Table 4 Performance obtained by FPFS on SSD-OSD+ devices with batchops, and Ext4 and ReiserFS,
when 8 hugedirs are accessed concurrently and batch operations are deployed

Test #OSD+ 1 Client/directory 16 Clients/directory 32 Clients/directory

Never(s) Dyn (%) Alw (%) Never(s) Dyn (%) Alw (%) Never(s) Dyn (%) Alw (%)

(a) Ext4

Create 1 74.32 −2.14 −2.14 75.28 −2.40 −2.31 74.10 −4.34 −3.75

2 37.44 6.31 1.78 37.27 15.06 11.63 37.15 17.52 33.45

4 23.01 −4.55 −10.35 20.97 26.05 21.72 21.38 24.75 21.45

8 16.27 −33.73 −34.73 13.52 13.78 9.12 13.63 18.96 10.97

Stat 1 28.29 −0.24 −0.61 17.96 3.74 4.13 18.58 2.39 7.80

2 24.74 −8.44 −9.03 10.77 −3.11 0.61 12.35 −7.71 −6.73

4 22.04 6.37 7.43 9.23 −5.80 −1.53 9.68 −5.35 −9.98

8 19.69 56.67 55.74 8.28 −5.28 −3.49 8.69 −2.83 −6.43

Unlink 1 133.07 −1.89 −4.21 201.93 −12.36 −11.80 214.32 −9.46 −7.33

2 33.84 56.10 46.47 53.04 6.13 8.27 58.63 15.72 8.39

4 20.08 23.33 3.73 20.53 2.02 −1.09 21.27 19.41 13.85

8 13.12 −26.83 −30.60 12.63 −26.01 −26.09 12.79 −28.34 −29.10

(b) ReiserFS

Create 1 85.54 0.22 −0.33 94.57 −3.41 −2.35 100.71 −11.75 −11.41

2 42.29 −0.71 −4.97 43.91 18.67 14.06 40.81 24.78 16.95

4 24.68 −15.96 −19.14 20.59 35.66 32.90 20.01 14.55 25.46

8 16.61 −32.26 −35.82 13.20 18.61 13.98 12.89 7.29 −6.86

Stat 1 25.01 −1.03 0.45 23.83 −0.62 −0.64 23.08 1.86 2.00

2 21.57 −4.80 −5.87 11.69 3.17 10.65 12.60 −1.41 2.68

4 19.33 17.54 17.33 8.23 2.45 0.19 8.24 −1.18 5.72

8 18.38 64.06 65.24 6.78 16.83 18.65 8.00 1.34 1.77

Unlink 1 141.00 −1.98 −2.66 144.73 0.41 −1.48 150.40 −3.10 −3.38

2 70.91 −5.65 −6.44 71.51 −1.62 −4.76 71.94 −3.65 −4.28

4 32.16 2.90 2.97 34.64 0.60 0.22 35.11 −3.48 −4.31

8 18.33 −8.13 −7.57 18.06 −2.87 −5.96 18.31 −5.76 −4.00

For ReiserFS and the create benchmark, the behavior is similar to that of Ext4.
For the stat test and 32 clients per directory, results are comparable to those we have
without batchops. For 1 and 8 clients per directory and for 8 OSD+s (and, sometimes,
4 OSD+s), distribution increments times respect to never more than when we do not
have batchops. For the unlink case, differently towhat happenswith regular operations,
distribution and batchops reduce the application time with respect to never.

In summary, although the distribution of hugedirs can downgrade the performance
in some cases, results also show that batchops can help to reduce the possible negative
effects caused by such distribution. We believe this is because the threads attending
requests in the servers can process more requests in a shorter time. This improves
caches’ performance and reduces the overhead produced by disk contentions. The
results obtained with hard drives (not included) confirm these findings.
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5.4 Mixed directories

Figure 13 depicts the throughput in operations/s achieved by FPFS with SSD-OSD+
devices when two hugedirs, a distributed one and a non-distributed one, are accessed
at the same time by 128 clients each. Results are labeled as “Dis-Ba”, “No-Dis-Ba”,
“Dis-NoBa”, and “NoDis-NoBa”, where “Dis” stands for distributed and “Ba” for
batching. There are always 1,280,000 files per directory, evenly shared out among
clients. Again, each batchop includes 1000 operations. Batchops always improve the
performance of both directories in all cases, and, as in a single shared directory, the
reduction in network traffic and a better use of the caches explain the improvements.

In the create test, batchops achieve an improvement of more than 30% for both
the non-distributed and distributed directory, and both Ext4 and ReiserFS, due to the
reduction in network traffic.

Batchops obtain the best improvements in the stat test. For the non-distributed
directory and Ext4, batchops improve the throughput by 34% at least, and by 44%
with ReiserFS. In the case of the distributed directory and Ext4, batchops achieve
a maximum improvement of 36%, and with ReiserFS the improvement reaches a
40%. Since this is a read-only test, which reads related directory entries and i-nodes,
batchops allow servers to make a better use of caches and prefetching, because they
process many requests in a row.

Finally, results in the unlink test are similar to those in Sect. 5.2.2 where Ext4
performs better than ReiserFS as the number of OSD+s increases. For the distributed
directory, Ext4 achieves a 40% of improvement with 8 OSD+s, while ReiserFS gets
16%. For Ext4 and the non-distributed directory the improvement is around 30% and,
in the case of ReiserFS, the improvement is around 25%.

6 Related work

To the best of our knowledge, batchops have not been proposed in the parallel/distri-
buted file systems field, although some network file systems support similar ideas. For
instance, NFSv4 [30] reduces latency for multiple operations by bundling different
RPC calls into a single request. Operations lookup, open, read and close, for
example, can be sent once over thewire, and the server can execute the entire compound
call as a single entity. Version 2 of the Server Message Block (SMB2) [32] is also
able to send an arbitrary set of commands in a single request, thereby improving
the performance by reducing the number of network round-trips. The compounding
ability in SMB2 is very flexible; commands packed in a single request can be unrelated
(executed separately, potentially in parallel) or related (executed in sequence, with the
output of one command available to the next); responses can also be compounded or
sent separately.Note that, for both networkfile systems, there exists a single server.Our
approach, however, allows batch operations in a distributed multi-server environment.

Ideas similar to batchops have been used inmany other different areas. For instance,
Linux kernel 3.14 [50] includes a feature, called automatic TCP corking, to help
applications to do small write()/sendmsg() on TCP sockets. Previous versions of Linux
also allow the use TCP corking, although Linux kernel 3.14 is the first one to include
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Fig. 13 Operations per second obtained by FPFS with SSD-OSD+s when a distributed hugedir and a
non-distributed hugedir are concurrently accessed by 256 clients. Graphs on the left show results for Ext4
and those on the right for ReiserFS. Note that the range of the Y axis can change from one test to another
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automatic TCP corking. This feature allows to delay the dispatch of messages in a
socket to coalesce more bytes in the same packet, thereby lowering the total amount
of sent packets. However note that it is not a proper batch operation. This technique
complements batchops, although a study of performance of both is postponed to the
future. Also in the network area, IX [5] is an operating system that uses an adaptive
batching in every stage of its network stack to improve performance on congestion. IX
batches network requests in the presence of network congestion and allows application
threads to issue batched system calls. Tyche [21] is a network storage protocol over
raw Ethernet that uses an adaptive batching mechanism to achieve high link utilization
under high degrees of I/O concurrency and small I/O requests. Tyche proposes a
dynamic technique that varies the degree of batching depending on the throughput
achieved. In Tyche, a batch message is composed of several I/O requests, reads or
writes, issued by the same or different application threads.

Similarly, but in the grid computing area, Chervenak et al. [10] use what they call
bulk operations in the implementation of a Replica Location Service (RLS). RLS
provides a mechanism for registering the existence of replicas and discovering them
within a grid environment. They store catalogs that map logical names to target names.
In turn, clients send queries to the servers to discover replicas associated with a logical
name. Among the operations they support, they include bulk operations to add/delete
entries and/or attributes to the catalogs, and to perform query operations on them. They
include 1000 requests per bulk operation. Their experiments show a significant perfor-
mance improvement for a single client. However, as the number of clients increases,
the performance advantage of bulk queries decreases. We obtain a similar behavior
in our experimental results, although our improvement with batchops versus regular
operations is much higher than theirs, and batchops still provide noticeable benefits
with a large number of clients.

OpenStack Swift also includes in its Object Storage API two bulk operations:
delete [38] and archive extraction [37]. Bulk delete can remove up to 10,000 objects
or containers (configurable) in one request. The archive extraction allows to expand a
tar file into a Swift account in a single request. Only regular files are uploaded; empty
directories, symlinks, etc. are not uploaded.

Another area where reducing the number of requests is especially useful is Internet.
The next major version of HTTP (HTTP/2 [6]) will use bulk operations to accelerate
communications. Currently, services like Google or Facebook also try to reduce the
number of HTTP requests by batching operations together. Google [27] uses batch
requests in Google Base [24], Google Spreadsheet [23], Google Calendar [25] and
Google Cloud Storage API [26]. Specifically, the Google Cloud Storage API provides
with batch requests to bundle API calls together and reduce the number of HTTP
connections clients have tomake. In a similar vein, Facebook provides its AdsAPI [15]
and Graphics API [16] with batch requests to send several requests of the same type
in a single HTTP request. Depending on the type of operation, the maximum number
of requests per batch operation varies.
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7 Conclusions

In distributed or parallel file systems, workloads that perform the same operation on
multiple files, such as the migration of a directory, the creation of a set of files in a
directory, or the removal of all the files in a directory, usually incur in large amounts
of network traffic. To deal with these workloads in a more efficient way, we present
the design and implementation of operations that embed hundreds or thousands of
operations of the same type into a single message. These operations are possible in
FPFS because its namespace distribution is based on directories, which usually contain
related files. With these operations, that we call batchops, we significantly reduce the
amount of network messages and, therefore, network delays and round-trips. We also
manage to reduce the overall network congestion, making a better use of the available
I/O and processing resources.

We add the management of batchops to FPFS by including specific operations to
create (openv and closev), get the status (statv) and unlink (unlinkv) files in
a batch fashion. For each operation, we modify the message format to include a list of
entries within the same directory. Our batch operations include semantics to specify
the behavior in case of failure of an operation in the batchop. The implementation
also supports huge directories in a transparent way; clients do not need to differentiate
between distributed and non-distributed directories when issuing batchops.

The experiments show that batchops help us to reduce the network overhead,
and increment the number of operations/s in OSD+s, improving FPFS performance.
Specifically, in tests that make a more intensive use of the network, such as the cre-
ation of a single shared directory, performance improves by a 50% at least, reaching
a 100% in some cases. In the case of stat, the improvement is always around 25%.
Finally, for the unlink test, which issues both read and write requests, the backend file
systems determine results to a large extent, being Ext4 the one that better leverages
batchops with an improvement of 60%, while ReiserFS obtains a 23% when using
this kind of operations.

Thanks to batchops, FPFS can create, stat and delete around 200,000, 300,000 and
200,000 files per second, respectively, with just 8 SSD-OSD+ devices and a regular
Gigabyte network.

Finally, our experiments also show that, while batchops are usually beneficial with
SSD-OSD+s, there are some cases where they downgrade the performance when
HDD-OSD+ devices are used. The problem is that batchops affect the way files are
allocated on disk. For HDD-OSD+s, this different layout increases the I/O time in
some cases due to more head seeks and less efficient disk caches.

Although some common file operations can already take advantage of batchops
(e.g., ls -l and rm -rf), as future work, we plan to identify specific HPC appli-
cations and scenarios that can benefits from our proposal.

Acknowledgments Work supported by SpanishMICINN, and European Comission FEDER funds, under
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