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Abstract Cloud computing is emerging as a promising platform for ubiquitous com-
puting where various types of resources are offered on pay-per-use basis. Cloud
services are basically offered at three levels; infrastructure, platform and software.
Service providers of these services are often interested to maximize their revenue and
at the same time Cloud users expect for optimum quality of services. Sometimes, these
two may conflict and admission of the requests is to be done that satisfies both Cloud
providers and consumers. Game theory is a mathematical study of strategic decision
making in which two players are involved in decision making based on their strategic
moves. This work, applies the concept of game theory in admission control for Cloud
requests. A model has been proposed and its performance study is done by simulating
it in CloudSim simulator. Results are encouraging and may suggest for its possible
inclusion in the Cloud middleware.

Keywords Cloud services · Admission control · Churning · Game theory · Nash
equilibrium

1 Introduction

In current business world, Cloud computing has made the technology, specifically
software, as ubiquitous. SaaS, a software service model of cloud computing, is the
delivery of web-based software to customer over the internet, i.e., a user can access
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the software through a web browser only. SaaS providers offer customers to access
pre-deployed application over the Internet and customers do not have to bother about
the license, the upgradation or the maintenance of the software. Users pay only for
access to a particular application or software. SaaS providers are often interested in
maximizing their profit and ensuring the quality of service (QoS) for its customers
to enhance its reputation in the Cloud market. Currently, many corporate customers
are migrating to SaaS leading to the emergence of many SaaS providers in the Cloud
market. Thus, customers have plenty of opportunity to choose their service providers.
Some works [1–3] even propose Cloud search engine that helps Cloud users in the
selection of best Cloud provider according to their QoS requirements.

Since customers have the option to choose a suitable provider, it brings a new
perspective in the Cloud market, called ‘churning’. If a user is not satisfied with
current service provider’s offering, she/he may leave the current provider and switch
to another suitable service provider, a process called as churning. Providers try to
meet their customer’s need without sacrificing its profit. Any provider may stop its
services to the customer if that service is not fetching a gain to the provider. Cloud
providers’ decision space includes two decision problems [4]; first is to decide the cost
that customer has to pay for a particular service and second is to accept a right kind
of request in the system. Right kind of request here employs a request that increases
provider’s revenue as well as satisfies the customer. Many researchers, currently in the
field ofCloud computing, focus on the second problem, i.e., tomaximize the provider’s
revenue by admitting a request that gives maximum profit. As the Cloud market is
quite global now, to consider only the revenue maximization does not suffice and the
churning of customers should also be given a heed. For example, consider a situation in
which an application service provider (ASP) provides online gaming services. A group
of friends fetching the services fromASPmay result in delay of services to some of its
existing gamers because of resource overutilization. It is possible that some existing
gamers, being unsatisfied from the current ASP,may switch their ASP. So, if a provider
accepts all incoming requests, it may cause SLA (service level agreement) violation of
accepted as well as upcoming requests resulting in resource overloading. Admission
control has been used to deal with the aforementioned problem [5]. Thus, providers
must use some admission control strategy to decide whether to accept a new request
considering the load of existing requests being served by the provider.

Generally, Cloud users believe that resources available in a cloud are infinite which
is not true. For example, a company can hire out its spare data center resources to some
external users as the cost that an external user pays may contribute to amortize the
expenditure of the data center. This work considers the SaaS providers in the Cloud
with finite resources. The objective of a SaaS provider is to maximize its revenue as
well as to satisfy its customers. If number of requests is more than the capacity of the
provider, it decreases the customer’s satisfaction as well as provider’s revenue. The
proposed model for admission control allows such requests that maximize the revenue
of SaaS provider considering the churning behavior of the customers in satisfying the
Quality of Service.

Game theory is a mathematical study of strategic decision making. Strategic
decision makers, also called players, take the decisions from their available set of
alternatives to optimize (maximize/minimize) some objective. Objective function for
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a player depends on the actions (choices) of player and also its opponents. Thus,
objective function of a player cannot be optimized independently of other player’s
action. This binds the players together in a decision making. In the present work,
SaaS provider has to take decisions for admission of request based on the objective
of revenue maximization and customer has to take decision of availing the provider’s
services based on the satisfactory performance in terms of service quality and cost. So,
this whole scenario can be observed as a game where SaaS provider and customers
are the players. Game theory is most appropriate to define this scenario and therefore
is used to find the solution of this game.

Several challenges that arise, in designing the proposed model, are as follows. First
is to define the admission control problem in form of a game. Second is to include
churning behavior of the users in the game. Third is to formulate the game and to find
an equilibrium solution of the game. Finally, a resource control component is to be
defined to make the system feasible and stable. With aforementioned challenges, the
contribution of the proposed work is as follows.

• Since main objective is to maximize the revenue, game is considered as n + 1-
person non-cooperative game in which n players are n upcoming requests and
another player is SaaS provider. For a specific request, this game is treated as
two-player game to understand the real scenario of Cloud where requests come
one by one.

• To define the churning behavior of the user, sigmoid function is considered to
define the utility. Parameters for sigmoid function are QoS of the requests.

• Formulation of the proposed game achieves either Nash equilibrium in pure strat-
egy or has dominant strategy for SaaS provider.

• Resource control component is defined which assign resources to the users based
on their class and make the system feasible and stable.

The outline of this paper is as follows. After introduction in Sects. 1, 2 gives an
overview of some work related to admission control and game theory. It also com-
pares and contrasts the proposed work with other existing works. The architecture of
the proposed framework is introduced in Sect. 3. In Sect. 4, admission control policy is
described which includes formulation of admission control game, solution of admis-
sion control game and churning behavior of customer. Section 5 describes the resource
control component. The performance study of the proposed model is done by simula-
tion in Sect. 6, whereas Sect. 7 concludes the work highlighting some suggestions for
future work.

2 Related work

Revenue maximization is an important issue while allocating the Cloud resources to
the users. Load balancing, scheduling and resource provisioning, all three are impor-
tant to maximize utilization of resource, etc., which in turn may increase revenue of
the provider. With the introduction of service level agreement (SLA), to satisfy the
customers and make them comfortable with the Cloud, some new issues have been
emerged, e.g., provider has to pay some penalty to the user in case of SLA violation.
So, with the objective of revenue maximization and customer satisfaction, only those
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requests are to be admitted by the provider that meets the given two objectives before
applying scheduling and load balancing algorithm [7]. A proper admission control pol-
icy should be in place to take such decisions and is an important research issue. This
decision is based on some characteristic functions and constraints. Though, admission
control is a fundamental problem in Cloud computing only a negligible amount of
work is done on this leaving a good scope for contribution.

In [6] and [8], a general mechanism for admission control with SLA satisfaction
by avoiding overutilization of resources is described. In [9], authors proposed a cloud
auto-scalingmechanism to automatically scale up and scale down computing instances
based on the dynamic workload information and application level performance need,
i.e., deadline. In [9], authors created an admission control case in their mode; if budget
of request of a customer is not sufficient, customer can leave the system otherwise
provider will accept the request and try to run it on the instance with maximum
computing power within the constraint of the customer’s budget. Thus, [6,8,9] do not
give a clear view or a dedicated model for admission control and [9] considers only
deadline as a performance desire. Also, they do not incorporate any concept of SLA
violation.

An auction-based admission control method is proposed in [10], which is Sybil
immune (i.e., a user cannot increase its payoff by submitting a query that he/she cannot
value) and strategy proof for continuous queries. User submits a query with a bid she is
willing to pay for query processing. Admission control mechanism determines which
query it should admit tomaximize the profit andusersmaximize their payoff by bidding
their true valuation for having their query run. But in [10], requests are represented by
bid only as this work is focused on query only, whereas a request in Cloud may have
its QoS requirement, e.g., deadline.

Another admission control policy for deployment of application in data centers is
proposed in [11]. Data center may have many physical servers to deploy a requested
application, but a situation may arise when demand is very high that the system is
not able to handle it. Different requests may have different resource requirements
and revenue margin. Markov decision process (MDP) is used in [11] to model this
problem and approximate dynamic programming is used to optimize the admission
control mechanism. Drawback with [11] is that it does not address QoS requirement
of the request and also no attention is given to the customers that are ready to pay
more. [4] introduced a policy-based approach that can predict provider’s revenue and
resource utilization achieved under stochastic demand. The work in [4] rejects the
request on the basis of a reservation price only without considering the satisfaction of
users.

The problem of optimal allocation of elastic services on virtualized physical
resource has been identified and a probabilistic admission control approach is intro-
duced to solve this problem in [12]. It incorporates a probabilistic approach to calculate
extra computational resources required for a request for elasticity reasons and allows
scaling of corresponding allocated physical resource to services. It incorporates SLA
violation in the form of penalty. In [13], an adaptive provisioning technique is pro-
posed based on a queuing model. It uses workload information to adapt the changes in
the workload of an application and provides an adaptive management and guaranteed
service time. It defines queue length to accept requests for each virtual machine; if
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queue is full it does not accept any request. It also does not consider satisfaction of
users for admitting the requests. Both [12,13] do not support QoS parameters such as
budget and deadline. Also, in [12,13], there is no alternate strategy in case of limited
resource availability.

In [14], authors proposed an autonomic pricing mechanism with an admission con-
trol policy that considers deadline and budget as hard QoS constraints. Therefore, this
model do not incorporate SLA violation, i.e., penalty. A learning-based admission
control in Cloud computing, proposed in [15], employs an automatically supervised
naive Bayes classifier to classify incoming requests as admissible when request maxi-
mizes the utility of Cloud provider and otherwise non-admissible. It does not consider
profit as a parameter in utility of provider.

In [5], authors proposed a model comprising of users, SaaS providers, IaaS
providers, admission control and scheduling. SaaS provider may have its own resource
or it may rent resources from IaaS provider. In former case, administrative cost and
maintenance cost may be high and in latter case, QoS may be affected because of vari-
able performance. In aforementioned work, admission control decides that whether to
accept a request (by assigning the request to available resource or creating a virtual
machine then assigning the request to the new virtual machine) or to reject the request
on the basis of QoS parameters of the request. There is no resource control mecha-
nism in [5] that gives priority to high-paying customers. Also, it does not consider the
churning behavior of customers.

Some of the current works of admission control in Cloud computing, as discussed
above, have many shortcomings. This work tries to remove the shortcomings of exist-
ing works as well as add other novel features for admission control. Some of the new
features of the proposed model in comparison to the existing works are as follows; it
is a dedicated model for admission control which can be applied before scheduling
and load balancing; it defines QoS parameters such as budget and deadline for Cloud
request and consider them as performance desire; it gives attention to customers who
are ready to pay high to increase the profit of the provider; it considers churning behav-
ior of customers to increase their satisfaction in case of limited resource availability;
and it also considers imposition of penalty on provider in case of SLA violation by
the provider.

The proposed work utilizes the concept of game theory to solve the admission
control problem of Cloud computing. Goal is to maximize the SaaS provider’s rev-
enue and to satisfy the users’ QoS requirement. Some of the related work that uses
the concept of Game theory are as follows. Wireless network has used the concept
of game theory for admission control [16,17] quite often and motivates researchers
to implement admission control framework using game theory in Cloud computing.
Though, game theory has been used in Cloud computing to solve some challenging
issues, to the best of our knowledge, it has not been used for admission control in
Cloud computing. For example, in [18], two aspects of resource allocation are con-
sidered: server load balancing and virtual machine placement. In first, assignment of
virtual machine (VM) to physical machine (PM) is done to minimize the load on PM.
In second, packing a set of VMs on minimum number of PM is done such that load
on each physical machine is within the capacity of that PM. To address both these
challenges, authors in [18] have used the concept of non-cooperative game and able to
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get the pure Nash equilibrium solution. In [19], competitions among Cloud providers
are described as a non-cooperative price and QoS games. Authors’ of [19] analyzed
three inter-organizational economic models of Cloud computing and found a unique
pure Nash equilibrium solution in two models out of three. Analysis suggests the
providers the price level for their existence in the market and QoS for end users for
a particular service type. In [21], game theory is used to solve the resource alloca-
tion problem for QoS constrained and computation-intensive tasks using two steps.
In first step, Binary Integer Programming is used to solve independent optimization
problem of participant without considering multiplexing of resource assignments. In
second step, evolutionary mechanism is designed that uses the result obtained from
first step to change the multiplexed strategies of participant. Payoff of the participants,
in this game, is efficiency loss which has to be minimized. It is shown that there is
always a Nash equilibrium solution if the game has feasible solution. Ardagna et al.
[20] consider a perspective in which SaaS provider takes resources from IaaS provider
and offers services to the end users. In this, SaaS provider is interested to maximize
its revenue and satisfaction of the end users and at the same time wishes to pay less
to IaaS provider. On the other hand, IaaS provider looks to maximize its revenue by
offering resources to SaaS provider. In this, authors proposed a solution by modeling
the service provisioning problem as generalized Nash game.

Same as [20], in [45] SaaS provider has same objective, though it implements the
provisioning scheme in two stages. In first stage, SaaS provider determines optimal
number of on-demand and reserved instances using standard optimization technique
and in second stage, SaaS provider bids for spot instances which are unused IaaS
capacity [40]. SaaS provider models second stage as Stackelberg game and find equi-
librium price. In [46], SaaS provider has same objective as [20,45], i.e., maximization
of profit complying with QoS requirements of users, but it hosts application on PaaS
provider unlike [20,45]. Authors modeled this scenario as Generalized Nash Equi-
librium Price. In [20,45,46], SaaS provider is fetching services from IaaS provider
or PaaS provider. Cloud federation is currently an emerging area in Cloud in which
an IaaS provider can take services from other IaaS providers, if it feels that current
available resources would not be able to satisfy the customers. IaaS provider, taking
services from other IaaS providers, wants to maximize its profit. At the same time,
IaaS providers, which offers these resources to requesting IaaS provider, also want
to maximize their profit. To capture this conflicting and strategic scenario, in [47], a
scenario of Cloud federation is considered and a cooperative game mechanism that
motivates self-interested IaaS providers to participate in federation is implemented.
Authors compared this work with non-cooperative game mechanism and observed
that in latter one, there is no guarantee of optimal aggregated benefit received by
the provider, while in former one providers cooperatively will be able to satisfy per-
formance requirements of the tasks without increasing number of virtual machines.
Above-discussed works are important works for problem solving using game theory
in Cloud computing, though more works can be found in [48]. The above-discussed
works though apply game theory for their respective problem solving but does not
apply it for admission control in Cloud computing. The proposed work applies game
theory for admission control in Cloud, an important aspect to admit jobs in Cloud
environment.
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Fig. 1 Cloud framework

3 Cloud framework architecture

The architecture for the proposed Cloud framework is given in Fig. 1. Two compo-
nents of architecture, admission control block and resource control block (A/R block)
closely integrates users’ requests for the Cloud services. When a new request arrives,
admission control block decides whether to accept or reject the request. If request is
accepted, it can influence all on-going accepted requests. The admission control has
to accept the incoming requests only if it can maintain the QoS of currently running
requests in Cloud. In Cloud, assigning equal amount of resources to each request is
not appropriate as the requests may have different requirements and characteristics,
e.g., the amount a user is willing to pay for processing of request. So, in the pro-
posed framework, resources are assigned to the different customers according to their
class. Admission control block also uses this request classification for the admission
of requests. For experimental purposes, this work classifies the customers in three
classes based on their budget. Thus, admission control and resource control block
work together for admitting requests and resource assignment to the accepted requests
based on their class. It does so to maximize SaaS provider’s revenue. This A/R block
is connected to the SLA database. The SLA database contains the information about
customers and their service plans. This work assumes that SLA database is static, i.e.,
customer cannot change its required QoS in a particular session. It is also assumed that
the SLA agreement does not change until one leaves the SaaS provider. If a customer
wants to change its SLA agreement, customer needs to leave the provider and re-join
as a fresh customer with new SLA agreement in the system. If a request is accepted it
is sent to the placement block which places this request to a virtual machine created
in SaaS provider’s physical resource.

In this architecture, based on the QoS requirements of the requests, it is decided
whether to accept or reject a request.

4 Admission control

SaaS provider aims twin objectives; maximizing its revenue and meeting the QoS. If it
is not able to satisfy the customers, theymay churn to someother provider. Since a SaaS
provider hasmultiple applications to satisfymultiple customers, it is assumed that SaaS
provider has to admit multiple requests. In this system, SaaS provider is considered as
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one player whereas other players are multiple requests from the customers. Provider
has to decide which request it should accept to maximize the revenue and customers
need to decide whether they would continue with the current provider or have to churn
based on their satisfaction level. This scenario can be formulated as n+1 player game,
where n is the number of incoming request and 1 is SaaS provider. This n+ 1 game is
incorporated into the admission control process. To understand a real online scenario
of Cloud, where requests come one by one, n + 1 game is simplified as two-player
game with n = 1. The nature of the game, formulation of the game and equilibrium
solutions is to be identified.

4.1 Nature of Game

The proposed game for the resource provisioning has two properties; non-cooperative
and non-zero sum.

Non-cooperative game

In the proposed game, both providers and customers want to maximize their payoff
which is revenue for provider and service satisfaction for customers. If a customer
is not satisfied, it may churn. Since the discussed goals of provider and customer
are conflicting, both the players will not be cooperating with each other. Thus, the
proposed game is non-cooperative.

Non-zero sum game

In two-player zero-sum game, sum of payoff of both the players should be one, i.e., if
payoff of one player increases, payoff of other player decreases. But, in the proposed
game, suppose resources are not fully utilized then SaaS provider can accept incoming
new request without impacting QoS of accepted requests with increased provider’s
revenue. Thus, both the payoffs, SaaS provider (revenue) and customer (customer
satisfaction), are increased. So, this game is non-zero sum game.

4.2 Game formulation

In the previous section, it is discussed that admission control algorithm runs when new
requests are received by the system. Also, SaaS providing scenario can be formulated
as n + 1 player game. Further, nature of game is non-cooperative and non-zero sum.
As the requests are coming from multiple users, the term requests and users are inter-
changeably used in this paper. When n requests reach to SaaS provider, the provider
will decide which request(s) to accept and which one to reject based on some objective
function which is to be optimized. Current users have to decide whether they would
like to continue the services of the current service provider or would churn to some
other provider based on some criteria. Admission of new requests will impact other
users that may result in revenue loss. Therefore, the main concern while deriving the
objective function for provider is the revenue formulation and modeling of churning.
Satisfaction of users will be modeled as objective function for the users.

123



Admission control in cloud computing using game theory 325

Notations, used in deriving the objective function to describe the game, are provided
below.

K Number of user’s class
Ni Number of users of class i currently in the system
cur Rev Current revenue of SaaS provider
ear Revi Average earned revenue of SaaS provider by accepting a request of a

user of class i
losRevi Average revenue loss of SaaS provider when a customer of class i leaves

the provider
Ui Average utility of customer of class i
CRi Average churn rate of customer of class i
wocPO Payoff of user without churning
churnPen Penalty of user when user churns
q A constant value to convert utility in form of money
Wa Payoff of customer when provider accepts the request
Wb Payoff of customer when provider rejects the request

4.2.1 Formulation of game for n + 1 players

Since, in the proposed game number of players is more than two, representation of
this game is not possible in a plane, i.e., representation of outcomes and equilibrium
solution of game is a difficult task. In the formulation of the game, it is assumed that
SaaS provider has two strategies; to accept a request or to reject a request. Customer
also has two strategies; to staywith the current provider or to leave the current provider.
If n requests are coming at any time instance and provider has two strategies for
each request, there will be 2n possibility of candidates’ policy. Each policy can be
represented by a binary vector of length n. ith vector of candidate’s policy of provider
may be written as in Eq. 1.

PSi = [si1, si2, . . . . . . sin] (1)

where si j ε{1, 2} (i.e., for each j th request, if si j = 1, provider will accept the request
and if si j = 2, provider will reject the request) for 1 ≤ j ≤ n and 1 ≤ i ≤ 2n .
Each customer j (1 ≤ j ≤ n), seeking admission of its request also has two strategy
CS j ε{1, 2}; if CS j = 1, customer leaves the SaaS provider and if CS j = 2, customer
stays with the SaaS provider.

Provider’s payoff matrix, PP, is of (n + 1) dimension of size 2n × 2× · · · × 2, as
defined in Eq. 2.

PP = [ppi ,CS1,CS2, . . . ,CSn]2n×2×···×2 (2)

and value of each element of matrix PP is as given in Eq. 3.

ppi ,CS1,CS2, . . . ,CSn = cur Rev +
∑

jε{1,2...,n}&si j=1
ear Revk j

−
∑K

c=1
NcCRclosRevc −

∑
allCS j=1

losRevk j

(3)

123



326 G. Baranwal, D. P. Vidyarthi

Here, payoff of provider is revenuewhich includes current revenue and revenue earned
by all other requests which the admission control component is going to accept, i.e.,∑

jε{1,2...,n}&si j=1 ear Revk j . Since resources are fixed, when a new request enters
in the system it will use the resources allocated by the resource control component
(discussed in Sect. 5) to its class. This, in turn, may affect the already admitted requests
of the same class and thus the revenue of the provider. To add this revenue loss for all
admitted requests of a particular class in formulation of revenue of provider, the term∑K

c=1 NcCRclosRevc is used. Revenue of provider also has to include loss of revenue
incurred by those customers that may leave, i.e.,

∑
all CS j=1 losRevk j .

Payoff matrix of j th customer, same as provider’s payoff matrix,CPj is (n+1)
dimension of size 2n × 2 × · · · × 2, and defined as given in Eq. 4.

CP j =
[
cp j

i ,CS1,CS2, . . . ,CSn
]

2n×2×···×2
(4)

But at the user side, payoff of a particular user depends on only the strategy of provider
for this user and vice versa. So, CPj is converted into 2 × 2 matrix (Eq. 5).

CPj = [
cpsi j ,CS j

]
2×2

(5)

To simplify the expression 5, CPj is written as in Eq. 6.

CPj = [cp j
lm]2×2 (6)

where l ε {1, 2}, i.e., provider’s strategy and m ε {1, 2}, i.e., customer’s strategy as
already discussed.

Let c be the class of customer j who is making a request. Payoff matrix of customer
j can be defined as in Eq. 7.

cp j
lm = w1 × wocPOlm − w2 × churnPen (7)

where wocPOlm is payoff of user without churning and churnPen is penalty of user
when user churns. churnPen is considered because it is assumed that if a user is
availing services from a SaaS provider, user signs some contract according to which
user may be charged for early termination or user may lose some money already given
to the provider. Also, user has to give some activation fee for the new subscription.
churnPen may vary from customer to customer. w1 and w2 are weights which act as
tunable parameter for customer to reflect the preference of user for saving money and
user’s satisfaction, respectively. If customer stays with current provider, i.e., m = 2,
churnPen will be zero.

Payoff of customer, without churning (wocPOlm), is defined in Eq. 8.

wocPOlm =
{
Ucq + Wa for l = 1
0 + Wb for l = 2

(8)

where Uc is the utility of customer of class c (discussed in Sect. 4.3), q is a constant
value to convert utility in form of money, Wa is payoff of customer when provider
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accepts the request and Wb is payoff of customer when provider rejects the request.
Here,Wa > Wb, because payoff of customer will obviously be high when its request
is admitted in comparison to when it is rejected.

4.2.2 Formulation of game for two players (n = 1)

If requests are coming one by one, there will be only one customer at a time-seeking
admission for its request, i.e., n = 1. Let k be the class of incoming request. With the
help of Eq. 2, provider’s payoff matrix PP ′ for two-player game can be written as in
Eq. 9.

PP ′ = [pp,CS]2×2 (9)

Simplifying Eq. 9, PP ′ is written as in Eq. 10.

PP ′ = [pplm]2×2 (10)

where l ε {1, 2}, i.e., provider’s strategy and m ε {1, 2}, i.e., customer’s strategy.
With the help of Eq. 3, value of each element of matrix PP ′ is as given in Eq. 11.

pplm = cur Rev + ear Revk −
∑K

c=1
NcCRclosRevc − losRevk (11)

Payoff matrix of user in two-player game is same as in n+1 player game because
payoff of a user depends on only the strategy of provider for this user and vice versa.
So payoff matrix of user is as given in Eq. 12.

CP ′ = [cplm]2×2 (12)

where lε {1, 2}, i.e., provider’s strategy and mε {1, 2}, i.e., customer’s strategy.
Value of each element of matrix CP ′, i.e., cplm can be obtained from Eqs. 7 and 8.

4.3 Modeling customer’s churning behavior

In formulation of admission control game, churning has its own importance. In this
section, churning rateCRc for all class c customer has been derived, where 1 ≤ c ≤ K .

Churning of Cloud users from one SaaS provider to another SaaS provider is an
important and expected feature, if customer has the freedom to opt for the best provider.
If a customer decides to churn, it implies that the customer is not getting its expected
satisfaction from its current service provider. So, to define the churning behavior of a
customer, customer satisfaction is to be quantified. Number of research models [22–
25] exists for the prediction of churning behavior of customer, though mostly not
relevant to Cloud. In this work, utility parameter is used to model the customers’
churning behavior. In economics, utility is used to define the degree of customer
satisfaction. Utility can be modeled by quantity, quality and cost of service. In Cloud,
customer satisfaction depends on QoS and cost parameter of the service, so utility
can be modeled by QoS and cost parameters. As described in [26] “Many natural
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processes, including those of complex system learning curves, exhibit a progression
from small beginnings that accelerates and approaches a climax over time. When a
detailed description is lacking, a sigmoid function is often used”. Therefore, in the
research issues of Distributed computing and Cloud computing, many authors have
defined utility with a sigmoid function [27–29]. One of the standard sigmoid functions,
used for approximation of customer satisfaction in research, is given in Eq. 13.

S = 1

1 + exp−α(w−β)
(13)

In the proposed work, sigmoid function is modified a bit to incorporate QoS and
cost parameter. Turnaround time is considered as QoS. Thus, in this work, a standard
sigmoid function [30], which takes response time and cost as input and estimate utility,
is directly used with some modification. In place of response time, turnaround time
of a request is used. Also, since in the experiments (in Sect. 6), it is assumed that
customer has specified its budget so the price that a customer is going to pay is fixed.
Thus, price parameter is removed. Utility of user i is as given in Eq. 14.

Ui = 1

1 + exp−αi [(dli−t t i )]
(14)

where t t i is turnaround time of request i , αi determines the steepness of curve, dli
is deadline defined by request i that determines the center of curve for QoS. αi and
dli can be tuned to customize the utility of user i . In other words, with the increase
in turnaround time (t t i ) utility decreases if the turnaround time crosses the threshold
dli . αi determines how fast the utility decreases. So, if a customer is more satisfied its
utility will be high leaving a little scope for the customer to churn. The churn rate of
customer i may be given by Eqs. 15, 16 or 17 written in different forms.

CRi = 1 −Ui (15)

CRi = 1 − 1

1 + exp−αi [(dli−t t i )]
(16)

CRi = 1

1 + exp−αi [(t t i−dli )]
(17)

Churning rate of customer of class c is given by Eq. 18.

CRc =
∑n

i=1
CRi/Nc (18)

where Nc is the number of customers in class c.
Utility of customers of class c is defined as in Eq. 19.

Uc = 1 − CRc (19)

Relative advantage of different utility function is an important subject of discussion
in research, but beyond the scope of this paper. Though, in this work, utility function
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is defined by the sigmoid function, it can be replaced by some other suitable function
if required.

4.4 Equilibrium solutions of game

Before discussing about equilibrium solution of the proposed game, some important
terms of game theory, used in this section, requires a brief elaboration.

Pure strategyWhen a playermakes a specificmove or action in every possible situation
of the game, without involving randomization or any probability distribution, is called
pure strategy. Payoff of all players is deterministic, when every player plays a pure
strategy.

Mixed strategy When a player includes some probability with each possible strategy,
it is called mixed strategy. A player uses mixed strategy when player is not able to
select a best pure strategy and want to keep opponent(s) guessing.

Dominant strategy In game theory, dominant strategy of a player means the player has
a strategy which yields better payoff than its other strategy no matter which remaining
players select their strategy [31].

Nash equilibrium In non-cooperative game, Nash equilibrium is a solution concept
(i.e., a set of strategy) one for each player such that no player gets better payoff by
changing its own strategy assuming all other players do not change their strategy. In
other words, if players are non-cooperative, it is a point where no player gets incentive
by changing its strategy [32].

Let, there are N players denoted by Pi for 1 ≤ i ≤ N and mi be the finite
number of alternatives available to player Pi . Also, let the player Pi has the index
set Mi taking the value from the set {1, 2, . . . ,mi }. In a N -person game defined by
the payoff matrices POi = [

ain1,n2,...,nN
]
, the N -tuple (n∗

1, n
∗
2, . . . , n

∗
N ) is said to

constitute a non-cooperative (Nash) equilibrium solution to the game, if the following
N inequalities are satisfied for all ni ∈ Mi , where 1 ≤ i ≤ N

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1n∗
1,n

∗
2,...,n

∗
N

≤ a1n1,n∗
2,n

∗
3...,n

∗
N

a1n∗
1,n

∗
2,...,n

∗
N

≤ a1n∗
1,n2,n

∗
3...,n

∗
N

...

a1n∗
1,n

∗
2,...,n

∗
N

≤ a1n∗
1,n

∗
2,...n

∗
N−1,nN

In N -player non-cooperative game, theremay beNash equilibrium in pure strategy but
there exists at least one non-cooperative (Nash) equilibrium solution inmixed strategy.
However, finding a non-cooperative (Nash) equilibrium solution in pure strategy or in
mixed strategy is an expensive computational process [32]. In the proposed admission
control game, two cases are studied based on the utilization of resources for both n+1
player game and two-player game and it is proved that there is Nash equilibrium or
dominant strategy for SaaS provider to take correct admission control decision. The
two cases are as follows.
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Case 1 When resources are not fully utilized for every class c where 1 ≤ c ≤ K .

Case 2When resources are fully utilized or overutilized for at least one class c where
1 ≤ c ≤ K .

4.4.1 Equilibrium solutions of n + 1 players game

In case 1, it is found that Nash equilibrium exists in pure strategy where provider’s
strategy is to accept all the incoming requests and all the users’ strategies are to stay
with provider.

Theorem 1 When, for every class c, 1 ≤ c ≤ K, resources are not fully utilized,
there is a pure strategy Nash equilibrium in game which corresponds to candidate’s
policy of provider as PS∗ = [1, 1, . . . , 1], i.e., SaaS provider admits all n requests
and CS j = 2, for 1 ≤ j ≤ n, i.e., all users decide to stay with SaaS provider.

Proof Since resources are not fully utilized for all the class c, churning rate CRc ≈ 0
where 1 ≤ c ≤ K . In other words, Uc ≈ 1. It has already been discussed that
there are 2n possibility of candidates’ policy of provider and payoff value of provider
is given in Eq. 3. This equation will have maximum value when provider admits
all the requests and all the users stay with the provider. It is because in this case
value of

∑
jε{1,2...,n}&si j=1 ear Revk jwill be maximum (since provider accepts all

request), value of
∑K

c=1 NcCRclosRevc will be zero (since CRc ≈ 0) and value
of

∑
all CS j=1 losRevk jwill also be zero (since all user stays with provider).

Since Uc ≈ 1, user’s payoff matrix CP j = [cp j
lm]2×2 is reduced as shown in Eq.

20.

CP j =
[
cp j

11 = w1q + w1Wa − w2churnPen cp j
12 = w1q + w1Wa

cp j
21 = w1Wb − w2churnPen cp j

22 = w1Wb

]
(20)

where 1 ≤ j ≤ n. In this matrix, cp j
12 is greater than all other elements of matrix

(cp j
11, cp

j
21, cp

j
22), so user j selects the strategy to stay with current provider, i.e.,

CS j = 2, for 1 ≤ j ≤ n, while provider admits the request.
From the above discussion, it is found that candidate’s policy of provider as PS∗ =

[1, 1, . . . , 1] and CS j = 2, for 1 ≤ j ≤ n constitutes Nash equilibrium for the game.
Remaining possibilities of combination of strategy do not give Nash equilibrium.

In case 2, concept of dominant strategy is used for equilibrium. Since the main
goal of this work is to find the best strategy for the provider, the concept of dominant
strategy is used to solve this case in a simple manner. For simplicity, Eq. 3 is re-written
as Eq. 21.

ppi ,CS1,CS2, . . . ,CSn = cur Rev + PSiaff − CSaff (21)

where

PSiaff =
∑

jε{1,2...,n}&si j=1

ear Revk j −
K∑

c=1

NcCRclosRevc (22)
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and

CSaff (CS1,CS2, . . . ,CSn) =
∑

all CS j=1

losRevk j (23)

Here, it is noted that PSiaff is only affected by the provider’s strategy and CSaff is
affected only by the customer’s strategy. ��
Theorem 2 When resources are fully utilized or overutilized for at least one class c
where 1 ≤ c ≤ K, there exists a dominant strategy PSdaff for SaaS provider such that

D̂
(
PSdaff

)
= max

(
PS j

aff

)
for 1 ≤ j ≤ n. (24)

Proof In this game, there are 2n possibility of candidates’ policy of provider and
since each user has two strategies, for n users there are 2n possibility and for a given
combination of users’ strategies (CS1,CS2, . . . ,CSn), CSaff (·) is fixed. So for any
given combination of users’ strategies, there exists dominant strategy PSdaff such that

ppd ,CS1,CS2, . . . ,CSn ≥ ppi ,CS1,CS2, . . . ,CSn where i 
= d and 1 ≤ i ≤ 2n

(25)

Since for each combination of provider’s strategy, there are 2n combination of user’s
strategies. If we choose PSdaff , definitely there is CSaff (PSd) from the 2n combination
of user’s strategies such that

CSaff (PSd) ≥ CSaff (PSi ) where i 
= d and 1 ≤ i ≤ 2n (26)

Since D̂
(
PSdaff

)
always exist, there is always a dominant strategy PSdaff for SaaS

provider.
In case 1, provider admits all the requests and in case 2 provider needs to search

dominant strategy from 2n possibilities. To find a dominant strategy from 2n possi-
bilities is an NP-hard problem. Therefore, evolutionary approaches potentially can be
applied to solve this problem as evolutionary approaches can better solve an NP-hard
problem efficiently. For this, one needs to design an objective function for the para-
meter to be optimized in the problem. In this work, game theory helps to find the
objective function of admission control problem analytically. Genetic algorithm (GA)
[33] has been applied as an evolutionary approach to solve this problem. GA is a meta-
heuristic search inspired by the process of natural evolution and natural genetics and
widely used to solve an optimization problem involving a big search space. GA starts
with an initial population of chromosome represented as a string and is a potential
solution of the problem. To measure the goodness of the solution, an objective func-
tion, called fitness function, is used. Some GA operators, e.g., crossover, mutation and
selection are used to evolve the initial population towards a better solution. Structure
of the chromosome, fitness function and the various GA operations, e.g., crossover,
mutation, and selection specific to this problem are discussed as follows. ��
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Fig. 2 a Chromosome representation. b Uniform crossover. c Mutation

Chromosome representation

In this problem, the size of the chromosome string is the number of requests n. Since
SaaS provider has two strategies for each request, each gene in chromosome has two
values. Binary encoding is used to represent the chromosome indicating 1 as accepted
request and 0 as rejected. For example, Fig. 2a shows the provider’s strategy for each
request indicating that request 0 is accepted, request 1 is rejected and so on.

Fitness function

Fitness function is the objective function for the problem. In this problem, objective
is to find the best set of request i out of n requests (i.e., 2n possibility) for which PSiaff
(Eq. 22) will have the maximum value. Objective function for this problem is as given
in Eq. 27.

f i tness = PSiaff (27)

Substituting PSiaff from Eq. 22, fitness is as shown in Eq. 28.

f i tness =
∑

jε{1,2...,n}&si j=1
ear Revk j −

∑K

c=1
NcCRclosRevc (28)

Crossover

Uniform crossover is used in this problem. In uniform crossover, a probabilistic uni-
form rate is defined for each gene of the chromosome. A random number is generated
between 0 and 1 corresponding to each gene. If the random number is greater than
uniform rate, gene from parent one is transferred to the child otherwise from gene
from parent two is transferred. This way, a new chromosome is obtained. Figure 2b
depicts the process of uniform crossover.
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Mutation

For mutation, biological point mutation is used. In this technique, a mutation rate
is defined and a random number is generated between 0 and 1 for each gene in the
chromosome. If for a gene, random number is greater than mutation rate, that gene
will be flipped (1 to 0 and vice versa) otherwise it remains same. Figure 2c shows the
mutation process.
Selection

A predefined number of most fit chromosomes are selected by sorting all the chromo-
somes of a population in each generation.

Since main goal of the proposed work is to find the best strategy for SaaS provider,
Theorems 1 and 2 are sufficient for the proposed admission control method.

4.4.2 Equilibrium solutions of two-player game

Two cases of n+1 game are simplified as a two-player game and equilibrium solutions
are discussed.

Theorem 1 When, for every class c, 1 ≤ c ≤ K, resources are not fully utilized, there
is a pure strategy Nash equilibrium in game which corresponds to candidate’s policy
of provider as PS = 1, i.e., SaaS provider admits the request and CS = 2, i.e., user
decides to stay with SaaS provider.

Proof Since resources are not fully utilized for all the class c, churning rate CRc ≈ 0
where 1 ≤ c ≤ K . In other words, Uc ≈ 1. Payoff value of provider as given in Eq.
11 will have maximum value when provider admits the request and user stays with the
provider. It is because, in this case, value of ear Revk will be positive (since provider
accept the request), value of

∑K
c=1 NcCRclosRevc will be zero (since CRc ≈ 0) and

value of losRevk will also be zero (user stays with provider).
Since, Uc ≈ 1, user’s payoff matrix CP = [cplm]2×2 is reduced as in Eq. 29.

CP =
[
cp11 = w1q + w1Wa − w2churnPen cp12 = w1q + w1Wa

cp21 = w1Wb − w2churnPen cp22 = w1Wb

]
(29)

In this matrix, cp12 is greater than all other elements of matrix (cp11, cp21, cp22),
so user j selects the strategy to stay with the current provider, i.e., CS = 2, while
provider admits the request.

From the above discussion, it is found that candidate’s policy of provider as PS = 1
and CS = 2 constitutes Nash equilibrium for the game. Remaining three possible
combinations of strategy do not give Nash equilibrium. ��
Theorem 2 When resources are fully utilized or overutilized for at least one
class c where 1 ≤ c ≤ K, SaaS provider accepts the request if ear Revk ≥∑K

c=1 NcCRclosRevc and rejects otherwise.

Proof From Eq. 11, the following can be observed.
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When ear Revk ≥ ∑K
c=1 NcCRclosRevc, pp11 ≥ pp21 and pp12 ≥ pp22. In this

case, dominant strategy of provider is to accept the request which yields better payoff
than its other strategy no matter customer stays with provider or not.

When ear Revk <
∑K

c=1 NcCRclosRevc, pp21 ≥ pp11 and pp22 ≥ pp12. In this
case, dominant strategy of provider is to reject the request which yields better payoff
than its other strategy no matter customer stays with provider or not.

In summary, in the online cases, if resources are not fully utilized in any class just
accept the incoming request. But if the resources of at least one class is fully utilized
or overutilized, then accept incoming request belonging to class k if revenue generated
by accepting this request, i.e., ear Revk is greater than total possible revenue loss by
accepting this request

∑K
c=1 NcCRclosRevc. Otherwise reject the request. ��

5 The proposed resource control technique

As far as resource allocation is concerned, the users should get the amount of resources
as per their budget. In this work, users are assumed belonging to different classes based
on their budget availability since admission control does not impose any restriction on
how much resources can be assigned to a particular class. Resource control algorithm
is based on a concept that Cloud assigns resources to its customers in a way that allows
least churning by dynamic allocation of resources to different class. At the same time,
it provides freedom to the provider to assign resources to customers according to
their priority (class). If a customer is not satisfied with the services, it may churn if
dissatisfaction prevails. Since the proposed resource control technique classifies the
customers on the basis of their budget, provider may give preference to customers
with high budget. This work assumes that provider is more focused on long-term
benefit in comparison to a short-term gain. The goal of resource control algorithm is
to assign more resources to its customers who belong to higher class but not to ignore
low-budget customers totally.

The proposed resource control algorithm dynamically assigns resources to cus-
tomers of different class using a tunable parameter which helps providers to give
priority to their customers. Let us assume that currently there are Ni active requests
in the system of class i . So, total work load on system by the customers of class i can
be represented by Eq. 30,

workloadi =
∑Ni

j=1
numMI ij (30)

where numMI ij is length of request j of class i in MI.
When new requests are admitted in the system, workload on system by class i will

be given as in Eq. 31.

workloadnewi =
∑Ni+Nnew

i

j=1
numMI ij (31)

where Nnew
i is the number of new admitted requests of class i . If resources will be

fixed for a particular class and number of admitted requests is more for that class,
it may increase the churn rate of that class. The aim of the provider is not only to
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reduce the churn rate but also to increase its revenue. When admission control compo-
nent accepts new requests, resource control component is initiated which dynamically
assigns resources to a particular class based on its priority. Since provider wants to
increase its revenue, it will assign more resources to high-paying requests (i.e., higher
priority requests). So, provider must have some tunable parameter to assign more or
less resources according to its wish. Let αti be the tunable parameter for class i,then
new tuned workload according to provider is as shown in Eq. 32.

workloadti = αti × workloadnewi (32)

Resources are assigned according to their tuned workload, i.e., if provider has R
resources, then assignment of resources to class i will be given by Eq. 33.

assignRi =
(

workloadti

/ ∑K

i
workloadti

)
× R (33)

6 Experimental study

There are two basic approaches to study the performance of a system; analytical
approach and experimental approach [34]. In analytical approach, mathematics is
used as a tool to study the system, while sometimes complexity of system makes
analytical approach insufficient. For complex system, experimental approach is good
for observations. In experimental approach, experiments are performed to study the
system (sometimes by simulating themodel). Study of a systemby both the approaches
validates the system. For strategic decisionmaking, game theory is a better alternative.
In the proposed model, game theory is used to decide the best strategy in case of
admission of upcoming requests. Different cases for admission control are derived
and it is proved that there is existence of best strategy in every case. To validate
the proposed model by experiments, a Cloud computing environment is required.
Evaluation of performance of different policies related to provisioning, workload and
resource scenarios in a real Cloud environment in a repeatable and controllablemanner
under different configuration and requirements of system and user is a difficult task
as building a Cloud environment on a real infrastructure is tedious, time-consuming
and expensive [35].

Simulation tools are a better alternative for the evaluation of a model in controllable
environment without paying any cost. In addition, reproduction of results is also easy.
Currently, Cloud specific simulators such as NetworkCloudSim [36], GreenCloud
[37], CloudSim [35] are useful. NetworkCloudSim (an extension of CloudSim) is
suitable for message passing parallel applications, GreenCloud is focused on Cloud
networking and energy awareness and CloudSim is a most advanced simulator to
establish and simulate a heterogeneous distributed computing environment for Cloud
computing on a physical node. Some novel features of CloudSim are listed below [35].

• A self-contained platform for modeling datacenters, service brokers, scheduling,
and allocations policies.
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• Availability of a virtualization engine, which aids in the creation and management
of multiple, independent, and cohosted virtualized services on a datacenter node.

• Flexibility to switch between space-shared and time-shared allocation of process-
ing cores to virtualized services.

Therefore, to evaluate the performance of the proposed admission control algorithm,
CloudSim platform [35] is used. Experiments are performed on Intel(R) Core(TM)
i7-3770 CPU @ 3.40 GHz with 2.0 GB RAM.

Though using game theory, analytically it is proved that solutions exist for both
n + 1 players game and two-player game. A simulation environment is created in
CloudSim to test only the proposed algorithm for n + 1 players game because it is
more complex in comparison to two-player game which is a simplified form of n + 1
player game. Two providers, Provider 1 and Provider 2, are considered. Provider 1
uses the proposed framework with conventional techniques of CloudSim and Provider
2 uses only conventional techniques of CloudSim. Although scheduling algorithm can
change the performance of the accepted requests, the focus of this work is admission
control. Therefore, default scheduling algorithm of CloudSim is used as scheduling
algorithm for both the providers. Performance is observed for both SaaS provider and
users. Profit of provider is considered for SaaS provider’s point of view and average
response time is considered for users’ point of view.

In the system when n requests arrive, admission control takes decision whether
to admit a request or not. Once a request is admitted, resource control component
allocates resources to different class of users on the basis of current load and provider’s
requirement (provider’s tunable parameter discussed in Sect. 5). In the experiment, to
clarify the working of resource control component in a simple manner, it is assumed
that cloud resources are homogeneous virtual machines. It has already been discussed
in Sect. 4.2 that there is K class of customers. For experimental purpose, requests are
classified into three classes on the basis of their budget estimate for their execution.

It has beenobserved [38,39] that arrival rate of requests followsPoissondistribution.
This work also assumes λ1, λ2, λ3 as the arrival rate of requests of class 1, class 2
and class 3, respectively. Each request is defined by the four tuple 〈Request Length,
Budget, Deadline, Penalty Rate〉. Following is the brief description of each parameter
and its considered value, corresponding to a request in the experiment, keeping the
fact that class is also an important factor of request.

Request length Each request has some length in MI (Million Instruction). Since in
CloudSim, request is represented by number of million instruction, range is generated
in MI. For the experiment, service rate values of VMs and size of request are taken in
such a way that the dynamic behavior and effectiveness of the proposed model can be
depicted. Length of the requests is generated between 25,000 MI to 125,000 MI for
the experimental purposes.

BudgetBudget is themoney a user is willing to pay to a SaaS provider for the execution
of its request. Budget is generated in the range of $0.1 to $1.0 as the variation in results
is very less after $1.0. A request belongs to class 3 if its budget is in between $0.1 to
$0.3, request belongs to class 2 if its budget is in between $0.3 to $0.6 and request
belongs to class 1 if its budget is in between $0.6 to $1.0.Because requests are classified
on the basis of budget, class 1 is the highest class.

123



Admission control in cloud computing using game theory 337

DeadlineThis is the time limit to complete a request as defined by the user. Turnaround
time of each request must be less than the deadline, otherwise SaaS provider needs
to pay some penalty. The deadline of a request is generated in between 1.5 times
and 3.5 times of the processing time of the request. Since class 1 requests are paying
higher, their deadline should be strict. The deadline of a request of class 1 is generated
between1.5×processing timeof request and2×processing timeof request. Similarly,
deadline request of class 2 and class3 are generated between 2 × processing time of
request and 3.5 × processing time of request.

Penalty rate If a request is not completed in the defined time (i.e., deadline), provider
pays some penalty to the user. The penalty rate of a request i of class c is defined as
given in Eq. 34.

Penalty Ratei = Budgeti/(Deadlinei × Cc) (34)

whereCc is a constant to define strictness of penalty rate. If value ofCc is high, penalty
rate is low. Since requests of class1 are paying more in comparison to the requests of
class 2 and class 3, penalty rate of class 1 should be high, i.e., value of C1 should be
low. For experimental purpose, four set of values considered for each class are ( C1,
C2, C3) = {(4, 6, 10), (8, 12, 20), (12, 18, 30), (16, 24, 40)}.

Utility of SaaS provider is the profit obtained for each accepted request in the
system. Profit from a particular request can be defined as given in Eq. 35.

Prof i ti = Budgeti − Costi (35)

where

Costi = ProcessingCosti + PenaltyCosti (36)

ProcessingCosti = ProcessingT imei × Priceof V M (37)

PenaltyCosti = ProcessingDelayi × PenaltyRatei (38)

ProcessingDelayi = (FinishT imei − SubmissionT imei ) − Deadlinei (39)

To define the price of virtual machine (Priceof V M), different Cloud resource
providers such as Amazon EC2 [40], Microsoft Azure [41], RackSpace [42], and
GoGrid [43] are observed and it is found that cost of virtual machines varies from
$0.05 to $1.32 per hour. For the experiment, $0.12 is considered as the cost of each
virtual machine.

Some other parameters for the simulation study of the proposed model are defined
as below.

Average earned revenue of provider by class i (ear Revi ) can be obtained using
the budget parameter. Since range of budget for each class is fixed, average revenue
taken as earned revenue for each class is ear Rev1 = $0.75, ear Rev2 = $0.45 and
ear Rev3 = $0.20.

If a customer churns, SaaS provider loses some revenue. This loss can be esti-
mated from the cost which provider incurred to acquire a customer. This cost includes
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advertisement, promotion, etc. [44]. In other words, this loss can be formulated as
customer acquisition cost per customer. So average revenue loss of provider of class
(losRevi ) can be considered as customer acquisition cost of customer of class i . Var-
ious experiments are performed with different values of loss revenue to decide an
appropriate value of loss revenue. It is found that with loss revenue value taken as
losRev1 = $ 300, losRev2 = $ 250 and losRev3 = $ 200, the model shows more
variation in results. Thus, the same values of loss revenue is considered for the various
experiments performed in this work.

In resource control, defined in Sect. 5, value of tunable parameter of αti for each
class i is considered such that αt1 > αt2 > αt3. It is because customers of class 1 are
paying more money in comparison to other classes and so entitled for more resources.

For simplicity, in the experiment of Sects. 6.1–6.4, it is considered that arrival rate
λ = λ1 + λ2 + λ3 and λ1 = λ2 = λ3. λ1, λ2 and λ3 vary from 10 to 100, i.e., λ varies
from 30 to 300.

6.1 Observation on profit, average response time, decision time and acceptance
of requests

In this experiment, 50 virtual machines for each provider are created. Value of αt1, αt2
and αt3 are fixed to 4, 6 and 10, respectively, i.e., (αt1, αt2, αt3) = (4, 6, 10). Figure 3
depicts the comparison of profit of provider 1 and provider 2 with different arrival rate.
From Fig. 3, it is observed that when the system initiates, both providers get the same
profit (up to λ = 60 provider 1 and provider 2 both get same profit). As the arrival
rates increases, provider 1 is getting more profit in comparison to provider 2 because
virtual machines are busy. In fact, provider 2 is not getting any profit at all. Provider
1 is getting profit up to λ = 240, but thereafter it also does not get any profit as all 50
virtual machines are saturated. This fact is also observed in experiment of Sect. 6.2
with varying number of virtual machines.

Figure 4 represents the average response time of provider 1 and provider 2 for
the same scenario as discussed above. The graph shows that average response time
of provider 1 is very low in comparison to provider 2. The reason for this result is
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Fig. 3 Profit observations of providers on the arrival rate
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0

20

40

60

80

100

120

140

160

30 40 50 60 70 80 90 100

De
ci

si
on

 tI
m

e 
(m

ill
is

ec
on

ds
)

Arrival Rate λ

Decision Time

Fig. 5 Decision time on different arrival rates

that provider 1 is using the proposed model and admitting only those requests whose
requirements can be fulfilled along-with some profit.

Figure 5 represents the decision time of provider 1 which is the average time A/R
block takes to decide which request to be accepted and rejected. Decision time is
represented in milliseconds. The graph shows that A/R block takes very less time to
decide on the requests. Though, on increase of arrival rate of request, decision time
increases, but not substantially.

Total number of accepted requests by provider 1 and provider 2 are shown in Fig. 6.
Since provider 2 does not reject any request, total number of accepted request by
provider 2 is total number of requests generated in the simulation period. From Fig. 6,
it can be observed that provider 1 is rejecting requests as it has limited resources. The
model also suggests that if the provider is not able to fulfill QoS of a request it should
be rejected otherwise SLA violation will impose a penalty on the provider leading to
reduction in the provider’s profit. The results from Figs. 3 and 4 show a significant
difference between the profit of both the providers and significant difference between
customers’ satisfactions of both the providers encourage for the implementation of the
proposed model in a real Cloud.
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Fig. 6 Acceptance of requests on different arrival rate
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Fig. 7 Profit of providers on 40 virtual machines

6.2 Profit with variant number of VM

In this experiment, all the parameters are kept same as in Sect. 6.1 and profit of
provider 1 and provider 2 is observed with different number of virtual machines. In
Fig. 7, with VM = 40 and λ = 70, provider 1 stops getting profit whereas in Fig. 10,
with VM = 70 the profit of provider 1 gets nil only after λ > 100. The zero profit
point shifts towards the increasing λ side on increasing the number of VMs from 40
to 70 (Figs. 7, 8, 9, 10). Thus, if a provider has more number of virtual machines, it is
likely to get more profit.
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Fig. 8 Profit of providers on 50 virtual machines
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Fig. 9 Profit of providers on 60 virtual machines

6.3 Impact of penalty rate

In this experiment, profit of provider 1 is observed at different penalty rates, i.e.,
(C1,C2,C3)={(4, 6, 10), (8, 12, 20), (12, 18, 30), (16, 24, 40)} for 50 virtualmachines.
From Fig. 11, it is observed that as the value Ci of class i increases profit of provider
also increases.

6.4 Impact of tunable parameter

In this experiment, value of tunable parameter αti of class i is observed. For different
set of αt1, αt2 and αt3, profit of provider 1 is observed. From Fig. 12, it is found that
provider gets less profit when αt2 is high in comparison to αt1 or when αt1 is very
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high in comparison to αt2 and αt3 or when αt1, αt2 and αt3 are equal. So, there should
be a reasonable difference between αt1, αt2 and αt3.

6.5 Impact of mix arrival rate

From the experiment in Sect. 6.2, it can be noticed that provider gets a significant
profit at λ = 120 when number of virtual machines are 40, at λ = 150 when number
of virtual machines are 50, at λ = 180 when number of virtual machines 60 and at
λ = 210 when number of virtual machines are 70. So, in this experiment, impact of
mix arrival rate is observed only for those λ at which provider gets significant profit
to understand the observation in simple manner. For VM = 40, λ is taken as 120 and
λ1, λ2 and λ3 are taken in the ratio of 1:1:1, 1:2:3 and 3:2:1, respectively, to observe
the profit of the provider. Same is done for (VM = 50, λ = 150), (VM = 60, λ = 180)
and (VM = 70, λ = 210). It is observed from Fig. 13 that when arrival rate of class 2
and class 3 requests is more in comparison to arrival rate of class 1 requests, profit of
provider is less and as the arrival rate of requests of class 1 increases, profit of provider
also increases.

7 Conclusions and future work

A novel framework for admission control in Cloud computing is proposed in this
work using game theoretic approach. Admission control problem is formulated as
n + 1 player non-cooperative and non-zero sum game between SaaS provider and n
upcoming requests and then this game is simplified as two-player game. It has been
shown that there is a dominant strategy and Nash equilibrium in pure strategy. To the
best of our knowledge, for the formulation of payoff of provider, churning rate, i.e.,
probability of customer leaving theprovider is considered for thefirst timewith revenue
of provider in Cloud computing. Definitely, if requests of higher classes are paying
moremoney, they deservemore resources. So resource control framework is integrated
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with admission control to allocate the resources to the different class of users as per
the provider’s choice. The proposed model is simulated on CloudSim simulator and it
has been shown than if a provider uses the proposed admission and resource control
framework, it can achieve higher revenue and at the same time average response time
of requests decreases for the customer. Different scenarios are considered to show that
the proposed framework works well. Resource control component and formulation of
churning rate can easily be replaced or enhanced by the providers according to their
requirement.

In the work, it is assumed that SLA database is static, i.e., if a customer needs some
change in its SLA, customer has to first leave the provider and re-join the provider
as a fresh customer with new SLA. This work has the possibility for extension by
considering the dynamic SLA database, in which customer will be able to change the
SLA without leaving the provider. The proposed framework can be made more robust
by adding SLA negotiation and dynamic pricing strategy.
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