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Abstract Nowadays, the adoption of Cloud Computing platforms and Service Com-
puting technologies are almost natural for the different e-Science communities. Cost
benefits for data-intensive applications, ease of access, rich and varied offers for
services are examples of positive returns by users. However, beyond this favorable
welcome for the technology, some research problems remain and are still challenging.
In this paper, we focus on the problems of automatically deploying IaaS for comput-
ing and for data management, using the SlapOS Cloud. The core of the system is a
distributed protocol for orchestrating data and compute nodes. Using this interaction
scheme, users are able to deploy, without any system administrator intervention, a
PaaS inside the IaaS basically a Desktop Grid middleware. The aim of this paper is
to demonstrate that the Desktop Grid and Cloud paradigms may merge and may be
widely used by non-experts in the different areas of e-Science. We propose a fully
self-organized volunteer Cloud for researchers where they can carry out e-Science
experiments and process large amounts of data in a coherent way.
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1 Introduction

Scientific computing in the Cloud is now a tendency for researchers. Thanks to the
elasticity and high availability of resources, researchers are requested to prepare their
applications and they no longer have to worry about resources for experimentation,
failure or maintenance. In September 2013, Ian Foster and XSEDE Cloud Integration
Investigation Team1 published a study [16] where results indicate that the Cloud is
the only immediate alternative for a researcher when academic institutions do not
have sufficient in-house resources required to compute and store data. With cloud
computing services, the scientific world does not need to invest in supercomputers,
since the design and construction of such large-scale systems are extremely complex
and very expensive. Thus, the classic functionalities of conventional grid computing
will become accessible as a service and at lower cost.

Usually, the main applications and programming models that can be deployed on
the Cloud are presented as Cloud-hosted SaaS. It reduces time to science by hiding
platform complexities. Cloud services offer a solution for intensive computing and the
management of large amounts of data. It provided some examples of applications and
programming models that are good candidates to run in the Cloud:

– Big Data management: Archiving, analysis and sharing tools for structured data
(SQL database) and unstructured data (MapReduce [5], Hadoop [28] andBlobSeer
clusters [18]). Globus Online SaaS [9] is used to move massive amounts of data
without requiring custom end-to-end systems.

– High-throughput scientific workflows: On-demand SaaS for data mining, BLAST
searches, Monte Carlo simulations, MATLAB and R execution environments.

– Academic labs and teaching tools: Interactive Cloud-hosted tools that help
researchers and educators to learn how to write HPC and big data applications.

Our contribution in this paper is to provide to scientific researchers a self-configurable
volunteer Cloud on-demand. We provide e-Science users a wide access to any kind
of HPC middleware (BOINC [4], Condor [6]) and to automate the full integration
process into a single framework for big data applications.

This paper is a synthesis of several years of related works, which justifies high
number of self-bibliographic citations. The experimental work considers the perfor-
mance of the deployment sub-systems involving different SaaS and IaaS, it is also an
experience in building system-of-systems in a methodic manner. Figure 1 shows our
vision on merging Desktop Grid and Cloud technologies. On the top left side, we have
the BonjourGrid [20,21,23] series of works and on the top right side our works on the
SlapOS Cloud [22,25]. When we combine the two systems, we get the possibility to
manage e-Science and Big Data applications as we can see in the bottom of Fig. 1. The

1 https://www.xsede.org/.
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Fig. 1 Motivations: combining Desktop Grid and Cloud technologies

remainder of this paper is organized as follows. In Sect. 2, we outline related works
by describing the background of high performance computing on Cloud environment.
Section 3 presents the main concepts of our approach and the implementation of Bon-
jourGrid into SlapOS. In Sect. 4, to demonstrate the effect of the implementation, we
introduce experimental results. Finally, in Sect. 5, we summarize the contributions of
the paper and we investigate future works.

2 Related work

In this section, we present scientific computing on Cloud. Furthermore, we exhibit our
research area and previous work, in the context of Desktop Grid and Cloud.

2.1 Scientific computing on Clouds

In recent years, the rapid growth in big data and Cloud technologies have contributed
to the emergence of high performance computing as a service (HPCaaS and HTCaaS).
Research laboratories and enterprises are migrated to Cloud for offering computing
and storage resources on demand according to the pay-as-you-use model. Given the
diversity of applications and the growing need for computing, scientists have used a
variety of public and private Cloud providers. The XSEDE survey report [16] shows
that 58 % of researchers use the Amazon AWS Cloud followed by FutureGrid [10]
(33 %), Windows Azure (30 %), Red Cloud, Google Cloud Platform, Globus Online
[9] and Grid5000 testbed. Other Cloud providers (13 %) are mainly CloudSigma,
Nimbix Accelerated Compute Cloud, Open Science Data Cloud [12], Open Science
Grid [13], And Penguin On-Demand HPC Cloud Service (POD).2

2 http://www.penguincomputing.com/.
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Among the solutions we would like to give some details about Penguin, Open
Science Data Cloud and FutureGrid to put them into perspective.

Penguin Computing on Demand (POD) delivers, for researchers who lack
infrastructures or cluster management expertise, customized HPC solutions based
on TORQUE scheduler [7] for large-scale simulations and Hadoop [28] clusters for
big data application.

The Open Science Data Cloud (OSDC) [12] provides scientific researchers a set of
services to store, share and analyze large- scale datasets. Researchers can deploy and
share customized virtual machines with all tools for their research needs.

The FutureGrid [10] experimental platform allows scientists to develop and validate
their associated research on optimization, integration and programming models for
both Grid and Cloud Computing systems. FutureGrid provides a variety of resources
based on three kinds of IaaS (Infrastructures as a Service) Nimbus, Eucalyptus and
OpenStack. On top of this infrastructure, the platform offers researchers a range of
middleware as a service such as UNICORE, Pegasus [14], ScaleMP and GenesisII.

2.2 Hybrid infrastructures for data-intensive science

The emergence of data-intensive application has prompted scientists around the world
to investigate new challenges of the implementation ofHPCplatforms.WithCloud, the
classical computing systems (Desktop and Data Grids) should be revisited. To enable
big data processing and management on heterogeneous platforms, we can combine
clouds and desktop grids providing hybrid infrastructures.

The work presented by Fedak et al. in [5,24] proposes an approach which aims
to involve the behavior of Map-Reduce-based applications [27], to achieve scalable,
concurrency-optimized, fault-tolerant data-intensive processing on clouds and desk-
top grids infrastructures. Their implementation combines, into a unified system, two
different approaches, BlobSeer [17,18] and Bitdew [8] frameworks. Blobseer is a dis-
tributed data-store systems that is optimized for large unstructured blobs on Cloud
infrastructures. Bitdew is suitable for large-scale data-intensive management and it
can be grafted into Desktop Grid middleware.

While the common area is building hybrid infrastructures by combining Desktop
Grid and Cloud technologies, our research direction is fundamentally different from
these works. In fact, we attempt to provide e-Science users and researchers with fully
volunteer infrastructures as a Service equipped with multiple Desktop Grid and data-
intensive tools as a Service (SaaS) for performing experiments.

2.3 Our previous work

2.3.1 BonjourGrid meta-middleware

The BonjourGrid system [1,2] allows the creation of, dynamically and in a decentral-
ized way, a specific execution environment (Condor [6], BOINC [4]) for each user
to execute any type of applications without any system administrator intervention.
Each user, behind a desktop machine in his office, can submit an application. Bon-
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jourGrid deploys a master (coordinator), locally on the user machine, and requests for
participants (workers).

Workers are selected according to specific criteria. Themaster and the set of selected
workers build the Computing Element (CE) which will execute and manage the user
application. When the execution of an application of a CE terminates, its master
becomes free, returns in the idle state and it releases all workers before returning to
the idle state too. Then, the nodes can participate to other projects. The coordination
betweenmasters is guaranteed using the publish/subscribe paradigm. There is no direct
communication between masters, each one focuses on its applications and manages
its workers (that actually execute the applications tasks).

The basic issue of BonjourGrid is going up to a wide area network. The first version
works only in a local network infrastructure because of Bonjour implementation [26],
so it is important to bypass this constraint. Grafting a new wide area package may be
a good solution to resolve this problem.

2.3.2 Evolution of BonjourGrid

Since its first release in 2010, the BonjourGrid meta-middleware has never stopped
evolving. There is a lot of development that have been added such as data management
support and Cloud technologies convergence.

Data-intensive applications support In a recent work [20], we proposed a self-
configurable Desktop Grids (DGs) platform on demand. We attempted to extend DGs
middleware with the orchestration of different datamanagement middleware and com-
puting systems to deploy data-intensive applications. Basically, our research focuses
on an extension of the BonjourGrid [1] meta-middleware for supporting data-intensive
BoT/DAG (Bag of Tasks/Direct Acyclic Graph) applications by exploiting existing
datamanagement protocols andGridmiddleware. However, since resources in aDesk-
top Grid are typically accessed through wide area network links, the bottleneck comes
with the bandwidth limitation. One way to solve the problem is to build architec-
tures that are able to mask (in part) the bandwidth limitation. In [21], we propose a
decentralized approach for data prefetching for BoT and DAG applications to mask
the bandwidth limitation and to overcome the disadvantages of the master–worker
paradigm.

We note that our proposals systems presented in [20,21] have been validated exper-
imentally using data-intensive jobs on Grid5000 [11] testbed.

Merging Desktop Grid and Cloud technologies Grid users want to manage data inten-
sive in the same way as they perform other tasks on their computer. However, the
traditional use of Desktop Grid requires to acquire a solid knowledge in the develop-
ment of high performance computing (HPC), and big data management tools. Thus,
we consider that the most important challenge is to imagine automatic data manage-
ment tools that are able to mask the installation and configuration difficulties of data
management software. In [22], we investigated works in the data management field
and we made them “easy to use” for Grid users. We estimate that it is useful for them
to manage data via the implementation of two Software as a Service tools for data
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management. The first service provides a mean for users to transfer data from their
sites to the computation or simulation sites. The second service will be used to share
data in widely distributed environment.
Certainly, Desktop Grid is among the success stories during last years using volunteers
nodes participating into projects. However, with the emergence of Cloud Computing,
three questions can be posed (1) where to take resources? (2) how to coordinate
the resources? and (3) how to manage big data transparently from end users? Our
assumption is that Desktop Grid will continue to survive if we are able to transform
the old-fashioned client/server architecture to newweb-oriented architecture to deliver
services on demand.

To answer the first two questions, in [23] we revisited and extended the coordination
protocol of BonjourGrid. We dealt with the coordination of resources over internet
using the publish-subscribe paradigm. We have focused on the usefulness of model-
ing and formal verification of such a specific paradigm, by studying the BonjourGrid
system, which is dedicated to the management of multiple instances of Desktop Grid
middleware that includes different computing elements and different data managers.
We have proposed a formal modeling using colored Petri nets. We have also imple-
mented, with Redis [19], a wide area new release of BonjourGrid in which multiple
computing systems and datamanagement frameworks are orchestrated in a transparent
and decentralized manner.

Many experiments have been conducted attempting to evaluate the performance
of systems presented in [22,23], using the BLAST3 genomic application. BLAST
is widely used in almost every large molecular biology laboratories for sequence
alignment analysis.

Our contribution, in this paper is the integration of Wide Area BonjourGrid [23] in
the SlapOS Cloud [25]. We aim to provide to scientific researchers a self-configurable
volunteer Cloud on-demand. The usage scenario of a user is as follows: on theweb por-
tal (the web interface of SlapOS), the user selects the BonjourGrid system among the
catalog of applications. Then, he chooses DesktopGridmiddleware for computing and
data management. The BonjourGrid system is deployed and calls for the deployment
of middleware for computing and data management. In fact, we deploy an IaaS based
on volunteer SaaS tools hence the name self-configurable volunteer Cloud on-demand.

2.4 SlapOS Cloud

2.4.1 Overview

Simple Language for Accounting and Provisioning Operating System (SlapOS [25])
is an open source-distributed operating system and it provides an environment for
automating the deployment of applications, while including accounting and billing
services through the ERP5 platform. Based on the idea that “Everything is process”,
SlapOS combines Grid computing, in particular the concepts inherited from Bonjour-
Grid [1,2] and the techniques inherited from the field of ERP to manage, through the

3 http://blast.ncbi.nlm.nih.gov/Blast.cgi.
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SlapGrid daemon, IaaS, PaaS and SaaS Cloud services. The SlapOS strengths are the
compatibility with any operating system, in particular GNU Linux, the compatibility
with all software technologies, and support for several infrastructures (IaaS). More
than 500 different recipes are available for consumer applications such as LAMP
(Linux Apache MySQL PHP).

SlapOS is a distributed Cloud Computing system designed by Paris 13 University4

and Nexedi. Marketed in Europe, Japan and China, it comprises deployment functions
and automatic orchestration used in production by SANEF, Mitsubishi and Airbus
Defence.

SlapOS architecture is composed of two types of components: SlapOS Master and
SlapOS nodes. The Master tells to the SlapOS node which is the software that must
be installed and also which instance of a specific software will be deployed. It acts as
a centralized directory for all SlapOS nodes and it knows the location where software
is located and all software that are installed [25].

We can view the topology of classicalClouds infrastructures as data centers towhich
are connected usermachines. In these architectures, the computations are centered on a
subset of machines (the data centers) among the possible ones. SlapOS [25] considers
an alternative view of Clouds where both users machines and data centers are used for
servicing requests. We refer to these Clouds as volunteer Clouds.

2.4.2 How to join SlapOS?

SlapOS is a voluntary Cloud, which mean that each person can potentially add its own
server into the Cloud. The participation is simple and many platforms are supported
by SlapOS. If a volunteer wants to join the SlapOS community, he has to:

1. Register on a SlapOS Master.
2. Install SlapOS Node on the node. For a full system installation, we can use the

SlapOS image disk and to install SlapOS Node on existing operating system.
3. Add a virtual server on the Master and link it to the physical server by configuring

the Node installed on the physical server. To simplify this process, the command
slapos node register COMPUTER_NAME is implemented allowing to connect a
physical server to a virtual server in SlapOS.

4. Select and install applications, from the list of available applications on theMaster,
that will be allowed to be deployed on the node.

At this moment, theMaster knows that the node is a potential target to deploy instances
of applications. The number of instances that can be run on the node depends on the
capacity and the configuration of SlapOS on the server. If the maximum number of
instances is reached, then the Master may no longer deploy instances on the node until
one or more partitions become free. Note also that the volunteer must specify, every
time he deploys a service, the server to be used by SlapOS Master, to avoid that the
service be deployed anywhere in the Cloud.

Tomake our applications available on the SlapOSMaster, it is necessary to integrate
them to SlapOS. The integration of applications to SlapOS goes through the writing

4 https://slapos.cloud.univ-paris13.fr.
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Fig. 2 Volunteer Cloud orchestration with BonjourGrid on the top of SlapOS

of Buildout profiles, consisting mainly of the file software.cfg which will then make
reference to all other required files.

3 Volunteer Cloud orchestration with BonjourGrid

3.1 Our proposal architecture overview

A volunteer can join the BonjourGrid overlay network in an automatic way, we mean
without the help of a system administrator. We use the SlapOS deployment system to
make this task as simple as possible. We use also the Software Release and Software
Instance concepts as explained previously. We suppose that BOINC, Condor, data
managers and BonjourGrid (both masters and workers modules) are available as a
single Software Release.5,6 Hence, our implementations are based on (see Fig. 2):

– SlapOS IaaS: with only a “one-click” install, instantiate, configure a volunteer
Cloud (data managers and Desktop Grid middleware) and deploy it over the Inter-
net.

5 http://git.erp5.org/gitweb/slapos.git/blob_plain/refs/heads/grid-computing:/software/bonjourgrid/
software.cfg.
6 http://git.erp5.org/gitweb/slapos.git/blob_plain/refs/heads/grid-computing:/software/bonjourgrid-
client/software.cfg.
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– BonjourGrid orchestrator protocol: it manages and coordinates multiple instances
of HPC middleware (Boinc, Condor) and multiple data managers (Stork [15],
Bitdew [8]).

We present below all steps that allow volunteer to participate in SlapOS community
and exploit Desktop Grid services. He now has to do the following tasks:

1. slapos-connect(Login, Password): an end user must connect to his space “My
space” through a Web interface by giving login and password parameters.

2. request-bonjourgrid-software(SlapOS_Node_Name, Software_Release_Name):
in the “My Servers” section, the user selects his server by choosing the com-
puter ID in computer field, click on “Install New Software” button and select
BonjourGrid (Master orWorker) and click on “Add Software”. If the user wants to
deploy the instance on a no dedicated node, he can keep the computer field empty
and SlapOS would automatically choose an available computer.

3. download-bonjourgrid-software(BonjourGrid_Software_Release_URL): This
will compile and install the BonjourGrid package (middleware and data man-
agers). Once installation is completed, the user is allowed to make a deployment
of BonjourGrid instances.

4. request-instance-parameters(Slap_Parameters_List): Through the “My Services”
section, the user can choose the different parameters (which kind of middleware
and the number of workers) of the instance or keep the default parameters, the
computer on which he wants the instance be deployed.

5. deploy-instance(Slap_Parameters_List): At this stage, the BonjourGrid instance
is being deployed. Using default parameters, the deployed instance contains the
necessary packages for running DesktopGrid middleware (BOINC or Condor) and
data managers (Stork and Bitdew).

6. submit-application(submit_job_file, submit_data_file, coordinator_node, stork_
server):Once the instance is deployed, the user can submit application andmonitor
jobs.

3.2 BonjourGrid orchestrator protocol

Wide Area BonjourGrid is based on Redis publish-subscribe system [19,23], in which
multiple computing systems and data management frameworks are orchestrated in
a transparent and decentralized manner. Redis [19,23] includes a publish-subscribe
object that subscribes to channels and listens for new messages. Once a publish- sub-
scribe instance is created, clients can subscribe to one or more channels using the
SUBSCRIBE (CHANNEL-NAME) command. Next, clients post (publish) a message
to the given channel through the PUBLISH (CHANNEL-NAME, MESSAGE) com-
mand. Messages sent by clients to the channel will be pushed by Redis Server to all
the subscribed clients. The following paragraphs provide more information on the
resources coordination protocols of BonjourGrid.

In Wide Area BonjourGrid, when a machine joins the network, it takes the idle
state. During the execution of an application, a machine changes status to become a
worker or a coordinator. To build a computing element constituted by one coordinator
and n workers, the resource coordination protocol is based on the following steps:
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1. The coordinator machine starts the deployment process by executing the Browse-
IdleService(‘idle’) service, which allows to subscribe to idle channel;

2. Each machine that wants to participate in computation publishes the idle service
by running Publish-IdleService(‘idle’) function;

3. Once the idle services are discovered by the coordinator host, the Request-
Worker(‘WorkerName’) service will be published for each machine,WorkerName
is the name of the Redis channel. If the idle machine confirms to participate in the
computation, it must publish the Confirm-Request(‘CoordName’) service, Coord-
Name is the name of the coordinator Host. By doing so, machine changes state
from idle to worker;

4. Repeat 1, 2 and 3 steps until building a computing element composed of n
machines;

5. The coordinator starts the execution of the user application. To mark the end of the
execution, worker must subscribe to the AppIsCompleted channel by performing
the Browse-Application(‘AppIsCompleted’) service;

6. One application is completed, the coordinator publishes the Publish-Application
(‘AppIsCompleted’) service. At this stage, all machines will be released and the
coordination protocol returns again to the first step.

For further details, the Algorithms 1 and 2 illustrate how coordinator and worker can
work, respectively.

Given that BonjourGrid protocols will be established among wide area network,
an important challenge is the consistency and synchronization between different
published events. This was achieved by adding a specific methods to decrease the
probability of losing a publication (resp subscription) events. For example, in the
worker Algorithm 2 (line 12), the os.waitpid(pid, 0) function enables worker to wait
for ending the parent process (BrowseCoordinator() function). This means that now
the worker received from coordinator a request for participation in computation. As
well, in line 21, the os.waitpid(pid, 0) function shows that a client program (Condor
or BOINC) will be started if and only if the worker confirmed its participation in
computation.

3.3 Desktop Grid middleware as a service

In this section, we review in detail the integration of BonjourGrid into the SlapOS
Cloud. Basically, we are going to focus on all stages of the implementation and present
in detail the deployment process.

3.3.1 The BOINC use case

BOINC is a platform for distributed computing. To use it, we create a project and then
provide one or more applications, data files and configuration files to execute these
applications on this platform. It is therefore necessary to create a stack that we have
called BOINC and that will allow installing, configuring an execution environment
for BOINC applications in SlapOS. Thus, the creation of a project and the integration
of one or more applications to run is simply reduced to the definition of parameters
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Algorithm 1: Wide Area BonjourGrid: Coordinator Node
Input: RedisServer, Wrapper, hostname, NbreOfWorkers
Output: NbreOfFetchedWorkers
1: data ← GenerateMachineFeatures();
2: redis ← ConnectT oRedis(RedisServer);
3: I dleChanel ← (redis.pubsub()).subscribe(′idle′);
4: CoordinatorChanel ← (redis.pubsub()).subscribe(Hostname);
5: pid = os. f ork();
6: if pid = 0 then
7: print ”Starting the coordinator (Condor Or BOINC)...”;
8: StartCoordinator Scheduler(Wrapper);
9: else
10: NbreO f FetchedWorkers ← SearchWorkers(NbreO f Workers, data,

hostname, redis, I dleChanel,CoordinatorChanel);
11: if NbreWorkers = NbreO f FetchedWorkers then
12: Lucky: All requested machines are workers for your Master;
13: else
14: Unlucky: NbreWorkers − NbreO f FetchedWorkers, machines was reserved by another

Master;
15: end if
16: while true do
17: if CheckEnd Application() then
18: Lucky: Application is finished. I will tell my workers to disconnect;
19: PublishApplication(′AppI sCompleted ′);
20: exi t ();
21: else
22: time.sleep(5);
23: end if
24: end while
25: end if

allowing to customize our project and download useful files. BOINC is divided into
two separate applications: BOINC server7 and BOINC client.8 To deploy BOINC
Server, we have added to slapos.cookbook two recipes:

– The recipe slapos.cookbook:boinc that allows to deploy an empty BOINC project
and is used directly in the stack.

– The recipe slapos.cookbook:boinc-app that allows to deploy an application in an
existing BOINC instance. It is therefore possible to deploy multiple applications
for the same project, by calling successively the recipe slapos.cookbook:boinc-app
for different applications.

Also, we have added to the slapos.cookbook recipe an entry slapos.cookbook:boinc-
client that allows to deploy an instance of a BOINC Client.

7 http://git.erp5.org/gitweb/slapos.git/blob_plain/refs/heads/grid-computing:/software/boinc/software.
cfg.
8 http://git.erp5.org/gitweb/slapos.git/blob_plain/refs/heads/grid-computing:/software/boinc-client/
software.cfg.
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Algorithm 2: Wide Area BonjourGrid: Worker Node
Input: RedisServer, Wrapper, hostname
Output: MyCoordinator
1: data ← GenerateMachineFeatures();
2: redis ← ConnectT oRedis(RedisServer);
3: I dleChanel ← (redis.pubsub()).subscribe(′idle′);
4: CoordinatorChanel ← (redis.pubsub()).subscribe(Hostname);
5: pid = os. f ork();
6: if pid = 0 then
7: print ”Search master for working...”
8: MyCoordinator ← BrowseCoordinator(hostname);
9: else
10: print ”STATUS=IDLE I’m Idle and I’m waiting for new calls”;
11: Publish IdleService(hostname, data,”idle”);
12: os.waitpid(pid, 0);
13: print ”I discovered a Coordinator Node, continue...”
14: Print ”The new master ” MyCoordinator ” calls me to work for him”;
15: pid = os. f ork();
16: if pid = 0 then
17: print ”Send confirmation to the master...”
18: Con f irmRequest (′′idle′′, hostname, data);
19: print ”STATUS=WORKER I will work for this Master ” MyCoordinator ;
20: else
21: os.waitpid(pid, 0);
22: pid = os. f ork();
23: if pid = 0 then
24: print ”Starting the worker (Condor Or BOINC)...”;
25: StartWorker(Wrapper);
26: else
27: print ”I’m Waiting until application execution will be finished...”;
28: BrowseApplication(′AppI sCompleted ′);
29: print ”Application is completed and ” MyCoordinator ” has gone”;
30: print ”Stopping the worker...”;
31: end if
32: end if
33: end if

3.3.2 The Condor use case

In this section, we explain the integration of Condor into SlapOS and the main dif-
ferences with BOINC integration. Condor installation can operate in three modes:
manager, execute and submit. We have defined two types of instance: The Condor
Master and the Condor Worker. The condor master represents a coordinator node it
allows to manage and submit jobs, condor worker represents a compute node. So
to have our condor master instance, we specify the types manage, submit and for the
worker instancewe specify the type execute.We implemented a new component called
condor which install binaries allowing to execute both master and worker, depending
on whether we specify a master or worker instance.

We also have a software release called condor which allows to install condor with
all dependencies and, according to the parameters provided, deploys a condor master
or condor worker instance. This software release also allows to submit jobs, the sub-
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mission is accepted if and only if the instance is deployed as a master. The component
contains the Buildout profile used to install binaries for condor and all required depen-
dency. The software release contains profiles for installing templates and necessary
files for the instance configuration, it mainly consists of two files: software.cfg9 and
instance-condor.cfg.10

– The software.cfg, used during the compilation will allow to run the condor com-
ponent profile and preparing all the elements needed to deploy a condor instance.

– The file instance-condor.cfg is used for the deployment of a condor instance. In
this file, the recipe slapos.cookbook:condor is used to deploy a master or a worker
instance. The submission of a job is done by the slapos.cookbook:condor.submit
recipe.

4 Experimental results

The experiments have been performed on Grid5000 testbed using 55 machines of the
Lyon and Luxembourg sites’ machines. We set two Debian Linux Distribution images
of SlapOS as already mentioned and depicted in Fig. 2. In the first image, we deploy
SlapOSMaster (SlapOSKernel, Supervisor, SlapGrid and ERP 5 Engine). The second
image contains the kernel of SlapOSNode (SlapOSKernel, Supervisor and SlapGrid),
and it will be used to deploy, on demand BonjourGrid SaaS instances. In this section,
we present the different steps for configuring and deployingBonjourGrid onGrid5000.
Next, we explain the experimentation scenario, present results and interpretations.

4.1 Deployment of BonjourGrid orchestrator on Grid5000

To integrate SlapOS inGrid5000, wemet several technical difficulties, themost impor-
tant are IPv6 configuration and Grid5000 access restriction. SlapOS IaaS deployment
steps on Grid5000 are already presented in this work [22].

We now focus on how to easily deploy BonjourGrid in Grid5000 through SlapOS.
The user has only to prepare parameters and applications to run and then request
BonjourGrid services using SlapOS command lines. Because SlapOS is optimized for
high performances, we are able to run about 20 competing BonjourGrid services on
the same Grid5000 node. This helps to reach about 1000 BonjourGrid services if we
deploy 50 Grid5000 nodes with Slapos image.

As shown in the Sect. 3.1, to deploy BonjourGrid software in SlapOS, the user
needs to complete the following steps using the command line or through the Web
interface:

– Supply the software: this helps to prepare BonjourGrid components on the node.
– Request instances: once the software and recipes are installed, SlapOS can now
request instances into the node’s partitions.

9 http://git.erp5.org/gitweb/slapos.git/blob_plain/refs/heads/grid-computing:/software/condor/software.
cfg.
10 http://git.erp5.org/gitweb/slapos.git/blob_plain/refs/heads/grid-computing:/software/condor/instance-
condor.cfg.
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SlapOS supplies software by compiling it from sources (if necessary or upon request)
using Buildout. As the compiling step can take a while, we decided to simplify this
step by providing a pre-built application for Grid5000. This helps us to reduce sig-
nificantly the software supplying time and to focus on the deployment of instances.
For example, the next scripts will create a BonjourGrid computing element with one
coordinator and 10 workers instances. To do this, the user must provide the soft-
ware URL (BONJOURGRID_SR_URL) and the slapOS node ID (COMPUTER_ID) as
parameters. The user can request instances through the Web interface of the SlapOS
master.

BONJOURGRID_SR_URL = "http://git.erp5.org/gitweb/slapos.git/blob_plain/refs/

heads/grid-computing:/software/bonjourgrid/software.cfg"

COMPUTER_ID = $(cat /etc/opt/slapos/slapos.cfg | egrep computer_id.*= |

awk ’{print $3}’)

MIDDLEWARE = boinc | condor

WORKERS = 10

APPLICATION = boinc-app-list | condor-app-list

slapos supply $BONJOURGRID_SR_URL $COMPUTER_ID

slapos request "My First BonjourGrid Coordinator Instance"

"$BONJOURGRID_SR_UR" --node "computer_guid=$COMPUTER_ID"

--parameters "worker-number=$WORKERS" "project-type=$MIDDLEWARE"

"application=$APPLICATION"

The next command will request a BonjourGrid worker instance and will attach it
to the BonjourGrid Coordinator instance.

BONJOURGRID_SR_URL= "http://git.erp5.org/gitweb/slapos.git/blob_plain/refs/

heads/grid-computing:/software/bonjourgrid-client/software.cfg"

COMPUTER_ID = $(cat /etc/opt/slapos/slapos.cfg | egrep computer_id.*= |

awk ’{print $3}’)

REDIS_SERVER = ipv6_address

PROJECT_URL = boinc_project_url | condor_manager_address

slapos supply $BONJOURGRID_SR_URL $COMPUTER_ID

slapos request "My First BonjourGrid Worker Instance"

"$BONJOURGRID_SR_UR" --node "computer_guid=$COMPUTER_ID"

--parameters "redis-ip=$REDIS_SERVER" "project-url=$PROJECT_URL"

We have the possibility to run again the above command to get the service status. If
the status is Started, this command also returns the connection parameters defined
in the deployment recipe.

4.2 Usage scenario

Users may connect to the same SlapOS master and may demand a hundred of com-
puting element using BonjourGrid instances. The SlapOS master is deployed in Lyon
site and SlapOS nodes are distributed over 6 clusters located in the Lyon (sagittaire,
orion, hercule, taurus) and Luxembourg (petitprince, granduc) sites. For each SlapOS
node, BonjourGrid deploys one computing element: a coordinator (BOINC server,
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Table 1 Workload used for the experimentation

Testbed information Workload information

Number of SlapOS Nodes: 47 machines of Lyon
Site Debian Wheezy 86_64 3.2.0-4-amd64
(clusters: sagittaire 2 CPU and 2 GB RAM,
orion, hercule, taurus)

Number of BonjourGrid coordinator per node: 1
instance (2 computers partitions)

8 machines of Luxembourg Site Debian Wheezy
86_64 3.2.0-4-amd64 (clusters: petitprince,
granduc)

Number of BonjourGrid worker instance per
node: 18 instances (18 computers partitions)

One SlapOS Master : deployed on Lyon Site Total number of instances: (1+ 18) ∗ 55 = 1045
distributed over 1100 computers partitions

Total number of computer partition per Node: 20

Total number of computer partition:
55 ∗ 20 = 1100

MariaDB, Redis server and BonjourGrid protocol) with a set of workers (BOINC
client and BonjourGrid protocol). This architecture is more general than the one used
in [22] because the number of clusters is larger (wide area network) and we offer IaaS
rather than SaaS, making the scenario realistic.

Thus, we decided tomeasure the time required to attach SlapOS nodes to themaster
and the time needed to create coordinators and workers instances as a function of the
number of SlapOS nodes. Table 1 presents the workload and the system information
of the test. We used 55 SlapOS nodes (20 computers partitions per node) to deploy
1045 instances of BonjourGrid (19 instances per node). Algorithms 3, 4 and 5 show
all the experimental steps.

Algorithm 3: Scenarios used for the Grid5000 experiments (Part 1)
Input: Node List File (Lyon and Luxembourg sites)
Output: Times to register SlapOS Nodes
1: Deploy SlapOS Master Image: Kadeploy3 -e slapos-vifib..
2: nodes ← 55;
3: do in parallel
4: for i ← 1 to nodes do
5: Deploy SlapOS Node Image: Kadeploy3 -e slapos-bonjourgrid-cloud..;
6: Register and configure SlapOS Nodes with 20 computer partitions: slapos node register..;
7: end for
8: end parallel

4.3 Results analysis

4.3.1 SlapOS nodes registration time

We compute how long it takes on average for new node to register with a master. We
note that the master is running in Lyon site and it is configured by default to register
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Algorithm 4: Scenarios used for the Grid5000 experiments (Part 2)
Input: Node List File (Lyon and Luxembourg sites)
Output: Times create BonjourGrid coordinators instances
1: nodes ← 55;
2: do in parallel
3: for i ← 1 to nodes do
4: Configure BonjourGrid Coordinator software release : slapos supply bonjourgrid-coordinator..;
5: Request one BonjourGrid Coordinator instance: slapos request ”Coordinator instance i”..;
6: end for
7: end parallel

Algorithm 5: Scenarios used for the Grid5000 experiments (Part 3)
Input: Node List File (Lyon and Luxembourg sites)
Output: Times to create BonjourGrid workers instances
1: nodes ← 55;
2: workers ← 18;
3: do in parallel
4: for i ← 1 to nodes do
5: Configure BonjourGrid Worker software release : slapos supply bonjourgrid-worker..;
6: for i ← 1 to workers do
7: Request one BonjourGrid instance: slapos request ”Worker instance i”..;
8: end for
9: end for
10: end parallel
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Fig. 3 Elapsed time to attach SlapOS Nodes (Lyon and Luxembourg sites) to the SlapOS Master running
on Lyon site

one node at a time. Node executes slapos node register command to retrieve key and
certificate from the master and to create 20 computer partitions. Results in Fig. 3
show that the register time ranged between [61..100] s. Indeed, the measures depend
on hardware characteristics of each cluster. For instance, Orion, Taurus and Hercules
clusters (Lyon Site, Nodes 1–20 with 12 CPUs and 32 GB of memory) give the best
recording time (with a stable average value equal to 62 s). In contrast, Sagittaire cluster
(Nodes 21–47 with 2 CPUs and 2 GB of memory) presents the highest record values.
As seen in curves (Fig. 3), the recording time increases considerably (ex. Node 21)
and is not linear. Otherwise, the Granduc cluster (Luxembourg Site with 8 CPUs and
32 GB of memory), nodes 48 to 55 provide more stable measurements relative to
Sagittaire despite the long distance between the two sites.
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Fig. 4 Performance results of BonjourGrid with SlapOS over Grid5000

4.3.2 BonjourGrid completion time

We calculate, as discussed in Sect. 4.1 and in Algorithms 4 and 5, the time required
to create BonjourGrid coordinators and worker instances:

– Coordinators instances: The total completion time for theBonjourGrid coordinator
instances is shown in Fig. 4 (red curves). All instances are launched simultaneously
and completed successfully. The average amount of time taken for the instances
to complete is equal to 300 s. This time illustrates the real time for the initial-
ization of different daemons on BonjourGrid coordinator, orchestration protocol
(Redis server), computing middleware (BOINC server, MariaDB server) and data
management protocols (Stork and Bitdew caches).

– Workers instances: In this use case, we have requested 990 workers instances (18
instances per node). The number of instances sent to the SlapOS Master is the
main parameter impacting the total completion time. Results are presented in Fig.
4. For each node, the deployment of workers instances (Green curve) is calculated
as the difference between the submission time of the first instance and the finish
time of the last instance (number 18). We measured total time in the range of
418 and 1348 s. We observe that the turnaround time increases as the number of
concurrent requests (respectively, the nodes number) increases. This is explained
by the fact that in SlapOS the master is unreachable and needs more time to deploy
instances and to receive subsequent requests. To explain this behavior, the Y2 axis
(Blue curves of Fig. 4) gives the number of correctly deployed instances per node.
Results show that 834 requests (85%) have been completed of a total of 990. Also,
38.5 % of failed instances are in the Luxembourg site (e.g., no instances were
deployed on the machine number 55). Here, we believe that the SlapOs Master
looses connections to the nodes since it uses the same TCP port to receive all heart
beat signals emitted by nodes: every 5 min, the node asks the list of software that
must be installed and requests the list of computer partitions to reconfigure.

5 Conclusion and future works

In this paper, we have demonstrated how to cloudify the Desktop Grid paradigm as
presented in [23], into the SlapOS Cloud infrastructure to form a IaaS. We introduced
the new volunteer Cloud concept that helps scientist to deploy easily their distributed
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environment as a service for e-Sciences requirements. The users can now request
and install automatically Desktop Grid middleware (BOINC and Condor) and data
management tools such as Stork and Bitdew without any intervention of a system
administrator. Our contribution is on the way we manage PaaS. From a user point
view, we offer the same functionalities of classical PaaS including Hadoop, Spark
and integration services (AWS) but in an autonomous and configurable fashions. For
example, the pair BOINC and Stork may play the role of Hadoop and BonjourGrid
orchestrator as the role of AWS.

Also, through a large-scale experimentation, we have evaluated our volunteer Cloud
by creating 1100 BonjourGrid services using more than 50 machines of Grid5000.
We noticed that the SlapOS master may be overloaded when the number of nodes
connected to the Cloud increases at the very initial steps of the node attachment.
Certainly, this overload does not depend on the number of instances because SlapGrid
runs in loop to initiate failed requests. Thus, further experimental investigations are
needed to estimate communication and traffic bottlenecks between nodes at these
times. At this time, we are not convinced that a simple adjustment of the value of a
watchdog in SlapOS or BonjourGrid will solve the problem of scaling with SlapOS
and Desktop Grids. We think that the reason is more profound and related to the ways
we capture, modeling and effectively solving with relevant software interfaces the
problems of the deployment of systems-of-systems.

In [3], authors introduce their work towards migration and adoption of cloud
computing technologies atUniversité SorbonneParisCité (USPC), amajor french con-
sortium of universities, higher education and research institutes. The paper is divided
into two parts. In the first part, the paper provides with a methodology to identify the
business processes of the members of the IDV Life Imaging USPC project as well
as the tools and volume of data they currently use. In the second part of the paper,
authors explain how the IDV members migrate to cloud computing by integrating the
identified tools into virtual machines. USPC is currently finalizing the investments for
an OpenNebula cloud infrastructure with 1.2PB of storage capacity and 1000 virtual
machines for an inaugural opening session in November 2015.

The USPC context is an opportunity for practical usage of our system. We plan to
integrate our work in the IDV project where the needs for collecting and analyzing
images from different hospitals is a major issue. The goal is to facilitate the deposit,
by medical doctors or engineers, of images in different formats and to allow people
to use annotation tools on images. Since the work in [3] has identified the business
processes of people, it will be more easy now to tailor our work to match the needs
of the IDV users of the cloud. From a scientific point of view, at this occasion, we are
also planning a coupling of our work with the Active-Data framework [24] to capture
the data life-cycle in a better way than today.
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