J Supercomput (2019) 75:77-91 @ CrossMark
https://doi.org/10.1007/s11227-015-1556-z

A new publicly verifiable data possession on remote
storage

Chun-ming Tang! - Xiao-jun Zhang!

Published online: 14 November 2015
© Springer Science+Business Media New York 2015

Abstract In this paper, a new verifiable data possession construction supporting both
private and public verifiability simultaneously is proposed from a linearly homomor-
phic cryptography method, which allows a server to integrate / selected block-tag
pairs into a single block-tag pair as a response to user’s query. In our scheme, the data
owner who uses the private verification and anyone else who runs the public verifi-
cation algorithm simultaneously on the same set of meta-data and based on the same
setup procedure can securely authenticate the integrity of client’s data file stored at
cloud server without retrieving the whole original data file. Besides, in fact our simul-
taneous privately and publicly verifiable scheme can also be adjusted to elliptic curve
group. The scheme proposed is efficient on both client and server sides, especially
in computation on cloud server side, which is almost optimal among those existing
publicly verifiable schemes. Here the server needs not to perform any exponent opera-
tions at all, which greatly reduces client’s waiting time. Finally, we make the security

The National Natural Science Foundation of China under Grant No. 11271003, the Natural Science
Foundation of Guangdong Province to Develop Major Infrastructure Projects, the Basic Research Major
Projects of Department of Education of Guangdong Province under Grant No. 2014KZDXM044, the
National Research Foundation for the Doctoral Program of Higher Education of China under Grant
No0.20134410110003, the Project of Department of Education of Guangdong Province under Grant No
2013KJCXO0146, and the Natural Science Foundation of Bureau of Education of Guangzhou under Grant
No. 2012A004.

B Chun-ming Tang
ctang@gzhu.edu.cn

Xiao-jun Zhang
zhang4838223 @gmail.com

School of Mathematics and Information Science, Guangzhou University,
Guangzhou 510006, People’s Repuplic of China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1556-z&domain=pdf

78 C. Tang, X. Zhang

analysis of our scheme under several cryptographic assumptions, such as difficulty of
Factorization Assumption and Discrete Logarithm Problem (DLP).

Keywords Cloud - Public authentication - Verifiable data possession - Integrity

1 Introduction

With the rapid development of computer science and Internet technologies, data size
is increasing geometrically, which also leads to computer users requiring larger stor-
age space to maintain/manage their data. Under the tendency above, cloud storage is
becoming a desirable choice due to its remarkable advantages, which brings massive
and inexpensive storage space. Different from traditional storage, data stored in cloud
storage server by users will suffer a series of security problems, such as data losing,
data tampering and so on. This is all because users physically lose the absolute control
over those data stored in cloud. Thus it is meaningful and necessary to devise more
cryptographic methods to solve or relieve these security problems, which makes users
enjoy the cloud storage service safely and assures the reputation of cloud servers to
attract more clients.

Recently, there is an increasing interest in the cryptographic aspects about cloud
storage, and storage in cloud may be necessary when a client’s (Alice’s) local storage
space is too small to store her enormous data file. However, the third party (Bob),
who advertises that he has the ability to store client’s data file completely, may not be
trustworthy. As a result, it is vital for the cautious client to ensure whether her data
file is really stored there, without downloading all stored data file to validate since
this may be prohibitive in terms of bandwidth and time, especially when the client
executes this authentication frequently.

In some cases, the data owner is not convenient to verify the integrity of her data
file stored in cloud server by herself. For example, the owner is taking a train during a
journey, where she certainly can not execute the authentication alone. Consequently,
she has to mandate another one to implement the verification for her. In another case,
the data files stored in cloud by the owner are shared by multi authorized users.
A natural and meaningful question is as to how can authorized users perform the
verification for the data files. Obviously, it is not secure for the data owner to send
out her private key. Therefore, it is necessary to design proof of storage schemes with
public authentication in these cases.

Ateniese et al. [1] first defined publicly verifiable schemes and presented a for-
mulation, called provable data possession, for proof of storage problem, while their
publicly verifiable PDP scheme is not so efficient as our scheme in communication
and computation on server’s side.

Juels et al. [12] proposed the first concept about proof of retrievability (POR) and
elaborated the formulation for a secure POR system. Briefly speaking, in a secure POR
system, the client can extract the original data file from the information collected in
polynomial number of interactions with the cloud server, if a cloud server could return
a correct response that the client can accept. While compared with our solution, their
first scheme (was not publicly verifiable) only supports a predefined constant number

@ Springer

A new publicly verifiable data possession on remote storage 79

of authentications, and their second scheme offers the unbounded public verifiability
property, but the prover requires to send &'(£) numbers of authenticator values and
obviously it is not compact as our solution.

Shacham et al. [18] also proposed two efficient POR schemes. The first one just
supports private key verification, and the second one offers the public verifiability.
However, compared with our publicly verifiable data possession scheme, their publicly
verifiable scenario requires a little higher computation cost on both verifier and cloud
server.

Xu [21] utilized homomorphic cryptography to construct several preferable POR
schemes, which only support private key verification as well. The solutions in [21]
satisfy the efficiency requirement, that is, the computation cost, storage overhead, and
communication cost on client are all &'(1), which is independent of the file size. Here
X is the security parameter, and our results are comparable to those scenarios in [21]
on storage, communication and computation (on server side).

In [13], authors proposed the first efficient fully dynamic PDP(DPDP) solution,
which supports verifying the integrity of the data file stored on cloud server, when
the client updates those outsourced data files. But when it is expanded to support the
public verification, it requires a little more communication and computation cost. And
there are also some other solutions which extend the PDP model to support provable
updates to stored data [4,5,9] including insertions at arbitrary positions, updates on
existing blocks and revision control [24]. Hanser et al. proposed the first simultaneous
privately and publicly verifiable (robust) PDP protocol [11], which allows the data
owner to use the more efficient private verification and anyone else to run the public
verification algorithm based on elliptic curves.

Recently, Yuan et al. [23] also proposed a POR scheme with public verifiability
and constant communication cost based on a secure polynomial commitment scheme.
Another scheme based on polynomial commitments for public verifiability has been
introduced in [22]. There are also constructions for a distributed storage setting, that
is, considering multiple storage severs [6,25]. In 2012, Paterson et al. treated proof-of-
retrievability schemes in the model of unconditional security [16], where an adversary
has unlimited computational power. In this case retrievability of the file can be mod-
elled as error-correction in a certain code.

2 Definition of publicly verifiable data possession

In this paper, our system contains three major players: client, cloud server and verifier.
The client who owns some data files intends to store them on the cloud server. The
server advertises that he can completely store the client’s data files. The verifier has
the access to auditing the integrity of those data files without involving the client’s
secret knowledge.

We precisely describe the following five polynomial algorithms(KeyGen, DEn-
code, Challenge, GenProof, CheckProof) which compose our publicly verifiable data
possession scheme:

@ Springer

80 C. Tang, X. Zhang

KeyGen(1") — (pk, sk) is a probabilistic key generation algorithm which is run by
the client. Given a security parameter A as input, it will return a pair of public-private
key (pk, sk).

DEncode(sk, F) — (id, F, n, {gi _,)isrunby the client to generate the verification
metadata. It takes a private key sk and a data file F as inputs, and returns an unique
identifier id, an encoded file F with size n, and a tuple of public information {g; |

Challenge(id, n) — Q is a probabilistic algorithm run by a client or verifier. Given
a file identifier id and the file size n as input, it will return a query Q.

GenProof(pk, id, F, Q) — (M, o) is run by the server (prover) to generate a
response for the verifier’s query. It takes the public key pk, the file identifier id, the
encoded file F, and a challenge query Q as input and returns a tuple of response (M,
o).

CheckProof(pk, {gi };.’zl ,Q, (M, 0)) — accept or reject is a deterministic algorithm
run by a client or verifier to validate the response generated by server. It takes a public
key pk, a tuple of public information {g;}?_,, and a tuple of response (M, o) as input
and returns either accept or reject.

Definition 1 (Publicly Verifiable Data Possession) It is a Publicly Verifiable Data
Possession(PVDP) scheme, if for any outputs returned by the algorithms (KeyGen,
DEncode, Challenge, GenProof, CheckProof) defined above, the response generated
by GenProof will always be accepted as a valid proof by CheckProof without involving
the private key sk above.

Definition 2 (Completeness of PVDP[1]) APVDP scheme (KeyGen, DEncode, Chal-
lenge, GenProve, CheckProof) is complete if an honest server (prover) who intactly
stores client’s data file and faithfully runs the algorithm GenProof to generate a
response will always be accepted by the verifier.

3 Security model

Here we introduce a security game which is almost the same as the game in [21], and
we adjust it to make it suitable for publicly verifiable data possession.

Setup The challenger runs the algorithms KeyGen to obtain a pair of public-private
key (pk, sk). The challenger just keeps the private key sk securely and makes pk
public.
Learning The adversary adaptively makes queries, where each query is one of the
following:
Store query Given a data file F chosen by adversary, the challenger responds by
(id, F,n,{gi _,) < DEncode(sk, F). That is, he (she) sends the encoded data
file F together with its identifier id and the sequence of public information
{gi}7_, to the adversary. The challenger just keeps (id, n).
Verification query Given a file identifier id chosen by the adversary, if id is
previously produced from store query that adversary has made, the challenger
initiates the verification with adversary for the data file F dependent on the
identifier id as below:

@ Springer

A new publicly verifiable data possession on remote storage 81

— Challenger chooses a random query Q with the meta-data n.
— Adversary generates a response R for the query Q in an arbitrary way.
— Challenger verifies the response R with the algorithm CheckProof and outputs b

€ {accept,reject}.

Challenger sends the decision bit b to the adversary as feedback. Otherwise, if id is

not the output of any previous store query that adversary has made, then the challenger
does nothing.

Committing The adversary chooses a file identifier id* which is generated by
challenger in Learning phase and commits id* to challenger. Let F* denote the
data file associated to identifier id*.

Retrieving The challenger initiates polynomially many PVDP verifications for the
data file F* where challenger plays the role of verifier and adversary plays the role
of prover as in the Learning phase. From messages collected in these interactions
with adversary, challenger extracts a data file F* using some PPT extractor algo-
rithm. The adversary wins this game if his response makes challenger accept in
the verification during the Retrieve phase for the query made by challenger. The
challenger wins this game if the extracted file blocks are identical to the original
one.

According to the security game, we introduce the following definition:

Definition 3 A PVDP scheme is sound, if the probability that both adversary and
challenger win the security game with the different response is negligible. That is,
when the adversary gives out the response (M’, o) which makes the challenger accept
for the query Q generated by challenger, while the correct response is (M, o) which
is generated by the algorithm GenProof, the probability Pr[(M’, o) # (M, o)] is
negligible.

4 Our PVDP scheme

We describe the PVDP scheme in detail as follows:
KeyGen(1") — (pk, sk)

1.

2.

> w

The client chooses randomly a A bits RSA modulus N = pg such that all of
p.q,p = ”T_l q = % are primes and p, g are of the same bit lengths.

Setsf = (p—1)(g—1) = 4p’q’ and lets 2% denote the subgroup of quadratic
residues modulo N, which is also a cyclic group.

Chooses randomly a generator g of the subgroup 2%y .

Chooses randomly T < Zy(y).

Chooses randomly a seed denoted as seed from the key space of the pseudorandom
function family {P R Fyeeq : {0, 1% — Zy).

lets g; = g*. The public key is pk = (N, g, g;) and the private key is sk =

(p,q,t,seed). o
DEncode(sk,F) — (id,F, n, {gi}!_,)

@ Springer

82 C. Tang, X. Zhang

1. The client sets p € (0, 1) be a system parameter. Apply rate-p error erasure code
on data file F to generate block (Fp, ..., F;,—1), such that each block F; € {0, 1y
and any pn number of blocks F; can recover the original file F.

2. Chooses an unique identifier id € {0, 1}* for the file F.

3. For each data block F;,i € [0,n — 1], computes an authentication tag o; =
TF; + PRFyepq(id || i)mod B(N).

4. The encoded file is F = {(i, F;, 0;) : i € [0,n — 1]}, sends (id, F) to the cloud
storage server.

5. For each o;, computes the public information g; = gPRFseed(id‘|i), i e[0,n—1]
when id is given.

The encoded file is F = {(i, F;,07) : i € [0,n — 1]}, the client sends (id, F) to the
server and just keeps (id, n) in local storage and makes {g;};_, public.

Note that the client dose not need to store the tuple {g;}, and he can obtain those
values by table lookup when needed. Besides, the tuple {g;} can be reused and the size
Hgi}l = | 2%y | due to the element g is the generator of 2Zy .

Challenge(id, n) — Q
1. A verifier chooses randomly a subset C C [0, n — 1] with size | C |= £ .
2. Chooses randomly weight v; from ZS(N) foreachi € C.

Sets Q={(i, v;) : i € C},, and sends it to the cloud server.

GenProof(id, F, Q) — (M,0)

1. Server receives the query (id, Q) from the verifier.

2. Finds the encoded file F={(i, F;, 0;) : i €[0, n—1]} according to the identifier id.

3. Computes a message and a MAC value o as follows:

M= Ziec viF; modN, o = ZieC vio; modN.

Cloud server sends (M,o) to the verifier. It outputs (M, o).
CheckProof(pk, {gi}, Q, (M, o)) — accept or reject

— With the public key pk, and the tuple of public information {g; }, the verifier could
check whether the following equation holds:

g’ = Hiec(gi)”fg?/’modN.

It will output accept if the authentication succeeds; otherwise, outputs reject.

4.1 Completeness

Lemma 1 (Completeness) The above PVDP scheme is complete under Definition 2.
Proof The RHS of the verification equation above is
¢’ = gz,-gc Vi%i i 0d N = gz,-ec Vi PR Fyeeq (id||)+2 Vit od N

— H(gPRFseed(idHi))Ui .giwmodN — H(gi)vigymOdN
ieC ieC

Thus the lemma is completely proved. O

@ Springer

A new publicly verifiable data possession on remote storage 83

4.2 Security

Before we analyse the security of our PVDP scheme, we introduce the following
assumptions first.

The Knowledge of Exponent Assumption (KEA) is proposed in [7] and subse-
quently appears in many works [2,3,8,10,14]. The below is a variant version of KEA
in the RSA ring given by Ateniese et al. [1].

Assumption 1 (Knowledge of exponent assumption) Let N = pg be aRSA modulus,
g € Z) and s be a positive integer. For any PPT algorithm <7 that takes (N, g, g°) as
input and r as random coin and returns (C, Y) such that Y = C*modN, there exists
a PPT extractor algorithm o which, given (N, g, g%, r) as input, outputs x such that
g¥ =CmodN.

Assumption 2 (Factorization assumption [17] We say an integer N is a RSA modulus,
if N = pqg and all of pT_l, % are prime numbers and bit-lengths of p and ¢ are
equal. Then for any PPT adversary <7, the probability that .o can factorize a randomly
chosen A bits RSA modulus, is negligible in A.

Under the definition 3 and the security model introduced in section 4, we give the
following result:

Theorem 1 [f the pseudorandom function family PRF in our scheme is secure, the
discrete logarithm problem and the factorization of large integer are difficult to solve,
then the PVDP scheme is sound.

Before proving the above theorem, we introduce the following lemma first to show
that any PPT adversaries who perform our PVDP scheme faithfully could obtain the
secret T with negligible probability.

Lemma 2 [fthe pseudorandom function family PRF is secure, the discrete logarithm
problem and the factorization of large integer are difficult to solve, then the proof (M,
o) inour PVDP scheme is unforgeable in the no-feedback setting, where all acceptance
or rejection decisions are kept secure from the adversary in the security game.

Game 1 The first is identical to the security game, except that

— all acceptance or rejection decisions are kept secure from the adversary .o That
means the challenger in the security game does not answer verification queries
made by the adversary.

— Adversary ./ wins in Game 1, if ./’s forgery proof (M’, o) is accepted and it is
different from the genuine proof (M, o) generated by running GenProof honestly.

Game 2 The second game is the same as Game 1, except that the pseudorandom
function PRF is replaced by a simulator P R F5™, which outputs true randomness
over the range of PRF. Precisely, the function P R F5""™ is evaluated in the following
way:

— The challenger keeps a table, which is empty at the very beginning, to store all
previous encountered input-output pairs (v; P RF5" (v)).

@ Springer

84 C. Tang, X. Zhang

— Given an input v, the challenger looks up the table for it. If there exists an entry
(v; u), then return u as output. Otherwise, choose u uniformly randomly from the
range of PRF, insert (v; PRF3" (v) = u) into the table and returns u as output.

Obviously, we have the following result:

Claim 1 If there is a non-negligible difference in an PPT adversary ./’s success
probability between Game 1 and Game 2, then there exists another PPT adversary %
which can break the security of the pseudorandom function PRF.

Claim 2 For any computationally PPT adversary .7, the probability that .o finds the
secret value t after interacting in Game 2 is Q&V) < 1
p—
Proof Due to that the pseudorandom function PRF is secure, no PPT adversary could
distinguish between the outputs of PRF and the real random numbers in Zgyy) in
the security game. As a result, the secret value 7 is disguised computationally in o;.
Besides, no PPT adversaries could learn something useful about the value T from
the pk g, since the DLP is difficult to solve. So we remark that no PPT adversary
could learn the useful information about t in security game. Recall that 7 is chosen
uniformly randomly from ZM(Ny Thus the result is proved. O

The secret value t is only involved in the tag o; and the public key g,. The secret
value 7 is chosen at random from group Zg(4.

Claim 3 The probability that the adversary wins game 2 with the forgery proof is less
than ﬁ.

Proof Suppose the adversary plays the role of cloud storage server in game 2 and
wins the game with forgery proof (M, o’). That is,the adversary can generate the
valid response (M’, ¢’) in any way, which makes the challenger accept for his own
query Q, while the correct response is (M, o) which is generated according to the
algorithm GenProof, then the verification equation holds for both the valid response
(M', 0’) and the correct response (M, o). So we have

o — H(g,-)v"gﬁ/[modN. (1)
ieC

o =T e moan.)
ieC

Dividing Eq. (1) with Equation (2) we have

o AV oM , ,
5 _ MmodN = g°" " modN = g?’l M 0dN = gM=MT0dN

8% Iliec(givigd"
Through the computing above, the adversary can obtain the following equation:

¢ = g MM oa N 3)

@ Springer

A new publicly verifiable data possession on remote storage 85

The PPT adversary can compute T = A‘;;?W/,.
By the Claim 2, we have the following result: Pr[.e# wins game 2 with forgery
proof] < Pr[.«Z finds t in game 2] < ﬁ. Thus Claim 3 is proved. O

Therefore, Lemma 2 can be proved by combining Claim 1 and Claim 3. Subse-
quently, we prove the security in feedback setting.

Lemma 3 If the pseudorandom function family PRF is secure, the discrete logarithm
problem and the factorization of large integer are difficult to solve, then the proof (M,
o) in our PVDP scheme is unforgeable in the feedback setting, where all acceptance
or rejection decisions are returned to the adversary in the security game.

Game 1 The first game is just the same as security game; in the no-feedback setting,
all acceptance or rejection decisions are kept secret from the adversary. It is identical
to the Game 1 in the proof of Lemma 2.

Game 2-k This game is the same as Game 1, except that, ./ adaptively makes k
verification queries in the Learning phase and all acceptance or rejection decisions are
provided to .o at the end of each query.

We describe two different verification strategies as below, where the first one is
adopted by the challenger of the security game Game 2-k and the second one serves
as the reference:

— Simulated verifier The challenger keeps a local copy of messages and MAC:s,
where messages are chosen by the adversary in a SignQuery and MAC values
are generated by the challenger in response to that SignQuery. The challenger
also plays the role of an honest user. For each tuple (M’, o/, (i,v;) : i € C)
generated by the adversary mathcal A in a VerifyQuery, the challenger computes
the corresponding genuine tuple (M, o, (i, v;) : i € C) from the challenger’s local
copy of messages and MACs. If adversary’s output are the same as the genuine
output, then outputs accept; otherwise outputs reject.

— Imaginary verifier An imaginary verification oracle & which somehow has access
to the private keys sk.

We denote accept with the bit 1 and reject with the bit 0, and denote with a; € {0, 1}
the decision bit output by the imaginary verification oracle & for the i-th VerifyQuery
made by the adversary <7 in Game 2-k; b; € {0, 1} is the corresponding decision
bit output by the simulated verifier. Further more, let Ay = ajaz...ax € {0, l}k and
By = b1by...by € {0, 1}*. Thus we have

— ak+1 7 br41 implies the event that the adversary wins the Game 2-k. (ax4+1 =
1, bx4+1 = 0) indicates the event that the adversary wins Game 2-k, since the
adversary’s output is valid (accepted by ImaginaryVerifier), but different from
the genuine output (rejected by SimulatedVerifier). (ax+1 = 0,bgyr1 = 1) is
impossible, since the PVDP scheme is correct such that all genuine MAC values
are valid.

— ak+1 = b+ indicates the event that the adversary loses Game 2-k.

Due to our proof in this phase being exactly identical to that in [21], here we just
present our results and save the details.

@ Springer

86 C. Tang, X. Zhang

Claim 4 Let & be a negligible function, such that for any PPT adversary <7, Pr[.o/
wins Game 1 with the forgeable proof]< &. Then Pr[« wins Game 2-k with the
forgeable proof]< &. If Pr[Ax = By] > X, then Pr[A;4+1 = Br4+1] > X (1 —&).

Claim 5 If Pr[A; = Bi] > X, then Pr{Agr1 = Brs1] > X(1 — &).
Claim 6 Pr[A; = By] > (1 — &)X

Claim 7 Pr[</ wins Game 2-k with the forgeable proof]< & 4+ (1 — (1 — é)k) =
(k+ D& 4+ o0(8).

Notice that Pr[.«# wins Game 2-k with the forgeable proof |A; = By] < Pr[«/
wins Game 1 with the forgeable proof], since in Game 2-k, Ay = By indicates that
the adversary gains absolutely no information from the k VerifyQuery in the Learning
phase.

Therefore, Lemma 3 is concluded from Claim 7.

As we show that the response or proof (M, o) in our PVDP scheme is unforgeable,
now we start to prove our main result theorem 1 in this section.

Proof Since for random valuet € Zyy), 2/ can compute (g?” , M) correctly. Given
input (g7, (g¢)*), the adversary .7 can output (¢M7, (gM7)*). By Knowledge of Expo-
nent Assumption (KEA[11]), there exists a PPT extractor that can find M’, such that
gMr = gM/’modN. O

Case 1 M # M’.If the two values M and M’ are different, then the difference M-M’
has to be a multiple of %QJ(N), with which the factorization of N can be completed
by Miller’s result [15]. As a result, this case occurs with negligible probability under
large integer factorization assumption.

Case 2 M = M’. Certainly the challenger wins the security game when the equation
M = M’ holds. Here the value of M’ is faithfully computed as M’ = >, - vi F;,
which is a linear equation for the challenger with the set of weight {v;};cc. As a
consequence, to obtain £ = |C| numbers of independent linear equations about the
unknown quantities F;, i € C, the challenger can execute the protocol £ = |C| times
for the same index set C. So the original file blocks Fj,i € C can be recovered by
solving the linear equation system.

Through the above analysis, we obtain the following claim:

Claim 8 The case where adversary wins the security game including the above cases
means that either case 1 or case 2 occurs. That is

Pr[adversary wins the security game] = Pr[case 1 occurs] 4+ Pr[case 2 occurs],

where Pr[case 1 occurs] is negligible, and case 2 occurs means the challenger wins
the security game.

With the definition 3, we proved theorem 1 completely.

@ Springer

A new publicly verifiable data possession on remote storage 87

4.3 Performance analysis

Due to the homomorphism, the server integrates the block-MAC pairs (F;, ;) inquired
by the verifier into a single block-MAC pair (M, o) as a response returned to the veri-
fier, which makes our scheme efficient in communication and computation (on server
side): £'(A) is the communication cost and (L) is the storage overhead on both
client and server side, where A is the bit-length of the RSA modulus N. For each
query initiated by a verifier, the size of response returned by server is 2\ bits. And
the server only needs to perform 2¢ mul and 2¢ add operations to generate such a
response, which is optimal considering those existing publicly verifiable schemes.
On receiving the server’s response, the verifier requires to perform £ + 2 exp and
£ + 1 mul operations to conduct the verification, which is also comparable to those
existing verifiable schemes. As a result, all of these evaluation overhead grows lin-
early to the number of elements in the query. Due to the tag and o; € {0, 1}* and
F; € {0, 1}, the storage overhead is | F|(1 + %). However, in the setup, one group
multiplication, one group addition and one PRF evaluation are required to compute a
tag per each data block. Besides, a group exponentiation is also required to generate
the public information {g;}, and all of the preprocessing can be conducted off-line
by the client. Here £ = |C| is the number of indices selected during a verifica-
tion.

We now compare our PVDP scheme with some existing schemes [1,11,18-20,22,
23] in terms of communication cost, computation cost on server side, computation cost
on verifier side and storage cost. For simplicity, here we denote them as comm.cost,
comp.cost(S), comp.cost(V), storage.cost, respectively, and publicly+privately veri-
fiability presents the simultaneously public and private verifiability. In Table 1, A is
the security parameter. |G| denotes the size of group/field and m represents the size
of a data block (m = 100 is a good choice). In each scheme, £ denotes the size of a
challenge or query set (i, v;) : i € C and we denote multiplication, exponentiation
and addition in the corresponding groups (fields) as mul, exp and add, respectively.
Here we ignore all the hash functions, pseudorandom functions and pairing opera-
tions, since all of these operations are not required during the verification phase in
our scheme, which makes our PVDP scheme more efficient when users perform the
verification many times.

Here we just focus on the size of response/proof for the communication cost,
because it is at the mercy of the response/proof size. Note that the client/verifier dose
not need to store the tuple {g;}, and he can obtain those values by table lookup when
needed(the table can be stored at his facebook or even at the cloud server with a secure
signature as in [18]). Besides, the tuple {g; } can be reused and the size |{g;}| = | 2% N |
due to the element g is the generator of 2% .

In our PVDP scheme, the expensive cost for the public information {g; } just happens
in setup phase (algorithm DEncode), which is just the same as what most previous
works did when they evaluated the authentication tags (values) [11,19,20,22,23]; thus
we just focus the verifier’s computation cost on the verification phase as art protocols
did.

@ Springer

C. Tang, X. Zhang

88

1 (1 +7) + dxa(y3 +7) ppv g+ [nuty §9)7; YT BN ddAd O

[nut yg + dxa (y + w) ppv)T + dxa (w +) + nuwt (1 + 32) 0o (1 + w) SOK [¢zl

pnu y7 + dxa (3 +7) ppv 7+ dxa (w+ p) + pnu (w4) §9)7; [olz + v ON [o1]

ppv y+nui (3 + 1) +dxa ¢ ppv)T+ dxa 7+ nui g 8927 YT ON [6]

(g +) + dxa (3 + ¢) ppo (1 +) + dxay + nu (¢ +)7) 8977 ol + v ON [8]

(] +) + dxa (1 +7) ppv y + dxay + nut j 977 114 ON [9]

i (wi+) + dxa(y +) ppv qui + dxa j + pnury(ui + 1) §9)7; (D] + yw ON [v]

pnut (1 + 7) + dxa (¢ +7) ppv y+dxa j + nui)z §9)7; 174 ON [c]
AnpiqeyLoa

(A 1509 uoneIndwo)) (S)1s0o uonendwo)) 1509°93e10)§ 1500 UONBIIUNWIWIO)) Kareand+Aporiqng QuIdYoS

uorstredwos Axordwo) | 9dqe,

pringer

As

A new publicly verifiable data possession on remote storage 89

0.155
oist| ~B -8B A
- 24) 5
0145} | = =FVOO a-——ﬂ"‘fﬂ
[— — I = =
o14f — e
2 01| |
v
1 | -~
€ 013 i 2
| o oy
0125+ s ‘
on2f~ o 4
- . - -
0115} _ I]
01 . A . : ; i
too 200 300 400 500 600 700 800

Number of blocks accessed in a verfication

Fig. 1 Comparison of three schemes

4.4 Experimental results

We have modelled a prototype of our PVDP scheme as well as the schemes [18,20]
to show the efficiency of our PVDP scheme by the MATLAB with version 7.12.0.635
(R2011a).Our implementation is not optimized and further performance improvements
of our scheme can be expected.

Our text machine is a laptop computer, which is equipped with a 2GHz AMD
Athlon(tm) X2 Dual-Core, a 1IGB RAM. All experimental results are the mean of 10
trials. We denote the test data file as the array where the elements means the data block
size. Since all experiment results vary little across different trials, we do not focus on
the variances.

To illustrate the feature of computational time for the verification, we vary the
number of data blocks accessed in the verification from 100 to 800. Our experiment
results are shown in Fig. 1, which indicates that the authenticating time is proportional
to the number of blocks accessed in a verification, which is also at the mercy of
the challenge. Note that the size of the challenge is bounded. Thus the result of the
experiment is just consistent with our analysis.

5 Conclusion

In this paper, we present a new verifiable data possession (PVDP), which allows both
private and public verifiability simultaneously to verify the integrity of clients data
files stored on cloud server without downloading all of those files. Sequently, we
prove the security of our scheme. Our solution is efficient in communication, storage,
and computation on servers side. Especially, the computation cost on server side is
preferable to those most existing publicly verifiable schemes without increasing the
verifier’s workload, which greatly reduces client’s waiting time. However, our work
also encounters same dilemma as previous researches, that is, the client requires large
computation cost in setup phase (although the client can conduct this off-line), which
is the main drawback of our solution. In future research, we will devise preferable

@ Springer

90

C. Tang, X. Zhang

publicly verifiable data possession scheme which supports more features, and the
computation cost is far more efficient as well on the verifier side.

References

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Ateniese G, Burns R, Curtmola R et al (2007) Provable data possession at untrusted stores. In: CCS

’07: ACM conference on computer and communications security, pp 598-606

. Bellare M, Palacio A (2004) The knowledge-of exponent assumptions and 3-round zero knowledge

protocols. In: Advances in CRYPTO ’04, pp 273-289

. Bellare M, Palacio A (2004) Towards plaintext aware public-key encryption without random ora-

cles. In: ASTACRYPT ’04: Inter-national conference on the theory and application of cryptology and
information Security, pp 48-62

. Cash D, Kp A, Wichs D (2013) Dynamic proofs of retrievability via oblivious ram. Advances in

cryptologyCEUROCRYPT 2013. Springer, Berlin Heidelberg, pp 279-295

. Chen B, Curtmola R (2012) Robust dynamic provable data possession. In: ICDCS Workshops, pp

515-525

. Curtmola R, Khan O, Burns RC, Ateniese G (2008) Mr-pdp: multiple-replica provable data possession.

In: ICDCS 2008:411-420

. Damgard I (1992) Towards practical public key systems secure against chosen ciphertext attacks. In:

Advances in CRYPTO 91, pp 445456

. Dent AW (2006) The cramer shoup encryption scheme is plaintext aware in the standard model. In:

advances in EUROCRYPT ’06, pp 289-307

. Erway C, Kp A, Papamanthou C et. al. (2009) Dynamic provable data possession. In: Proceedings of

the 16th ACM conference on computer and communications security, pp 213-222

Hada S, Tanaka T (1998) On the existence of 3-round zero knowledge protocols. In: Advances in
CRYPTO °98, pp 408-423

Hanser C, Slamanig D (2013) Efficient simultaneous privately and publicly verifiable. In:
SECRYPT’13. http://eprint.iacr.org/2013/392

Juels A, Kaliski B (2007) Pors: proofs of retrievability for large files. In: CCS 07: ACM conference
on computer and communications security, pp 584-597

. Kp A (2010) Efficient cryptography for the next generation secure cloud. A adviser-Lysyanskaya, pp

104-149

Krawczyk H (2005) HMQV: a high performance secure diffie Hellman protocol. In: Advances in
CRYPTO 05, pp 546-566

Miller G (1975) Riemann’s hypothesis and tests for primality. In: STOC’75: ACM symposium on
Theory of Computing, pp 234-239

Paterson MB, Stinson DR, Jalaj Upadhyay (2012) A coding theory foundation for the analysis of
general unconditionally secure proof-of-retrievability schemes for cloud storage. http://eprint.iacr.org/
2012/611

Rivest R, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key
cryptosystems. Commun ACM 21(2):120-126

Shacham H, Waters B (2008) Compact Proofs of Retrievability. In: ASIACRYPT ’08: International
conference on the theory and application of cryptology and information security, pp 90—-107

Wang C, Chow S, Wang Q et al (2011) Privacy preserving public auditing for secure cloud storage.
IEEE Comp Soc 62(2):362-375

Wang Q, Wang C, Li J et al (2009) Enabling public verifiability and data dynamics for storage security
in cloud computing. In: ESORICS’09: European conference on Research in computer security, pp
355-370

Xu J (2012) Towards efficient proofs of storage and verifiable outsourced database in cloud comput-
ing. http://scholarbank.nus.edu.sg/bitstream/handle/10635/33347/xujia-thesis- A0002244B-May 15-
20127sequence=1

Xu J, Chang E (2012) Towards efficient proofs of retrievability. In: proceedings of AsiaCCS *12, pp
79-80

Yuan J, Yu S (2013) Proofs of retrievability with public verifiability and constant communication cost
in cloud. In: Proceedings of Asia CCS-SCC 13, pp 19-26

@ Springer

http://eprint.iacr.org/2013/392
http://eprint.iacr.org/2012/611
http://eprint.iacr.org/2012/611
http://scholarbank.nus.edu.sg/bitstream/handle/10635/33347/xujia-thesis-A0002244B-May15-2012?sequence=1
http://scholarbank.nus.edu.sg/bitstream/handle/10635/33347/xujia-thesis-A0002244B-May15-2012?sequence=1

A new publicly verifiable data possession on remote storage 91

24. Zhang Y, Blanton M (2013) Efficient dynamic provable possession of remote data via balanced update
trees. In: Proceedings of AsiaCCS, pp 183-194

25. Zhu'Y, Hu H, Ahn GJ, Yu M (2012) Cooperative provable data possession for integrity verification in
multicloud storage. IEEE Trans Parallel Distrib Syst 23(12):2231-2244

@ Springer

	A new publicly verifiable data possession on remote storage
	Abstract
	1 Introduction
	2 Definition of publicly verifiable data possession
	3 Security model
	4 Our PVDP scheme
	4.1 Completeness
	4.2 Security
	4.3 Performance analysis
	4.4 Experimental results

	5 Conclusion
	References

