
J Supercomput (2018) 74:1001–1023
https://doi.org/10.1007/s11227-015-1515-8

A shareable keyword search over encrypted data
in cloud computing

Li Xu1 · Chi-Yao Weng2 · Lun-Pin Yuan2 ·
Mu-En Wu3 · Raylin Tso4 · Hung-Min Sun2

Published online: 12 September 2015
© Springer Science+Business Media New York 2015

Abstract Cloud storage is one of the most important applications in our daily lives.
User can store their own data into cloud storage and remotely access the saved data.
Owing to the social media develops, users can share the digital files to other users,
leading to the amount of data growing rapidly and searching abilities necessarily. In
the some cases, servers cannot avoid data leakage even if the server provides com-
plete access control. The encrypted data is a best way to resolve this problem but
it may eliminate original structure and searching may become impossible. Applying
searchable encryption for each receiver may produce messy duplication and occupy
the quota of cloud storage from each receiver. User requires keeping their shared
documents belonging up to date which are compared with the latest version. To this

B Hung-Min Sun
hmsun@cs.nthu.edu.tw

Li Xu
xuli@fjnu.edu.cn

Chi-Yao Weng
cyweng@is.cs.nthu.edu.tw

Lun-Pin Yuan
lunpin@is.cs.nthu.edu.tw

Mu-En Wu
mn@scu.edu.tw

Raylin Tso
raylin@cs.nccu.edu.tw

1 College of Mathematics and Computer Science, Fujian Normal University, Fuzhou, China

2 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, ROC

3 Department of Mathematics, Soochow University, Taipei, Taiwan, ROC

4 Department of Computer Science, National Chengchi University, Taipei, Taiwan, ROC

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1515-8&domain=pdf

1002 L. Xu et al.

aim, we thus propose a sharable ID-based encryption with keyword search in cloud
computing environment, which enables users to search in data owners’ shared storage
while preserving privacy of data. For the performance analysis, we demonstrate the
compared resultant with others ID-based or ID-relative encryption. In addition to that,
we show the formal proof to verify the security of our proposed.

Keywords Cloud storage · Searchable encryption · ID-based encryption ·
Keyword search

1 Introduction

Cloudcomputinghas beenoneof the popular technologies in the past recent years. Tons
of useful applications and services are developed and later provided to regular users.
Take cloud storage service as an example; Dropbox, Google Drive, ASUS CLOUD,
SkyDrive, etc., allow users to store their data in cloud storage and access them remotely
later. Cloud storage service allows users to access their data whenever and wherever
users want. Furthermore, enterprises can outsource their data in cloud storage instead
of establishing private data center to reduce the costs of management and maintenance
[1]. As a result, the number of accounts of cloud storage service increases rapidly, and
so does the amount of data per user. Cloud storage has become essential in our daily
lives. When the amount of data per user grows, it becomes much more difficult for a
user to trace a file they needed at once. Users may forget where it is placed, or what it
is titled as file. It may take a lot of time for a user to find that particular file. Therefore,
the capability of searching keywords in file content is quite important to users [2].
Searching in plaintext content is not difficult, but it is not secure if doing so.

Cloud security has become an important issue to users and providers [3,4]. Users
and enterprises may require to store sensitive and costly information in cloud storage.
If the data is not encrypted, search operations can be done easily. But then, we cannot
store data secretly even if service providers guarantee to provide complete access
control management and guarantee not to peek at our data. There are always some
novel methods that are meant to invade our privacy, discovered by attackers. The
easiest way to protect our data is to encrypt them with our secret key [5], which is
not revealed to cloud storage providers, so that unauthorized parties cannot obtain the
original files. By doing so, however, it will significantly limit the searching capability
because everything is transformed into unstructured ciphertext.

Another important issue is that, thanks to social applications, users are now able
to share their data, which is stored in the cloud, with their friends. Allowing their
friends to remotely access, as well as to find, data in data owners’ cloud storage
as the data owners can do. In outsourced storage of enterprises, employees are also
required to share sensitive documents to other employees. However, friends and co-
workers do not know data owners’ secret keys and therefore they can neither operate
decryption nor operate queries. Revealing data owners’ private keys to them is not a
good approach to resolve this particular problem because there may be some other
data which are inappropriate to share. Simply re-encrypting the data and sending it
to all friends or co-workers may cost a lot of computational efforts and consume

123

A shareable keyword search over encrypted data in cloud computing 1003

great amounts of storage. Since most cloud storage providers restrict each user with
a certain quota (volume limitation), users may not want their quota being filled up
with the data that they do not necessarily need. Moreover, users may require keeping
the shared documents up to date with the latest modification which is done by data
owners, re-encrypting and sending the data again is not a good solution. In addition,
data owners may require to set expiration dates on the same data to different users,
which means friends or co-workers can obtain the data only within a certain duration
[6]. This feature leads to the deletion of searching capability on certain files.

A lot of research on searchable encryption has been developed in the past recent
years [7,8]. Cena et al. presented an efficient construction of searchable encryp-
tion (SE) based on symmetric algorithm. In this paper, they revisited the existing
SE schemes and pointed out that the existing scheme has significant practical draw-
backs. Authors developed an efficient searchable symmetric encryption to avoid these
drawbacks [8]. The goal of searchable encryption is to encrypt data using a special
approach, for instance, building secure indices, so that later queries can still be exe-
cuted. A query will be transformed into a trapdoor and then be sent to the service
provider. By executing the testing algorithm, the cloud storage provider is able to
determine whether a file contains the given keywords that a user requires. Therefore,
searching capabilities are preserved. Additionally, service providers and attackers can
learn nothing from ciphertext or from trapdoors, thus privacy is also preserved. How-
ever, although researchers have shown us how to encrypt our data while preserving
searching capabilities, none of them have addressed the need of searching in data own-
ers’ storage and the problem on how to share encrypted files in data owners’ cloud
storage while preserving searchability as well as the owner’s privacy. Very few of them
have addressed the requirement of deletion of searching capability.

ID-based encryption is a well-known approach for encrypted data [9–11]. This
paper thus follows the advantages of ID-based approach and takes them into consid-
eration. We use ID-based encryption in our approach for several reasons. First of all,
when a user attempts to share data to friends, it is reasonable that the user has the
identity (ID) of the friends, where the ID can be one of the following: an account,
an email address, a phone number, and/or anything that represent each unique user.
In ID-based encryption, the ID works as the public key of the receiver, thus complex
key management, certificate management, and certificate verification are no longer
required, which means that the sharing process is simplified in our approach. Second,
it is good to have a trusted authority party which is responsible for authorization in
enterprise point of view. For example, only registered and authorized users can use
the system, or another example, only authorized company members are able to use
company’s outsourced storage service. ID-based cryptography requires a trusted third
party to generate private keys for each user. A user cannot do anything if the user
does not have a private key in the system. Third, ID-based encryption is a public key
encryption, different secure indices and trapdoors can be generated even if the source
keywords are identical.

Our goal is to design a reasonable approach of shareable and searchable encryption
that allows data owners to share their data to their friends, so that their friends can
both decrypt and search in owner’s storage without occupying friends’ storage quota.
Our work has the following features: (1) privacy preserving; not only should data

123

1004 L. Xu et al.

be protected, but also the owners’ privacy. Our work prevents friends from peeking
into the data that is not shared with them. (2) Efficiency; we compared the compu-
tational complexity between our work and other related works. (3) The data owners
can specify different keyword sets to different set of receivers. For example, Bob can
find a particular document by searching a keyword “technical”, while Coral cannot;
however, Coral may find the same file by searching the keyword “Bob” as the owner
configured. (4) Data owners can enable and disable the searching ability on their data
to their friends whenever they want.

In this paper, we focus on asymmetric searchable encryption schemes, more pre-
cisely, public key encryptionwith keyword search (PEKS) schemes and identity-based
encryptionwith keyword search (IDEKS) schemes.However, unlike other researchers,
we mainly focus on IDEKS in cloud storage, in which the public information of data
owner is also involved in algorithms. This is because users are able to search in the
owner’s storage and we need to take care of the owner’s privacy. We have following
two basic assumptions. We assume that cloud storage service providers are semi-
trusted, which means they are curious but honest to user data. Also, we assume that
there is always a trusted authority party which is responsible for user management and
authorization in the system.

The rest of this paper is organized as follows: Sect. 2 introduces several relatedworks
in searchable encryption that has been done in the past recent years. Section 3 presents
mathematical preliminaries that is essential to our work. Section 4 describes our work
in detail. Analysis and evaluation are given in Sect. 5. Finally, Sect. 6 describes future
work and concludes this paper.

2 Related works

In 1985, Shamir [9] first introduced ID-based encryption and signature scheme to
simplify key management and certificate management in certificate-based public key
cryptosystems. In 2001, Boneh and Franklin [10] first proposed a practical ID-based
encryption fromWeil pairing. Later in 2004, Boneh and Boyen [11] proposed efficient
and selective-ID secure ID-based encryption without random oracles. In the same year
2004, Boneh et al. [12] proposed public encryption with keyword search (PEKS),
which enables users to search encrypted keywords without compromising the security
of original data.

Many related research on searchable encryption have been done in the past recent
years [7,8]. We focus on schemes of public key encryptions with keyword search
(PEKS). Baek et al. [13] proposed a provably secure PEKS scheme that removes the
secure channel assumption. Tian andWang [14] proposed an ID-based encryptionwith
keyword search (IDEKS) scheme which can be used in mail system to help classify
mails by different keywords or subjects. Rhee et al. [15] proposed an improved search-
able public key encryption with designated tester. Liu et al. [16] proposed an efficient
privacy preserving keyword search scheme in cloud computing, which allows service
providers to participate in partial decipherment to reduce computational overhead in
decryption for users. Lai et al. [17] proposed a scheme of efficient and expressive
search on encrypted data which supports arbitrary monotone boolean predicates.

123

A shareable keyword search over encrypted data in cloud computing 1005

There is also research on efficient and conjunctive keyword search in encrypted
data. It allows users to generate trapdoors based on different set of keywords. Wang
et al. [18] proposed a scheme of keyword-field-free conjunctive keyword search on
encrypted data and apply it to dynamic group settings. Kerschbaum [19] proposed a
searchable encryption scheme that supports conjunctive keyword search without the
need to specify positions for keywords. Ding et al. [21] proposed an efficient public key
encryption with conjunctive keyword search scheme, in which no pairing operation is
involved in encryption and trapdoor phases.

Some research on PEKS allows data owners to delegate the searching abilities to
multiple authorized users, so that authorized users can search and decrypt the encrypted
data. Ibraimi et al. [23] proposed a public key encryption with delegated search, which
allows private key holders to create master trapdoors and delegate it to other entities
with the ability to search encrypted data. Li et al. [24] proposed authorized private
keyword search over encrypted data in cloud computing, inwhichmultiple data owners
encrypt their records and allow searches by multiple users. Yang et al. [25] proposed
a scheme of multi-user private keyword search for cloud computing, especially for
enterprise-outsourcing-database-to-cloud settings, inwhichmultiple entitled users can
search and write to the database. Tang et al. [26] proposed an asymmetric searchable
encryption scheme, in which data owner can keep data encrypted while still being able
to recover the plaintext and authorize third-party servers to search.

Few related research on PEKSwith delegated searchmentioned that previousworks
have some disadvantages in some aspects. Some requires cloud servers being fully
trusted because servers hold master trapdoors and leakage is possible if servers are
compromised. Some requires data owners to share either everything or nothing to
authorized users, in other words, authorized users can search either all data or none
from owners because owners cannot choose what to share or not. And most of all, all
of them require data owners to keep tracks of public keys of other users, and certificate
managementmay be involved in procedures. Li et al. [27] proposed efficient and secure
data sharing in cloud computing based on pairings, which is most similar to our work.
However, in [27], when a new coming user asks for private keys, all private keys kept
in users have to be updated. This approach is not good when serving large amount of
users, especially in cloud applications. In our work, new user requests are much more
efficient. Furthermore, different from [27] and all previousworks,we focus on enabling
cloud storage service users to search in data owners’ storage to eliminate great volume
of duplicate occupation on same data while still preserving data owners’ privacy. Our
work can be applied in volume-limited (quota-based) cloud storage. In our work, data
owners can enable and disable searching capabilities of other users upon certain files
whenever the ownerswant. All in all, we proposed a shareable and searchable ID-based
encryption in cloud storage, so that process can be more flexible and more efficient.

3 Preliminaries

In this section, we briefly introduce preliminaries of our work, including related def-
initions and complexity assumptions. Also, we give definitions of operations used in
ID-based encryption with keyword search (IDEKS).

123

1006 L. Xu et al.

3.1 Bilinear pairings

Let (G1,+) and (G2,×) be two cyclic groups of some large prime order q. We view
(G1,+) as an additive group and (G2,×) as a multiplicative group.

Definition 1 A bilinear pairing is defined as a function ê : G1 × G1 → G2 with
following properties.

1. Bilinear: for all P , Q ∈ G1 and all a, b ∈ Zq , ê(aP, bQ) = ê(P, Q)ab.
2. Non-degenerate: if P is a generator in G1, then ê(P, P) �= 1 is a generator in G2,

where 1 is the identity.
3. Computable: there exists a polynomial time algorithm to compute ê(P, Q) ∈ G2

for all P, Q ∈ G1.

Such bilinear pairings can be achieved usingWeil or Tate pairings on supersingular
elliptic curves. Next, we define complexity assumptions to prove security in later
sections, especially in the security analysis section. Please note that the following
complexity assumptions are not used in evaluating performance but used only in
security proofs.

Definition 2 The discrete logarithm (DL) problem is defined as follows: given a ran-
dom element X ∈ G, where (G, �) = 〈G〉 is a finite cyclic group of prime order q
with a generator G, find an integer x ∈ Zq such that X = power(G, x). Note that, we
use xG notations in (G1,+) and Gx in (G2,×). We say that the DL assumption holds
if no polynomial time algorithm has a least advantage in solving the DL problem.

Definition 3 The bilinear Diffie–Hellman (BDH) problem is defined as follows: given
P , aP , bP , cP ∈ G1 for some a, b, c ∈ Zq , compute ê(P, P)abc ∈ G2. We say that
the BDH assumption holds if no polynomial time algorithm has a least advantage in
solving the BDH problem.

3.2 Outline of the IDEKS scheme

In ID-based encryption with keyword search (IDEKS) scheme, three parties are
involved, including sender, receiver, and server. The sender is a party that creates
and sends encrypted document along with IDEKS ciphertexts (or secure indices) to
the server. The server is a trusted third party that generates secret keys for each user,
it then sends the user’s secret key to the user via secure channel; it also performs test-
ing algorithm upon IDEKS ciphertext after receiving trapdoors from receivers. The
receiver is a party that generates trapdoors and sends them to the server to specify the
document that it requires. Unfortunately, since the server holds the master key, it has
the ability to generate trapdoors as receivers in IDEKS by forging queries. Next, we
give definitions of operations in IDEKS.

Definition 4 As shown in Fig. 1, an ID-based encryption with keyword search
(IDEKS) scheme consists of the following algorithms.

1. Setup(k): given a security parameter k as input, it outputs system parameters and
a public/master key pair (Ppub, s) for the server.

123

A shareable keyword search over encrypted data in cloud computing 1007

Fig. 1 ID-based encryption with keyword search

2. Extract (s, I Di): given a master key s and a unique identity I Di representing a
user ui , it computes ui ’s public/secret key pair (QI D, SI D) and sends SI D to ui
through a secure channel.

3. I DEK S(QI D, Ppub, w): given receiver’s public key QI D , server’s public key
Ppub, and a keyword w as inputs, it outputs an IDEKS ciphertext.

4. Trapdoor(SI D, w′): given receiver’s secret key SI D and a keyword w′, it outputs
a trapdoor Tw associated to the keyword w′.

5. T est (QI D, s, Tw): given receiver’s public key QI D , server’s master key s, and a
trapdoor Tw as inputs, it outputs 1 if w = w′ or 0 otherwise.

3.3 Assumptions

We assume that all users have adequate knowledge of all identities of their friends
by any means. We assume that the cloud server is semi-trusted, which means the
cloud server is under a curious-but-honest model assumption. The cloud server may
try to decrypt and peek at the data users uploaded, but it will never modify the data.
Therefore, encryptions on document and keywords are necessary to secure data from
cloud server. On the other hand, an authority is assumed to be a trusted party who holds
the master key and is responsible for user registration and secret key generation. The
authority may want to investigate encrypted documents if necessary, however, request
forgery cannot be done in our scheme. And finally, we assume keyword fields exists
(title, author, date, etc.) as well as keyword fields indexing for conjunctive keywords
search.

4 Proposed scheme

In this section, we describe our shareable ID-based encryption with keyword search
scheme. We first give an overview of our scheme and related definitions, then we
describe two proposed algorithms, SIDEKS and simplified SIDEKS. Our proposed

123

1008 L. Xu et al.

schemes can be adapted to different data communication environments, e.g., the
SIDEKS is used for the data communication without encrypted channel, the simplified
SIDEKS is applied to the communication environment with encrypted channel. Later
on, our proposed schemes will be introduced in details.

4.1 Overview

In shareable ID-based encryption with keyword search (SIDEKS) scheme, four parties
are involved, including data owner, receiver, server, and authority. The authority is a
trusted party that generates private key for each registered user, it then sends user’s
private key to user via a secure channel. The data owner is a party that creates and sends
encrypted document alongwith SIDEKS ciphertexts (or secure indices) to the server; it
can specify different keywords to different users. The server is a party that receives and
stores encrypted document as well as SIDEKS ciphertexts; it also performs the testing
algorithmafter receiving trapdoors from receivers. The receiver is a party that generates
trapdoors and sends them to the server to specify the document that it requires. Note
that, the receiver does not actually receive the encrypted document which is sent by
data owners; instead, the receiver searches and downloads the encrypted document
from data owners’ storage. After downloading from cloud storage, the receiver can
further share the document as a data owner.

Here, we give a brief example of how it works. As soon as the service is established,
the administrator runs Setup to installmaster key and cloud’s secret key to the authority
and the cloud server respectively. Later, when a user, say Alice, is trying to register to
this service, the authority runs Extract as soon as Alice is authorized and permitted to
use the service. After that, authority generates a public/secret key pair (QI D, SI D) and
secretly sends SI D to Alice. After receiving the SI D , Alice finalizes it secret keys skI D
and reveals PI D . Alice then runs SIDEKS and uploads an encrypted project which is
shared with another user, say Bob, a project team member. Alice can run AddReq to
further enable another team member, say Charlie, to search for this encrypted project.
Alice also can run DelReq to disableBob’s searchability on this project.WhenCharlie
is about to work, he runs Trapdoor to obtain a reference link of the project. And after
downloading it, he runs Decrypt .

Next, we give definitions of operations in SIDEKS.

Definition 5 As shown inFig. 2, a shareable ID-based encryptionwith keyword search
(SIDEKS) scheme consists of following algorithms.

1. Setup(k): given a security parameter k, it outputs system parameters SP , the
authority’s master key s, and a shared secret c which is shared with the cloud
server.

2. Extract (s, I D): run by the authority. Given the authority’s master key s and
a unique ID representing a user ui , it calculates ui ’s public/secret key pair
(QI D, SI D) and secretly sends SI D to ui . By receiving SI D , ui finalizes its secret
key skI D and reveals PI D . Note that, all users can derive QI D from I D, there-
fore, public key and certificate delivery are no longer required. We use notation
QI D as the public key instead of I D in following algorithms because QI D is
automatically calculated.

123

A shareable keyword search over encrypted data in cloud computing 1009

Fig. 2 Shareable ID-based encryption with keyword search

3. SIDEKS(skI D,D,U ,W): run by data owners. Given the owner’s secret key skI D ,
a documentD, a set of receiverU , and a set of keywordsW , it outputs an encrypted
document D′ and an upload request UPLOAD. As a result, for each receiver
ui ∈ U can find D by querying any keyword w j ∈ W . Note that the data owner
itself should be included in U .

4. AddRequest (skI D,R,U ,W): run by data owners. Given the owner’s secret key
skI D , a reference R which refers to an encrypted document, a set of receiver
U , and a set of keywords W , it outputs an add request ADD. Note that R can
be a temporary data pointer (link, address, index, etc.) specifying an encrypted
document;R can be obtained only after Test algorithm. To set different keyword
set for different user set, the data owner has to run this algorithm after SIDEKS is
done.

5. AddUser(ADD,D′): run by the cloud server. Given an add request ADD and
an encrypted document D′, it adds an entry into D′.

6. DelRequest (skI D,R,U): Run by data owners. Given the owner’s secret key
skI D , a reference R, and a set of receiver U , it outputs a delete request DEL
which will disable U to find R.

7. DelUser(c, PI D,DEL,D′): run by the cloud server. Given the shared secret c,
a delete request DEL and an encrypted document D′, it deletes an entry in D′.

8. Trapdoor(skI D, QI D0 ,W): run by users. Given user’s secret key skI D , data
owner’s public key QI D0 , and a set of keywordsW , it outputs a trapdoor Tw and
a trapdoor request T REQ.

9. T est (c, Tw,D′): run by the cloud server. Given the shared secret c, a trapdoor
Tw, and an encrypted document D′, it outputs (1,R) if D′ contains specified
keywords, or (0, null) otherwise.

10. Decrypt (skI D, QI D0 , d
′): run by users. Given user’s secret key skI D , data

owner’s public key QI D0 , and a customized encrypted document d ′, it outputs
the original document D.

11. Sign(skI D,REQ): run by users.Given user’s secret key skI D and a requestREQ,
it signs the request and outputs a signed REQ′.

123

1010 L. Xu et al.

12. Veri f y(PI D,REQ′): run by the cloud server. Given user’s public verifying key
PI D and a signed request REQ′, it verifies REQ′ and outputs either valid or
invalid.

4.2 Security model

Here, we introduce our semantic security model. The overview of semantic security
model is stated as follows. In game 1, an adversary A1, which is assumed to be the
cloud server, cannot deduce document contents from trapdoors even if the adversary
has the shared secret c. In game 2, an adversaryA2, which is assumed to be a receiver,
cannot deduce document contents without the shared secret c even if the adversary
has all trapdoors. The goal is to prove that trapdoors and SIDEKS ciphertexts do not
reveal anything about the encrypted document.

Definition 6 (IND-CKA Game 1) The indistinguishability under chosen keyword
attack (IND-CKA) game 1 is defined as follows.A1 is assumed to be the cloud server.
Given a keyword and two encrypted documents of equal size, determine which docu-
ment contains the keyword.

– Setup: a challenger B runs the Setup(k) algorithm and givesA1 system parameters
SP and A1’s shared secret c.

– Phase1:A1 asks for a number of trapdoors Tw for any (id, w) of its choice from a
trapdoor oracle. Note that id represents a user andw can be either a single keyword
or a keyword list.

– Challenge: A1 outputs a target pair ((id∗
0 , w∗

0), (id∗
1 , w∗

1)) with restriction that
trapdoors for (id∗

0 , w∗
0) and (id∗

1 , w∗
1) are not asked in Phase1. A1 then sends

((id∗
0 , w∗

0), (id
∗
1 , w∗

1)) to a challenger B. Upon receiving this, B randomly chooses
b ∈R {0, 1} and computes SIDEKS ciphertext S∗ = SIDEKS(skI D, D, uid , w∗

b).
B returns S∗ to A1.

– Phase2: A1 asks for a number of trapdoors Tw for any (id, w) of its choice from
a trapdoor oracle with restriction that (id, w) �= (id∗

0 , w∗
0), (id

∗
1 , w∗

1).
– Guess: A1 outputs its guess b′ ∈ {0, 1} and wins the game if b = b′.

We define A1’s advantage in breaking SIDEKS as

AdvA1(k) = |Pr [b = b′] − 1/2|

Definition 7 (IND-CKA Game 2) The indistinguishability under chosen keyword
attack (IND-CKA) game 2 is defined as follows.A2 is assumed to be a receiver. Given
a keyword and two encrypted documents of equal size, determine which document
contains the keyword.

– Setup: by running Extract(ID) algorithm, A2 receives a secret SI D and finalizes
its secret key skI D . Later, A2 reveals its verifying key PI D to challenger B.

– Phase1: A2 asks for a number of test results for any given S and the trapdoor Tw

of its choice from a test oracle.

123

A shareable keyword search over encrypted data in cloud computing 1011

– Challenge: A2 outputs a target keyword pair (w∗
0, w

∗
1) with restriction that trap-

doors for w∗
0 and w∗

1 are not asked in Phase1. A2 then sends (w∗
0, w

∗
1) to a

challenger B. Upon receiving this, B randomly chooses b ∈R {0, 1} and computes
SIDEKS ciphertext S∗ = SIDEKS(skI D,D,U , w∗

b). B returns S∗ to A2.
– Phase2: A2 asks for a number of test results for any given S and the trapdoor Tw

of its choice from a test oracle.
– Guess: A2 outputs its guess b′ ∈ {0, 1} and wins the game if b = b′.

We define A2’s advantage in breaking SIDEKS as

AdvA2(k) = |Pr [b = b′] − 1/2|

Friday, August 28, 2015 at 6:47 am

Definition 8 Wesay that SIDEKS is semantically secure under chosen keyword attack
if for all polynomial time attackerA1,2 has a negligible advantage inwinning the game.

4.3 SIDEKS details

We construct SIDEKS as follows. Note that the encrypted file will occupy only the
data owner’s storage quota.

1. Setup(k): given a sufficiently large security parameter k ∈ Z
+, it generates two

cyclic groups (G1,+), (G2,×) of some large prime order q and a bilinear pairing
ê : G1 ×G1 → G2. Randomly, choose a generator P ∈R G1 and s, c ∈R Zq , then
compute Ppub = sP and Pcld = cP . Select collision-free one-way hash functions
H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → Zq , H3 : G2 → Zq , and H4 : Zq →
{0, 1}k . For example, H4 can be SHA256 and H1, H2, H3 can be combination
of SHA256 with element_from_hash function in PBC library. Select symmetric
encryption/decryption (Enc, Dec). Output authority’s master key s, the shared
secret c, and system parameters

SP = (ê,G1,G2, q, P, Ppub, Pcld , H1, H2, H3, H4, Enc, Dec)

2. Extract (s, I D): compute user ui ’s public key QI D = H1(I D) and a secret SI D =
sQI D . Send SI D to ui through a secure channel such as ssh. By receiving SI D , ui
randomly chose sI D ∈R Zq and finalize its secret key skI D = (SI D, sI D). Later,
ui reveals PI D = sI D P to the cloud server as a part of the cloud server’s system
parameters. Note that, since H1 is a part of system parameters SP , all users can
derive the public key QI D from I D. Therefore, public key and certificate delivery
are no longer required; the only information of each receiver that the sender has
to know is their identity. We use notation QI D as the public key instead of I D in
following algorithms because QI D is automatically calculated by each user.

3. SIDEKS(skI D,D,U ,W): randomly choose an encryption key ek and a random
number x ∈R Zq . For each receiver ui in U , compute QI Di = H1(I Di), μi =
H3(ê(SI D, QI Di)), Ui = xμi Q I Di , Vi = xμi Pcld , and Ki = Enc(H4(μi), ek),

123

1012 L. Xu et al.

then set receiver search entry Ei = (Ui , Vi , Ki). For each keyword w j in key-
word field j , compute SIDEKS ciphertextC j = xH2(w j)Ppub. For the document,
compute the ciphertext C = Enc(ek,D), digest h = H2(C‖ek), and document
signature σD = (σD1, σD2) = (x P, xQI D+hSI D). Finally, output encrypted doc-
ument D′ = (C, {Ei }, {C j }, σD), and the upload request UPLOAD = (I D,D′),
sign UPLOAD and send it to the cloud server.

4. AddRequest (skI D,R,U ,W): obtain ek by decrypting any Ki generated pre-
viously; randomly choose a number x ∈R Zq . Compute search entries {Ei }
and SIDEKS ciphertexts {C j } as in previous algorithm. Output an add request
ADD = (I D,R, {Ei }, {C j }), sign it and send it to the cloud server.

5. AddUser(ADD,D′): after verification onADD, the cloud server inserts {Ei } and
{C j } to specified document.

6. DelRequest (skI D,R,U): for each receiver ui , compute Fi = sI DQI Di . Output
a delete request DEL = (I D,R, {Fi }), sign it and send it to the cloud server.

7. DelUser(c, PI D,DEL,D′): after verification on DEL, the cloud server operates
following steps. For each entry Ei = (Ui , Vi , Ki) in D′, and each Fj in DEL,
the cloud server tests whether the following equation holds; if holds, delete Ei

in D′.

H3(ê(Ui , PI D)) = H3(ê(Fj , Vi)
1/c)

8. Trapdoor(skI D, QI D0 ,W): randomly choose a number y ∈R Zq . Compute μ =
H3(ê(QI D0 , SI D)) and the trapdoor Tw = (I, Tw1, Tw2, Tw3), where I is a set
of specified keyword fields, Tw1 = ê(sI DQI D + SI D, yμPcld), Tw2 = yμQI D ,
and Tw3 = ∑

yH2(wi) SI D for keyword wi in keyword field i . Output a trapdoor
request T REQ = (I D, Tw), sign it and send it to the cloud server.

9. T est (c, Tw,D′): after verification and taking Tw = (I, Tw1, Tw2, Tw3) and D′ =
(C, {Ui , Vi , Ki }, {C j }, σD′) as inputs, the cloud server first extracts specified
keyword fields from I and computes Csum = ∑

C j for SIDEKS ciphertexts C j

in keyword field j . Determine the result by testing whether the following equation
holds. If holds, output 1 and generate a temporary entry referenceRwhich specified
an entry

H3(Tw1 · ê(Tw3, Vi)) = H3(ê(PI D + Ppub + Csum, cTw2))

10. Decrypt (skI D, QI D0 , d
′): by receiving d ′ = (C, {U, V, K }, σD), the user com-

putes μ = H3 (ê(QI D0 , SI D)) and obtains encryption key ek = Dec(H4(μ), K).
Verify it by testing whether the following equation holds. If holds, obtain original
document by D = Dec(ek, C).

H3(ê(QI D0 , σD1 + H2(C‖ek)Ppub)) = H3(ê(P, σD2))

11. Sign(skI D,REQ): generate a timestamp t , compute signature σ = sI DH1(REQ
‖t), and output signed request REQ′ = (REQ, t, σ).

123

A shareable keyword search over encrypted data in cloud computing 1013

12. Veri f y(PI D,REQ′): verify it by testing whether the following equation holds.
Output valid if it holds, invalid otherwise.

H3(ê(σ, P)) = H3(ê(H1(REQ‖t), PI D)

4.4 Simplified SIDEKS

The SIDEKS has a simplified formwhich is constructed similarly except for Trapdoor
and Test. The rest of the operations are the same as mentioned above.We describe how
we construct simplified SIDEKS (sSIDEKS) in this section. In the original thought,
the reason of Tw1 is to give the user a chance to verify cloud server and to give cloud
server a chance to verify whether or not the user is authorized when short signature
scheme is not applied because of preference or performance. Further protocols will be
put in future works. We can observe that Tw1 equals to ê(sI DQI D + SI D, yμPcld) and
equals to ê(PI D + Ppub, Tw2)

c in later consistency section. We suggest that service
providers should always use non-simplified proposed scheme with short signature
verification for double safety.

– Trapdoor(skI D, QI D0 ,W): randomly choose a number y ∈R Zq . Compute
μ = H3(ê(QI D0 , SI D)) and the trapdoor Tw = (I, Tw2, Tw3), where I is a set of
specified keyword fields, Tw2 = yμQI D , and Tw3 = ∑

yH2(wi)SI D for keyword
wi in keyword field i . Output a trapdoor request T REQ = (I D, Tw), sign it and
send it to the cloud server.

– T est (c, Tw,D′): after verification and taking Tw = (I, Tw1, Tw2, Tw3) and D′ =
(C, {Ui , Vi , Ki }, {C j }, σD′) as inputs, the cloud server first extracts specified key-
word fields from I and computes Csum = ∑

C j for SIDEKS ciphertexts C j in
keyword field j . Determine the result by testing whether the following equation
holds. If holds, output 1 and generate a temporary entry referenceRwhich specified
an entry

H3(ê(Tw3, Vi)) = H3(ê(Csum, cTw2))

4.5 Consistency

Here, we show the consistency of our scheme, including request signature verification,
document signature verification, user deletion, and trapdoor testing.

1. Request signature verification: further details can be found in short signature from
the Weil pairing [20].

ê(σ, P) = ê(sI DH1(REQ), P)

= ê(H1(REQ), sI D P)

= ê(H1(REQ)‖t), PI D)

2. Document signature: further details can be found in batch verification with id-
based signature [30].

123

1014 L. Xu et al.

ê(P, σD2) = ê(P, xQI D + hSI D)

= ê(P, xQI D + hsQI D)

= ê(QI D, x P + H2(C‖ek)sP)

= ê(QI D, σD1 + H2(C‖ek)Ppub)

3. User deletion:

ê(U, PI D) = ê(xμQI D, sI D P)c/c

= ê(sI DQI D, xμPcld)
1/c

= ê(F, V)1/c

4. SIDEKS trapdoor test:

Tw1 · ê(Tw3, V) = ê(sI DQI D + SI D, yμPcld) · ê
(

∑

i

yH2(wi)SI D, xμPcld

)

= ê(sI DQI D + sQI D, yμcP) · ê
(

∑

i

yH2(wi)sQI D, xμcP

)

= ê(sI D P + sP, yμQI D)c · ê
(

∑

i

x H2(wi))sP, yμQI D

)c

= ê

(

PI D + Ppub +
∑

i

x H2(wi)Ppub, yμQI D

)c

= ê
(
PI D + Ppub + Csum, Tw2

)c

5. sSIDEKS Trapdoor Test:

ê(Tw3, V) = ê

(
∑

i

yH2(wi)SI D, xμPcld

)

= ê

(
∑

i

yH2(wi)sQI D, xμcP

)

= ê

(
∑

i

x H2(wi))sP, yμQI D

)c

= ê

(
∑

i

x H2(wi)Ppub, yμQI D

)c

= ê (Csum, Tw2)
c

123

A shareable keyword search over encrypted data in cloud computing 1015

5 Evaluation and analysis

Two analyses, including performance analysis and security analysis, and evaluation
environment are provided in this section.

5.1 Performance analysis

We compare our scheme only with ID-based or ID-relative encryption with keyword
search. The features provided is shown in Table 1. Scheme [14] is the original IDEKS
described in the preliminaries section. It resolves the searchability upon encrypted
emails for each receivers, but it does not addressed the shareability. Scheme [27]
proposed an IDEKS in share storage using based on secret sharing. However, it
does not mention revocation/deletion of searchability of the receivers. In this paper,
our approach allows data owners to dynamically enable/disable searchability of the
receivers. As far as we know, our approach is the first scheme which allows receivers
to conduct search in owner’s storage.

We denote ê by a bilinear pairing operation, m by a scalar operation in G1, P
by a power operation in G2, M by a multiplication in G2, p by a H1 MapToPoint
operation, and u by the number of users, which is an extremely large number. Note
that the comparison of theoretical time consumption of each PBC operation is:

p > m > ê > M > P

The evaluation of operation using C-written PBC library executed with workstation
equipped with Intel(R) Xeon(R) CPU W3530 (2.80GHz) is shown in Table 2.

In the server’s point of view, the Test algorithm is the most important operation
because it is frequently operated while Extract is not; SIDEKS/IDEKS and Trapdoor
algorithm are operated in user side so they are not the bottleneck. In Table 3, we
can see that our simplified approach provides the best performance in the test phase
among these four. In other phase, our proposed scheme has a little bit higher overall
computational cost than scheme [14], and slightly less than scheme [27].

Scheme [27] has an extremely high computational cost in Extract algorithm when
u is large as it supposed to be in cloud environment. Our approach, therefore, is better
than scheme [27].

Table 1 Related work
Proposed Scheme [27] Scheme [14]

Extract � � �
IDEKS � � �
Trapdoor � � �
Test � � �
Encrypt � �
Decrypt � �
AddUser �
DelUser �

123

1016 L. Xu et al.

Table 2 Notation Table
Notation Description Average time (s)

u The number of cloud users

p MapToPoint (hash) operation 0.0046

m Scaler operation over G1 0.0020

ê Pairing operation 0.0016

M Multiplication operation over G2 0.0006

P Power operation over G2 0.0002

Table 3 SIDEKS/IDEKS performance

Scheme Extract SIDEKS/IDEKS Trapdoor Test

Scheme [14] p + m 3m m m + 2ê

Scheme [27] 4um p + 5m + 4ê + M + 3P p + m m + ê

Proposed p + 2m p + 3m + ê p + 4m + 2ê 2ê + M + P

Simplified p + 2m p + 3m + ê p + 2m + ê 2ê + P

Table 4 SIDEKS performance
Scheme DelReq DelUser Decrypt

Scheme [27] – – 2m + 4ê + 5M + 2P

Proposed p + m 2ê + P p + m + 3ê

As shown in Table 4, we can see that our proposed scheme has fewer computational
cost inDecrypt algorithm. Furthermore,we have DelReq and DelUser in our scheme.
The performance of AddReq is the same with SIDEKS, and AddUser is always
executed in constant time.

5.2 Security analysis

In our scheme, we can easily see that each receiver can generate different trapdoors
even though the keywords are the same. It is because y is picked randomly and thus
if y �= y′ then Tw �= T ′

w. Also, signatures are involved to avoid reply attacks. On
the other hand, the cloud server does not know whom the document is shared with, in
other words, SIDEKS is an anonymousmultireceiver encryption with keyword search.
What is more, friends cannot decrypt the documents that are not being shared.

Next, we prove the security of our scheme under assumptions described in the
preliminaries section. We use the simplified SIDEKS equation in our proof because it
will be easier.

Corollary 1 The cloud server cannot determine the shared secret μ = H3(ê(QI D,

SI D0)) = H3(ê(SI D, QI D0)) = H3(ê(QI D, QI D0)
s) between the receiver u I D and

the owner u0 under BDH assumption.

123

A shareable keyword search over encrypted data in cloud computing 1017

Proof Given Ppub = sP = αP , QI D = βP and, QI D0 = γ P for some secret
α, β, γ ∈ Zq , compute ê(QI D, QI D0)

s = ê(P, P)αβγ is equivalent to the BDH
problem, which no polynomial time algorithm has a least advantage to solve.
�

Corollary 2 The cloud server cannot determine the keyword wi and s from given
SIDEKS ciphertext ci under DL assumption.

Proof Given ci = αPpub, Pcld = cP , and cloud server’s secret c, where α ∈ Zq is
secretly kept from the cloud server, compute α from ci = αPpub is equivalent to the
DL problem.
�

Theorem 1 (IND-CKA Game 1) Our scheme is semantically secure against chosen
keyword attack in Game 1 under the random oracle model assuming BDH problem is
intractable.

Proof Suppose thatA1 is a malicious cloud server which has advantage ε in winning
the game.We build an adversaryB that usesA1 and thusB has advantage ε′ in solving
the BDH problem. B is given P, Pα = αP, Pβ = βP, Pγ = γ P ∈ G1. B’s goal is to
compute ê(P, P)αβγ ∈ G2.

– Setup: A1 is given its secret key c, and system parameters SP = (ê, G1, G2, q,

P, Ppub, Pcld , H1, H2, H3, H4), where H1, H2, H3, and H4 are controlled by B.
B randomly picks y, μ ∈R Zq and responds to oracle queries as follows.
To respond to H1 queries, B maintains H1-list (initially empty) with entries
(idi , hi , ri , ci).
1. If query idi already exists in H1-list, then B responds with H1(idi) = hi ∈ G1.

Otherwise, B flips a coin ci ∈ {0, 1} so that Pr [ci = 0] = δ.
2. B randomly chooses ri ∈ Zq . If ci = 0, B computes hi = ri P ∈ G1. If ci = 1,

hi = (
ri
s)Pα .

3. B adds (idi , hi , ri , ci) to H1-list and responds H1(idi) = hi .
To respond to H2 queries,Bmaintains H2-list (initially empty)with entries (wi , qi).
If query wi does not exist in H2-list, then B randomly chooses qi ∈ Zq and adds
(wi , qi) to H2-list.B responds H2(wi) = qi . Similar to responding H2,Bmaintains
H3-list in similar way using (ti , rti) entries.

– Phase1: when A1 asks for trapdoor of (id, w), B obtains (idi , hi , ri , ci) from
H1-list and (w j , q j) from H2-list where idi = id and w j = w. If ci = 0, then
B aborts and reports failure. Otherwise, B computes Tw2 = yμQI D = ri

s yμPα ,
where y, μ are picked in Setup phase. B gives Tw = (I, Tw2, Tw3) to A1.

– Challenge: A1 sends ((id∗
0 , w∗

0), (id
∗
1 , w∗

1)) to B. B obtains (idi , hi , ri , ci) from
H1-list and (w j , q j) from H2-list where idi = id0, id1 and w j = w0, w1. B flips
a coin b ∈R {0, 1} and responds SIDEKS ciphertext S∗ = (U∗, V ∗,C∗) where
C∗ = xH2(wb)Ppub = γ qbPβ is defined.

– Phase2: Identical to Phase1, except that (id, w) �= (id∗
0 , w∗

0), (id
∗
1 , w∗

1).

– Guess: A1 outputs b′ ∈ {0, 1}. B picks t in random oracle H3 and returns t
s

ri cyqμ

as its guess for ê(P, P)αβγ .
�

123

1018 L. Xu et al.

Theorem 2 (IND-CKA Game 2) Our scheme is semantically secure against chosen
keyword attack in Game 2 under the random oracle model assuming BDH problem is
intractable.

Proof Suppose that A2 is a malicious user which has advantage ε in winning the
game. We build an adversary B uses A2 and thus B has advantage ε′ in solving the
BDH problem. B is given P, Pα = αP, Pβ = βP, Pγ = γ P ∈ G1. B’s goal is to
compute ê(P, P)αβγ ∈ G2.

– Setup: A2 is given its secret key SI D = Pα and system parameters SP = (ê,G1,

G2, q, P, Ppub, Pcld , H1, H2, H3, H4) where Pcld = Pβ = βP . H1, H2, H3, and
H4 are controlled by B and B maintains H1-list, H2-list, and H3-list as described
in previous theorem. B randomly picks y, μ ∈R Zq and gives them to A2.

– Phase1: when A2 asks for test result for trapdoor Tw = (I, Tw2, Tw3) of (id, w)

and SIDEKS ciphertext S = (U, V,C), B returns its test result by testing whether
H3(ê(Tw3, V)) = H3(ê(Csum, Tw2)). B obtains (idi , hi , ri , ci) from H1-list and
(w j , q j) from H2-list where idi = id and w j = w. If ci = 0, then B aborts and
reports failure. Otherwise, B computes Tw3 = yH2(w)Sid = yq jr1Pα and returns
its test result.

– Challenge: upon receiving ((id∗
0 , w∗

0), (id
∗
1 , w∗

1)) from A2, B obtains (idi , hi ,
ri , ci) from H1-list and (w j , q j) from H2-list where idi = id0, id1 and w j =
w0, w1. B flips a coin b ∈R {0, 1} and responds SIDEKS ciphertext S∗ =
(U∗, V ∗,C∗) where V ∗ = μγ Pβ is defined.

– Phase2: identical to Phase1.
– Guess:A2 outputs b′ ∈ {0, 1}.B picks t in random oracle H3 and returns t1/(riμyq)

as its guess for ê(P, P)αβγ .

�

5.3 Evaluation environment

We evaluated the proposed encryption on a workstation equipped with Intel(R)
Xeon(R) CPU W3530 (2.80GHz). The implementation code is written by C lan-
guage with pairing-based cryptography (PBC) library. The goal of implementation
code is used to evaluate the proposed scheme by evaluating the most commonly called
functions such as sSIDEKS, Trapdoor, and Test algorithms.We thus focus on these fol-
lowing algorithms: Setup, Extract, sSIDEKS, Trapdoor, and Test. Here, the algorithms
are shown below.

– Setup(k)

123

A shareable keyword search over encrypted data in cloud computing 1019

– SI D = Extract (s, I D)

– D′ = sSI DEK S(skI D,D,U ,W)

– Tw = sT rapdoor(skI D, QI D0 , w)

123

1020 L. Xu et al.

– result = sT est (c, Tw,D′)

– μ = ê(e1, e2)

In addition to that, we applied the process of the code optimization to reduce the
program complexity. The pairing parameter we used is type A parameters “a.param”.
Note that, we also omitted the initialization and the deletion of declared elements here,
but they are still required in the code. To simplify our evaluation, the process of whole
document encryption and decryption is omitted.

5.4 Evaluation result

We compiled the code with O2-optimization and then executed the implementation
using single thread. It turns out that applying test algorithm upon a trapdoor and a
SIDEKS ciphertext takes only 0.0033 s in average. The practical computation time
0.0033 s is very close to the estimated time 0.0034 s(= 2× 0.0016+ 0.0002). Obvi-
ously, the performance is extremely great, not to mention applying the implementation

123

A shareable keyword search over encrypted data in cloud computing 1021

Table 5 Time consumption in
seconds

Extract SIDEKS Trapdoor Test

Average 0.0090 0.0083 0.0060 0.0033

to parallel processing and distributed computing such as cloud environment. However,
the performance is bounded by the PBC library.

The evaluation of proposed algorithms is shown in Table 5. We run the algorithms
thousands of time. The numbers presented here are average time consumption in
second. Note that, there is a little difference between arithmetic time consumption and
actual time consumption.

This code is well optimized. Therefore, the time consumption of algorithms ismuch
less than arithmetic summation of time consumption of sequential PBC operations.
Note that, bad coding style and bad sequence of functions may result in lack of effi-
ciency. Take Q = xyP as an example where Q, P ∈ G1 and x, y ∈ Z∗

q , first compute
a = xy then compute Q = aP is always faster than compute Q = x P then Q = yQ.
The reason is that, a = xy is a multiplication over integers, while Q = x P is a scaler
operation overG1. And scaler overG1 always takesmore time thanmultiplication over
integers. Another example is G = ê(P, P)a will be always faster than G = ê(P, aP),
where G ∈ GT . The reason is that the power operation over GT is always faster than
scaler operation over G1.

6 Conclusion

A lot of research on searchable encryption has been done in recent years. None of them
has addressed the need of searching in data owners’ storage. For instance, friends or
co-workers may want their documents kept up to date with the latest version from data
owners, and they do not want their cloud storage quota being filled with unnecessary
files. Traditional searchable encryptions simply re-encrypt and send the encrypted
documents to all receivers, however, this may cause complex computations and messy
duplications in limited quota.

In this paper, we proposed an efficient and shareable ID-based encryption with
keyword search which has the following features: (1) data owners can share their
document with their friends, and friends can search in data owner’s storage while
preserving the owner’s privacy; therefore, the encrypted files will only occupy the
owners’ storage quota. Furthermore, friends are not able to obtain other encrypted
documents that are not being shared with; the cloud server has no clue of whom the
documents are shared with unless a test is succeeded. Since each receiver is searching
in owner’s storage, the receiver has to specify the owner. (2) Provides better efficiency
compared with other related works. The performance analysis is given in Sect. 5.
(3) Different keyword set for different user set can be done using AddReq algorithm
iteratively. (4) Data owner can dynamically enable and disable the searching capability
of their friends using AddReq and DelReq algorithms. In addition to that, we have
proved that our scheme is secure against chosen keyword attack (IND-CKA) under
bilinear Diffie–Hellman assumption.

123

1022 L. Xu et al.

Acknowledgements This work was supported in part by the Ministry of Science and Technology, Taiwan,
under Contract MOST 103-2221-E-007-073-MY3, MOST 104-2811-E-007-005, MOST 103-2218-E-031-
001, and MOST 103-2221-E-004-009. The work of Prof. Li Xu was supported in part by the National
Natural Science Foundation of China (U1405255).

References

1. Wang C, Ren K, Lou WJ, Li J (2010) Toward publicly auditable secure cloud data storage services.
IEEE Netw 24:19–24

2. Cao Q, Jujita S (2014) Cost-effective replication schemes for query load balancing in DHT-based
peer-to-peer file searches. J Inf Process Syst 10:628–645

3. Subashini S, Kavitha V (2011) A survey on seucrity issues in service delivery models of cloud com-
puting. J Netw Comput Appl 34:1–11

4. Lee SH, Lee IY (2013) A secure indexmanagement scheme for providing data sharing in cloud storage.
J Inf Process Syst 9:287–300

5. Naruse T, Mohri M, Shiraish Y (2015) Provably secure attribute-based encryption with attribute revo-
cation and grant function using proxy re-encryption and attribute key for updaing. Hum-Cent Comput
Inf Sci 5:8:1–8:13

6. Bringer J, Chabane H (2012) Embedding edit distance to enable private keyword search. Hum-cent
Comput Inf Sci 2:2:1–2:12

7. Bellare M, Boldyreva A, O’Neill A (2007) Deterministic and efficiently searchable encryption. In:
Proceedings of advances in cryptology—CRYPT, vol 2007, pp 535–552

8. Reza C, Juan G, Seny K, Rafail O (2006) Searchable symmetric encryption: improved definitions and
efficient constructions, In: Proceedings of 13th ACM conference on computer and communications
security (CCS), pp 79–88

9. Shamir A (1985) Identity-based cryptosystems and signature schemes. In: Proceedings of advances in
cryptology—CRYPTO, vol 85, pp 47–53

10. Boneh D, Franklin M (2001) Identity-based encryption from the weil pairing. In: Proceedings of
advances in cryptology—CRYPTO, vol 2001, pp 213–229

11. Boneh D, Boyen X (2004) Efficient selective-ID secure identity-based encryption without random
oracles. In: Proceedings of advances in cryptology—EUROCRYPT, vol 2004, pp 223–238

12. Boneh D, Crescenzo GD, Ostrovsky R, Persiano G (2004) Public key encryption with keyword search.
In: Proceedings of advances in cryptology—EUROCRYPT, vol 2004, pp 506–522

13. Baek J, Safavi-Naini R, Susilo W (2008) Public key encryption with keyword search revisited. In:
Proceedings of computational science and its applications ICCSA, vol 2008, pp 1249–1259

14. Tian X, Wang Y (2008) ID-Based encryption with keyword search scheme from bilinear pairings.
In: Proceedings of 4th international conference on wireless communications, networking and mobile
computing (WiCOM), pp 1–4

15. RheeHS, Park JH, SusiloW, Lee JH (2009) Improved searchable public key encryptionwith designated
tester. In: proceedings of 4th international symposium on information, computer, and communications
security (ASIA CCS), pp 376–379

16. Liu Q, Wang G, Wu J (2012) Secure and privacy preserving keyword searching for cloud storage
services. J Netw Comput Appl 35:927–933

17. Lai J, Zhou X, Deng R, Li Y (2013) Expressive search on encrypted data. In: Proceedings of 8th ACM
SIGSAC symposium on information, computer and communications security, pp 243–252

18. Wang P, Wang H, Pieprzyk J (2008) Keyword field-free conjunctive keyword searches on encrypted
data and extension for dynamic groups. Cryptol Netw Secur 5339:178–195

19. Kerschbaum F (2011) Secure conjunctive keyword searches for unstructured text. In: Proceedings of
5th international conference on network and system security (NSS), pp 285–289

20. Boneh D, Lynn B, Shacham H (2004) Short signatures from the weil pairing. J Cryptol 14:297–319
21. Ding M, Gao F, Jin Z, Zhang H (2012) An efficient public key encryption with conjunctive keyword

search scheme based on pairings. In: Proceedings of 3rd IEEE international conference on network
infrastructure and digital content (IC-NIDC), pp 526–530

22. Gupta S, Satapathy SR, Mehta P, Tripathy A (2013) A secure and searchable data stroage in cloud
computing. In: Proceedings of 3rd international conference on advance computing conference (IACC),
pp 106–109

123

A shareable keyword search over encrypted data in cloud computing 1023

23. Ibraimi J, Nikova S, Hartel P, Jonker W (2011) Public-key encryption with delegated search. Appl
Cryptograph Netw Secur 6715:532–549

24. LiM,Yu S, CaoN, LouW (2011)Authorized private keyword search over encrypted data in cloud com-
puting. In: Proceedings of 31th international conference on distributed computing systems (ICDCS),
pp 383–392

25. Yang Y, Lu H, Weng J (2011) Multi-user private keyword search for cloud computing. In: Proceedings
of 3th international conference on cloud computing technology and science (CloudCom), pp 264–271

26. TangQ, ChenX (2013) Towards asymmetric searchable encryption with message recovery and flexible
search authorization. In: Proceedings of 8th international symposium on information, computer, and
communications security (ASIA CCS), pp 253–264

27. Li J, Li J, Liu Z, Jia C (2013) Enabling efficient and secure data sharing in cloud ccomputing. Concurr
Comput Pract Exp 26:1052–1066

28. Lin MP, Hong WCh, Chen CH, Cheng CM (2013) Design and implementation of multi-user secure
indices for encrypted cloud storage. In: Proceedings of 11th annual international conference on privacy,
security and trust (PST), pp 177–184

29. Liu Q, Wang G, Wu J (2009) An efficient privacy preserving keyword search scheme in cloud com-
puting. In: Proceedings of international conference on computational science and engineering (CSE),
pp 725–720

30. Yoon HJ, Cheon JH, Kim YD (2005) Batch verifications with ID-based signatures. In: Proceedings of
information security and cryptology ICISC, vol 2005, pp 233–248

123

	A shareable keyword search over encrypted data in cloud computing
	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Bilinear pairings
	3.2 Outline of the IDEKS scheme
	3.3 Assumptions

	4 Proposed scheme
	4.1 Overview
	4.2 Security model
	4.3 SIDEKS details
	4.4 Simplified SIDEKS
	4.5 Consistency

	5 Evaluation and analysis
	5.1 Performance analysis
	5.2 Security analysis
	5.3 Evaluation environment
	5.4 Evaluation result

	6 Conclusion
	Acknowledgements
	References

