J Supercomput (2015) 71:3525-3548 @ CrossMark
DOI 10.1007/s11227-015-1447-3

Optimizing the Hadoop MapReduce Framework with
high-performance storage devices

Sangwhan Moon! . Jaehwan Lee? - Xiling Sun® .
Yang-suk Kee?

Published online: 29 May 2015
© Springer Science+Business Media New York 2015

Abstract Solid-state drives (SSDs) are an attractive alternative to hard disk drives
(HDDs) to accelerate the Hadoop MapReduce Framework. However, the SSD
characteristics and today’s Hadoop framework exhibit mismatches that impede indis-
criminate SSD integration. This paper explores how to optimize a Hadoop MapReduce
Framework with SSDs in terms of performance, cost, and energy consumption. It
identifies extensible best practices that can exploit SSD benefits within Hadoop when
combined with high network bandwidth and increased parallel storage access. Our
Terasort benchmark results demonstrate that Hadoop currently does not sufficiently
exploit SSD throughput. Hence, using faster SSDs in Hadoop does not enhance its
performance. We show that SSDs presently deliver significant efficiency when stor-
ing intermediate Hadoop data, leaving HDDs for Hadoop Distributed File System
(HDFS). The proposed configuration is optimized with the JVM reuse option and
frequent heartbeat interval option. Moreover, we examined the performance of a state-

B Jaechwan Lee
jlee@kau.ac.kr

Sangwhan Moon
sangwhan@tamu.edu

Xiling Sun
xiling.sun @ssi.samsung.com

Yang-suk Kee

yangseok.ki@samsung.com

Department of Electrical and Computer Engineering, Texas A&M University, College Station,
TX 77840, USA

School of Electronics and Information Engineering, Korea Aerospace University, Goyang-si,
Republic of Korea

Advanced Datacenter Solution Group, Samsung Semiconductor Incorporation, Milpitas,
CA 95036, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1447-3&domain=pdf

3526 S. Moon et al.

of-the-art non-volatile memory express interface SSD within the Hadoop MapReduce
Framework. While HDFS read and write throughput increases with high-performance
SSDs, achieving complete system performance improvement requires carefully bal-
ancing CPU, network, and storage resource capabilities at a system level.

Keywords Performance - Storage - SSD - Hadoop - MapReduce - HDFS

1 Introduction

The Hadoop MapReduce Framework [1,2] enables data scientists to analyze terabytes
of data in parallel. Hadoop [3] is an Apache open source project that implements the
Hadoop Distributed File System (HDFS) [4] and MapReduce. While many strategies
can improve MapReduce performance, introducing SSDs is a particularly attractive
strategy because SSDs exhibit superior performance—lower latency, higher 10 rates,
and higher throughput compared to HDDs [5]. The Hadoop MapReduce Framework
has historically used HDDs as its only storage device and its design directly reflects
that. Any benefits that SSDs presently offer are, therefore, largely incidental.

For example, because of associated HDD latencies, HDFS typically performs
sequential I/Os versus random I/Os, a design consideration that can significantly
improve HDD performance but is largely irrelevant for SSDs [6]. Since SSDs were
never considered, MapReduce’s original and present design marginalizes potential
SSD performance benefits by default.

This paper is an extension of our previous work [7] which explored the benefits
SSDs potentially offer to MapReduce. In addition to the previous work, we investigate
different options such as frequent heartbeat interval and JVM reuse for optimizing
Hadoop with SSDs. Moreover, we newly look into efficiently using faster SSDs (non-
volatile memory express [NVMe] interface-based SSDs, NVMe SSDs in this paper)
within Hadoop. To the best of our knowledge, this paper is the first work to investigate
high-performance NVMe SSD performance with the Hadoop MapReduce Framework.

The contributions of this paper are:

— We investigate HDFS performance in different configurations using SSDs and
HDDs. This reveals the present maximum SSD advantage is fulfilled when SSDs
serve concurrent, multi-thread read/write requests. We develop a general network
bandwidth guideline to balance systems: network (half duplex) bandwidth should
be 1.33 times the storage throughput when using a replication factor of 3.

— We examine Hadoop workflows and identify various performance bottlenecks
within different configurations. We observe that superior SSD random read and
write performance accelerates MapReduce processing significantly when SSDs
store intermediate data. Terasort benchmark results suggest using SSDs can
accelerate the MapReduce shuffle phase by 1.75 on average. We study optional
configurations such as frequent heartbeat and JVM reuse to optimize the efficiency
of the proposed configuration in the map phase.

— We explore cost-effective and energy-saving Hadoop configurations. Our inves-
tigations show that properly using DRAM or SSDs for intermediate data can

@ Springer

Optimizing the Hadoop MapReduce Framework with... 3527

significantly accelerate MapReduce performance. The most cost-effective and
energy-efficient SSD application is storing intermediate data.

— We see the feasibility of next-generation storage devices (NVMe SSDs) in Hadoop.
Our experimental results imply that other resources, such as CPU capability, should
match the storage device’s performance.

This paper has the following organization: Section 2 examines basic Hadoop File
I/0 (HDFS) performance. Section 3 discusses Hadoop MapReduce behavior and pro-
poses a cost-effective, energy-efficient, high-performance storage configuration that
judiciously incorporates SSDs. Section 4 explores optional configurations to maxi-
mize the benefit of the proposed configuration. Section 5 sees the potential benefit
of next-generation storage devices in Hadoop. Section 6 introduces related work, and
Sect. 7 is the conclusion.

2 HDFS characteristics
We conducted several experiments within different scenarios comparing SSD and

HDD performance. This section discusses many investigative findings about Hadoop
I/O performance.

2.1 Investigation environment

The goal of our first investigation was to examine the behavior of the Hadoop Datanode
and HDFS. We configured a small Hadoop cluster described in Table 1.

Table 1 Investigation environment

Machines Machine #1 runs a Namenode and a JobTracker
Machines #2—#5 run Datanodes and TaskTrackers
Processor Two Intel Xeon E5-2630 2.3 GHz CPUs per machine
- 6 cores (12 threads with hyperthreading) per CPU
Memory 16 GB DRAM (DDR3 1600 with ECC)
Network All machines connected through

(1) two 10 Gbit Ethernet NIC (full duplex)
- 20 Gbit total, using link aggregation
(2) 1 Gbit Ethernet (half duplex)
Storage 2 HDDs RAIDO, (2TB, SATA)
2 Samsung SM1625 SSDs (400 GB, MLC, SAS)
1 Samsung XS1715 SSD (1.6TB, NVM Express)
Software Native Hadoop 0.20.205.0
(replication factor = 3, block size = 128 MB)
ubuntu 12.04 desktop
openJDK 1.6.0_27, 64-bit

@ Springer

3528 S. Moon et al.

Fig. 1 Storage I/O throughput B HDD ¥ 2HDDs (RAIDO) B SSD
under fio with queue depth: 32,
block size: 128 KB, sync /O, - 000
direct I/O = 500
2 400
=
3 300
=
:‘::? 200
< 100 X
£ 100 A\
Read Read Write Write

1thread 16threads 1thread 16 threads

We exploit the Linux sysstat (sar) and mpstat tools to measure, gather, and show

various Datanode resource utilizations. These tools observe CPU, memory, storage
I/0 and network utilizations.
Raw storage device performance HDFS is a user-level distributed file system super-
imposed on a native file system. HDFS performance, therefore, highly depends both
on the native file system and storage media performance. We first reviewed the native
file system and storage media performance. In our investigations, the OS was Linux
and the native file system was ext4, which is a widely used configuration. The impact
of different filesystems on Hadoop is investigated in the related work [6] in detail.

Datanode storage media was an HDD, 2 HDDs (RAIDO0), and one Serial Attached
(SAS) SSD. The NVMe interface is designed for enterprise level SSDs and uses the
PCI Express (PCle) interface. Section 5 discusses NVMe SSD details.

Flexible 10 Tester (FIO) [8] is an open source I/O benchmark supporting a plenty
of configurations. We used the fio benchmark with the following options: (1) queue
depth = 32, (2) 128 KB block size, (3) sync 1/0, and (4) direct I/O. System engineers
typically select a sufficiently deep queue depth to prevent significant block device
driver I/O performance delays. We found that configurations with queue depths greater
than 32 or with block sizes greater than 128 KB marginally changed the result.

Figure 1 shows measurement results. This measurement provides a baseline for
other experiments in this paper. In the figure, HDD throughput decreases as the con-
current thread count increases. In contrast, SSD throughput slightly increases.

SSD random write performance significantly decreases with a nearly full capac-
ity utilization. In this paper, in all experiments, SSDs have enough space such that
performance degradation is barely observed. Enterprise class SSDs such as NVMe
SSDs are an order of magnitude faster than client class SSDs. Section 5 discusses the
performance of NVMe SSDs in detail.

Test Distributed File System I/O (TestDFSIO, hereafter DFSIO) [9] is a widely used
HDFS performance benchmark. It distributes Map tasks that read/write dummy files
on Datanodes. Each Map task reads the local dummy file and writes a few statistical
output lines. Reduce tasks simply gather the statistics for output.

While conducting DFSIO benchmarks on the Hadoop cluster, we encountered
various problems. First, in real workloads, some HDFS read operations experience
occasional Linux kernel page cache hits which affect (improve) performance. How-
ever, when running consecutive, identical DFSIO benchmarks, DFSIO instances
experienced exaggerated page cache hit rates, producing results that are not repre-

@ Springer

Optimizing the Hadoop MapReduce Framework with... 3529

sentative in typical usage. Therefore, to avoid amplified page cache hits, we halted
Hadoop after each DFSIO run, flushed the page cache, and restarted Hadoop.

Second, we found that DFSIO control file occasionally identifies incorrect locations
where actual replicas are stored. This possibly leads Datanodes to read data from
remote storage even though it has the data in local storage. We, therefore, necessarily
modified the original DFSIO read-function source code to prevent unwanted remote
accesses.

2.2 Storage vs. network

We performed HDFS performance measurements using 1 Gbit Ethernet links, 20 Gbit
links constructed by combining two 10 Gbit Ethernet links via link aggregation (chan-
nel bonding), HDDs, and SSDs. This enabled us to vary storage devices and network
bandwidth to determine how various SSD and high network bandwidth combinations
could improve HDFS throughput.

Figure 2 depicts DFSIO data processing throughput for various cluster configura-
tions. The figure shows DFSIO throughput when it reads/writes a file with different
file size in each node. We performed DFSIO benchmark five times' for each configu-
ration. The associated plots indicate the average throughput for these configurations.
Figure 2a, b shows the HDFS read performance using 1 and 20 Gbit Ethernet links,
respectively. As expected, HDFS read performance largely depends on the backing
storage device’s sequential read performance. In the figures, SSD performance is
higher than the two-HDD RAIDO configuration’s performance and much higher than a
single HDD’s performance. It is noted that read performance is independent of network
bandwidth since map tasks typically read data from local storage. In contrast, write
performance directly depends on network bandwidth because DFSIO write includes
file replications through network. While one Datanode’s replication traffic traverses the
network, replicas from other Datanodes simultaneously contend for network access,
creating significant network bandwidth contention. Figure 2c, d compares HDD and
SSD write performance using 1 and 20 Gbit Ethernet links. In Fig. 2c, because an
1 Gbit Ethernet network provides significantly lower bandwidth than any storage
device’s transfer rate in any configuration, HDFS throughput is identical in all cases,
regardless of the storage device. However, using 20 Gbit Ethernet reveals a notice-
able HDFS throughput improvement when using SSDs versus HDDs. An interesting
observation in Fig. 2d is that HDD and HDD RAIDO throughput decreases as file size
increases. The reason is that a considerable amount of write (here, up to 4-5 GB for
original data and 8—10 GB for replica in 16 GB DRAM) is kept in Linux kernel page
cache and is delayed until the page cache is full. A huge performance gap between
SSD and HDD results in relatively less degradation in SSD throughput.

To see the network and I/O resource consumption during DFSIO operations, we
profiled the resource utilization for all configuration variations. Figure 3 shows the
resource utilization with the DFSIO write benchmark. This figure shows the average
resource utilization of four Datanodes. In Fig. 3a, b, network throughput does not

I we repeated five times since variance of results is small enough.

@ Springer

3530 S. Moon et al.

a b
()450 - () 450 -
— HDD — HDD
400 | == HDD (RAID) 400 == HDD (RAID)
—_ " SAS-SSD — i SAS-SSD
n\(g 350 T Eu; vvvvvvvvvvvvvv
S 300 s .‘
é B PP L bbb EEL bl R LET 5 SRV P ALY
£ 200 J%
2 2
150
g e
£ 100 £ 100
50 50
0 0
0.5 1 2 5 10 20 0.5 1 2 5 10 20
Filesize (GB) Filesize (GB)
c (d)
()180 - 180 -
— HDD — HDD
160 == HDD (RAID) 160} == HDD (RAID)
. " SAS-SSD —_ wm SAS-SSD
a\u; 140 %
s 120 =
5 100 =]
%
£ 80 2
2 2
3 60
g £
IE 40 =
20 20
%.5 1 2 5 10 20 %.5 1 2 5 10 20

Filesize (GB) Filesize (GB)

Fig. 2 DFSIO throughput vs. file size (I/O, network, and storage). a READ, 1GE; b READ, 20GE;
¢ WRITE, 1GE; d WRITE, 20GE

exceed (is saturated at) 120—180 MB/s (1 Gbps approximately), while I/O utilization”
still has room to grow.

When comparing network and I/O resource utilizations in 20 Gbit Ethernet con-
figurations depicted in Fig. 3c, d, a very different scenario emerges. Both SSD and
HDD I/O utilizations are saturated while network bandwidth is not. Employing more
HDDs or SSDs can exploit the potential of high-performance networks. Consequently,
matching network bandwidth and I/O throughput is essential when attempting to build
cost-efficient systems.

2.2.1 Network bandwidth requirement for high-performance storage devices

These observations and considerations enable us to estimate the required network
bandwidth per link to maximize I/O throughput of storage devices per Datanode.

1. HDEFS replication amplifies I/O throughput by N times where (N) is the HDFS
replication factor:

K-T=N-D

2 J/O utilization is defined as the percentage of CPU time passed during I/0 requests were issued [10].

@ Springer

Optimizing the Hadoop MapReduce Framework with... 3531

(@ (b)
800 120 800 120
2 g
g 700 — /0 Utilization(HDD-RAIDO, %) 100 g 700 — /0 Utilization(SSD-SAS, %) 100
S 600 “I | £ T 600 S
80 80
Q Q
< 500 l IS < 500 S
3 400 i .I.I. \ |I| | 60 ® 3 a0l 4l | 60 ©
° N D N
< = < =
£ 300 lig B F 300 il oo E
= o ¥ o
S 200 Q %5 200 Q
2 20 3 20
2 100 2 100
z b4
0 0 0 0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Timestamp(sec) Timestamp(sec)
(© (d)
800 120 800 120
z z
= — /0 Utilization(HDD-RAIDO, %) = — /0 Utilization(SSD-SAS, %)
o 700 L | ilization 100 o 700 ilization 100
= —_ = —_
E n g % m g
£ 500 80 c 2 80 <
=3 s 2 =
© ©
E 400 | 60 g g 60 8
) B
2 300 fa0 5 F 20 5
g 200 Q ‘g Q
20 20
5 100 u‘ ' s
=z z
0 0 0 0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Timestamp(sec) Timestamp(sec)

Fig. 3 DFSIO write (network throughput and I/0 utilization). a 1GE, HDD; b 1GE, SSD; ¢ 20GE, HDD;
d 20GE, SSD

In the equation, (K) is the number of Datanodes in a cluster, (T') is I/O throughput
of storage devices per Datanode, and (D) is the HDFS I/O throughput per cluster.

2. Network bandwidth capability (C - K - B, where (C) is a coefficient for (half/full)
duplex and (B) is network throughput per link) should sufficiently cover the /O
traffic written to other Datanodes (D - (N — 1)):

C-K-B>D-(N-1) (1)

The (N — 1) term considers I/O traffic which is not written to local storage since
local writes are not transmitted. The coefficient C in Eq. (1) is (0.5) for the half
duplex and (1.0) for the full duplex network.

For example, 100 MB/s write in an HDFS cluster (D) results in 300 MB/s write
(K - T) to storage devices in the cluster with 4 Datanodes (K) when the replication
factor (NV) is 3. Each storage device in a Datanode serves 75 MB/s, and of the 75 MB/s
write activity, 25 MB/s is original data produced by the Datanode, and 50 MB/s is
replicas of other Datanode data. Each half duplex network link should support at least
100 MB/s bandwidth (B) to maximize the performance of HDFS to cover both the
incoming (50 MB/s) and the outgoing (25 MB/s x 2 replications) traffic.

@ Springer

3532 S. Moon et al.

(a) (b)

1.4 T 1.4 T
() — HDD-RAID-1GE o — HDD-RAID-1GE
€ 1.3l == HDD-RAID-20GE € 1.3}/ == HDD-RAID-20GE
E= — SSD-1GE Z — SSD-1GE o
c 1.2l == ssD-20GE / 1.2} == ssb-20GE .
2. A 8T ;
- — ‘0
5 1.1 * = 11

oS =} .

9] . ..
9 == 9
X 1.0 ryme— > % 1.0 ey
w \....e*__4¢ ! .~~~ —
8 0.9 AR ey et - 0.9 T
N NG I I Ik CTO0 I S A
T 0.8 =N = 0.8 S S St
e | e S
[Y R R A S SRR €07
S S

0.6 Z 06

1 2 4 8 16 32 1 2 4 8 16 32
Tasks/Node Tasks/Node

Fig.4 Normalized DFSIO execution times. The standard deviations are a 6.7 % , and b 3.21 % on average.
a READ, b WRITE

In other words, the network bandwidth required per link (Bp;p) is:

1 N —1
BminZE'T'T (2)

This implies that the network bandwidth more than By, should be guaranteed to
fully utilize storage device throughput. Otherwise, it would bound the storage through-
put to less than those shown in Fig. 1.

2.3 Multiple readers/writers

The previous investigation considered HDFS performance when each Datanode runs
a single map task. However, in real Hadoop clusters, Datanodes concurrently run mul-
tiple, often numerous, map tasks. Observing the effect of multiple concurrent HDFS
readers and writers requires measuring DFSIO execution time with multiple tasks per
Datanode. Figure 4 shows the DFSIO execution time normalized to the execution
time of a single task per Datanode. Figure 4a shows the DFSIO read execution time
of HDDs increases significantly as the number of tasks increases, while that of SSDs
decreases. As shown in Fig. 4b, since 1 Gbit Ethernet limits the number of concurrent
access to storage, I/O randomness is bounded. Consequently, HDDs and SSDs exhibit
similar write performance. However, 20 Gbit Ethernet provides enough bandwidth
for a number of concurrent I/Os. This implies that high-speed networks can exploit
potential performance of high-performance storage.

Figure 5 demonstrates I/O throughput and I/O utilization with varying numbers of
DFSIO read tasks. Note that I/O utilization does not exactly match a certain throughput
value because it depends on the utilization of the block device I/O queue. We found
that HDD I/O utilization is approximately 100 % when the task count is 1 or 32.
In contrast, the total throughput is lower when the task count is 32 than when it is
1. This is due to poor HDD random read performance. When the number of tasks
accessing an individual HDD increases, I/O throughput significantly decreases due to

@ Springer

Optimizing the Hadoop MapReduce Framework with... 3533

(a) (b)

600

-
N
o

600 120

= Throughput(MB/s) = Throughput(MB/s)
— Utilization(HDD-RAIDO,%) — Utilization(HDD-RAIDO,%)|
T SRRV 1 A Ay

500

v
o
o

o
o

100

g \ Q \ _
S 400 80 X 2 400 80 X
= l\ c = \ g
3 300 60 2 3 300 60
5 ot | B 5 " g
3 200 40 T 3 200 0 F
Ewl I S-S R VSV >
F 100|] \ 20 F 100 M 20

0 0 0 0

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Timestamp(sec) Timestamp(sec)

—_
g

~
—_
=
~

600 120

— Throughput(MB/s) — Throughput(MB/s)
— Utilization(SSD-5AS, %) — Utilization(SSD-5AS, %)
500 1

o
o
o

120

— 00 _ 500 ™ 100
o
S 400 U 80 ¥ = 400 ‘ 80 X
o < T | <
o o
3 300 \ 60 = 3 300 60 o
<] © < ©
<) \I N [=) N
3 _ 3 =
200 40 40
e v 5 g 5
< <
F 100 20 F 100 20

0

o

0 0
0 20 40 60 80 100 120 140 20 40 60 80 100 120 140
Timestamp(sec) Timestamp(sec)

=]

Fig. 5 Single/multiple task I/O throughput (MB/s) and utilization (%) (READ). a 2 HDD (RAIDO), 1
task/node; b 2 HDD (RAIDO), 32 tasks/node; ¢ SSD (SAS), 1 task/node; d SSD (SAS), 32 tasks/node

HDD seek and rotational latencies. However, SSDs perform random reads much faster
than HDDs. Moreover, single tasks typically cannot consume all SSD bandwidth. This
typically requires multiple tasks. As shown in Fig. 5c, d, with SSDs, I/O throughput
increases as the number of tasks increases.

An interesting observation is that for both HDDs and SSDs, single-task I/O through-
puts are less than the maximum value indicated in Fig. 1 when sysstat (sar) reports
device I/O utilization is approximately 100 %. This is because DFSIO uses syn-
chronous reads. Hence, single tasks can only have one outstanding request to an
I/0 queue. This means single tasks cannot hide the IO bus transaction latency but
do not receive disk scheduling benefits such as SATA Native Command Queueing
(NCQ).

HDFS performance can further improve using techniques such as pipelining, where
a mapper processes data while another thread loads the next block. Unlike when using
HDDs, increasing the concurrent thread count improves HDFS performance when
using SSDs because of their faster random read performance.

In this section, we have explored the HDFS performance as a baseline of the exper-
imental results in this paper. We have shown that an SSD has significantly better
performance than an HDD especially with multiple streams of random workload. We
have also revealed that network bandwidth should satisfy a requirement to utilize
SSD’s full throughput.

@ Springer

3534

S. Moon et al.

Table 2 Terasort investigation
configuration

Property Configuration
Storage Two HDDs (RAID-0)

2 Samsung SM1625 SSDs (SAS)
DRAM 16 or 48 GB (DDR3 1600 ECC)
Data size 100 GB

Compression

HDES block size
HDEFS I/O buffer size
Speculative exc.
JVM heap size

Slow start

Max. # of maps

of reduces

Java native compressor on map output
128 MB

128 KB

No speculative execution

512 MB for map, 1,000 MB for reduce
Reduce starts at 95 % completion of map
12 per datanode

6 per datanode

3 MapReduce from a storage perspective

This section discusses how differing storage device performance affects MapReduce
performance. Here, we run the Terasort benchmark [11] to evaluate Hadoop perfor-
mance.

Map output size varies depending on user applications. With Terasort, map output
always has the same size as the input data. Intermediate data are a portion of map output
temporally stored in local storage. The place to write intermediate data is configurable.
We call the local storage for intermediate data intermediate storage. Compressing map
output is often used to reduce the amount of data stored in intermediate storage and
transferred through the cluster network [12].

3.1 Terasort performance analysis

This section explores the effects HDDs and SSDs have on Terasort performance. In
addition, it discusses a case where SSDs are intermediate data storage and HDDs
provide HDFS storage, and a case where a large DRAM resource caches the majority
of intermediate data. Table 2 describes configuration details.

Terasort consists of common and essential MapReduce procedures with the lightest
mappers and reducers. Figure 6 briefly describes how Terasort works. Terasort reads
unsorted key value pairs data in files, sorts the key value pairs, and writes the sorted
data to HDFS. Each Terasort mapper reads a block to get a number of key value
pairs. The pairs are sorted and stored in temporary files in the configured intermediate
storage location. Reducers read the stored map output from intermediate files. Each
reducer has its own key sub-space and only reads the portion of map output it needs
using an http connection. When a reducer completes copying map output, it merges
the copied chunks as a sub-step of merge sort. The merged data are stored in HDFS.

As depicted in Fig. 6 above, Terasort consists of three phases: (1) map phase,
(2) shuffle phase, and (3) reduce phase.

@ Springer

Optimizing the Hadoop MapReduce Framework with... 3535

E—=E—=<—= —8
—=—=E i—B

m—] =

= —J il
= _—

1/O Sequential Read Random Read Sequential Write

CPU Sorting Compress/decompress

Fig. 6 Terasort workflow overview

(a) _ . (b) ‘ ,
M Map = Shuffle [l Reduce % Total B Map Fishuffle M Reduce 7 Total
o e o
E s00 7 % E s00 2 Y
- / L /
5 / / 7 5 % / 7
£ 300 %7% % 5 300 % % %f
b b ke L

Fig. 7 Terasort investigation execution times with varying DRAM amounts. Performance gain from SSD
comes from execution time reduction in shuffle phase in HDD + SSD, and in all phase in SSD + SSD
configuration. a DRAM: 16 GB/node b DRAM: 48 GB/node

Figure 7 shows Terasort execution times for various cluster configurations. Key
Terasort performance observations are: (1) map phase performance depends on HDFS
read throughput (primarily sequential) performance. (2) Shuffle phase performance
mainly depends on the random I/O performance for reading map output and writing
intermediate data. To explicitly identify performance degradation sources, we profiled
CPU and I/O utilizations during investigations, depicted in Figs. 8 and 9. (3) Reduce
phase performance depends more on random read performance of intermediate data
storage than the HDFS storage media performance.

In our investigations, each phase slightly overlaps since we specified reducers start
when the map phase is 95 % complete. The number of map tasks is typically more than
the number of map tasks that Datanodes can handle in one parallel round. Namenode
assigns as many map tasks as possible to a Datanode which can run in parallel, waits
for map task completions, and then assigns a number of map tasks, repeatedly. This
makes the map phase consist of a succession of task groups called waves.

In the map phase, the number of concurrent cluster map tasks is set to 48. Hence,
we need 17 [(800/48) + 1] map task execution waves (each with 48 map tasks) to

@ Springer

3536 S. Moon et al.

(a) (b) ©
120/ — 0 wat(ava) 120} — o waittava) 120 — o waittava)
— total(avg) — total(avg) — total(avg)
total(max) total(max) total(max)
100 100 10
< 80 M A) 80 2 gol [lEaRIHI
° °
1 14 1 | 3
360141 “ U WA 2 ool bl i 8
2 { 2 (R =
5 40 l e 5 40 5
| IOV TTR R TV Wy
20} i]‘JVYWW 20 |
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Timestamp(sec) Timestamp(sec) Timestamp(sec)
600 600
500 500
@
g 400 400
‘é_ 300 300 H
5 |
2 200 | 200 |
o
£ 100} 100
i
o LB PR A B Ak —— Ak o 0
100 200 300 400 500 600 700 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Timestamp(sec) Timestamp(sec) Timestamp(sec)
(8 (h) @
1201 — has 1200 — hats 1201 — has
— intermediate — intermediate — intermediate
100 . l 100| 100
= S 3
< 80 < 80] £ 80
8 s [5 ‘
2 60 2 60 { S 60
g g Il kS Ly
z 40 ERS Z 40
5
20 20 20
00 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 00 100 200 300 400 500 600 700
Timestamp(sec) Timestamp(sec) Timestamp(sec)

Fig. 8 MapReduce CPU utilization and I/O throughput, DRAM: 16 GB. HDD performance determines
overall performance of HDD + HDD (a, d, g) configuration in all phase, while it does of HDD + SSD (b,
e, h) configuration only in map (0-300 s) and reduce (400-500 s). Neither CPU or storage is saturated in
SSD + SSD configuration. a CPU, HDD + HDD; b CPU, HDD + SSD; ¢ CPU, SSD + SSD; d I/0 (MB/s),
HDD + HDD; e I/0O (MB/s), HDD + SSD; f I/O (MB/s), SSD + SSD; g 1/0 (%), HDD + HDD; h I/O (%),
HDD + SSD; i I/0 (%), SSD + SSD

initiate the required 800 map tasks [100 GB/(128 MB block)] since each map task
normally processes approximately 128 MB of data. Thus, due to coarse-grained task
scheduling (3 s in our investigations), consecutive peaks occur over the map phases in
Figs. 8 and 9.

In Fig. 8, when HDFS uses HDDs, I/O becomes the map phase bottleneck. In
contrast, when HDFS uses SSDs, CPUs are heavily utilized to handle user processes.
During the shuffle phase, we see about 50 MB/s read throughput and 100 % of I/O
utilization when HDDs store intermediate data. I/O utilization is much lower (20-40 %)
when SSDs store intermediate data. During the shuffle phase, HDD intermediate data
read throughput is much less than the maximum HDD capability, while I/O utilization
is 100 % because of higher shuffle phase random read seek times. When using SSDs
to store intermediate data, the shuffle phase CPU I/O wait time significantly decreases
(to nearly zero) compared to using HDD storage (up to 20 %). This reduces overall
execution time, and provides more opportunities for the system to increase concurrent
job and task counts. These resource utilization findings indicate that shuffle phase
execution time highly depends on storage device’s random read performance.

@ Springer

Optimizing the Hadoop MapReduce Framework with... 3537

(@ (0
120} 120
100 100
S < 3 f
2 5 £ go = gol itk
° o k4
ol 11 B o 3]
20 Ul il % 60 [0l 2 gol M \
> > 2 W \
& 40 d Y - 1 5 40 .,.,\ & 40 | |
20 20 20! ’ | \
poinevmil e | e AL
90~ 100 200 300400 500 600 700 00" 160 200 360 400 506 600 700 004366560560 400 500 600 700
Timestamp(sec) Timestamp(sec) Timestamp(sec)
00
500
a
o
= 400
=
2 300
<
g
3 200 | ’
<=
F 00l gap y 1] |
0 0
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Timestamp(sec) Timestamp(sec) Timestamp(sec)
(® (h) @
120 [— hats 120 [— dts 120 [— hats
— intermediate — intermediate — intermediate
100 H 100 ‘ ' 100
~ = X
£ 80 1 g 80 t < 80
c | c 5
2 60 2 60 i =1
© © 14
N N | =
£ 40 = 40 =]
E | 5 | | | >
2 2 AR
07100 200 300 400 500 600 700 997100 200 300 400 500 600 700 % 100 200 300 400 500 600 700
Timestamp(sec) Timestamp(sec) Timestamp(sec)

Fig. 9 MapReduce CPU utilization and I/O throughput, DRAM 48 GB. Large-size DRAM has a similar
role to SSD intermediate storage. HDD utilization does not saturated in shuffle phase (300400 s) in
HDD + HDD (a, d, g) and HDD + SSD (b, e, h) configurations but in map (0-300 s) and reduce (400—
500 s). Neither CPU or storage is saturated in SSD + SSD configuration. a CPU, HDD + HDD; b CPU,
HDD + SSD; ¢ CPU, SSD + SSD; d I/O (MB/s), HDD + HDD; e I/O (MB/s), HDD + SSD; f I/O (MB/s),
SSD + SSD; g I/0 (%), HDD + HDD; h 1/0 (%), HDD + SSD; i I/O (%), SSD + SSD

Finally, in the reduce phase, I/O utilization using HDDs for intermediate data stor-
age still shows 100 % utilization. Hence, this can be bottleneck even for HDD HDFS
because HDD random read throughput is significantly less than HDD sequential write
throughput. The use of SSDs as the intermediate data storage provides HDFS with
adequate throughput, which makes HDFS utilization close to 100 %. When SSDs
provide all storage, no I/O or CPU resource bottleneck is apparent.

Figure 9 shows resource utilization when Datanode DRAM size expands from 16 to
48 GB. Since most intermediate data are cached in the Linux kernel page cache, total
execution time highly depends on map phase storage media native read performance,
and reduce phase write performance. Shuffle phase performance is essentially the same
for all cases. Note that in all three cases, the intermediate storage read throughput is
zero in the shuffle phase since most intermediate data are cached in DRAM, allowing it
to be read from memory. Therefore, expanded DRAM increases total performance by
reducing shuffle phase execution time, but it incurs significant DRAM capital costs and
operation costs due to energy consumption. The next section analyzes the performance
and cost relationship to determine the most cost-efficient deployment strategy.

@ Springer

3538 S. Moon et al.

Table 3 Commercial price per unit of major Datanode components

Description HHI16 HS16 SS16 HH48 HS48 SS48 Price($)
CPU Intel Xeon 2 2 2 2 2 2 540
E5-2630 2.3 GHz
Board Intel W2600CR 1 1 1 1 1 1 600
Power SC5650DPNA 1 1 1 1 1 1 270
NIC Intel X520-DA2 1 1 1 1 1 1 430
RAM DDR3 4 x 4 GB 1 1 1 3 3 3 150
HDD Seagate 2TB 3 2 0 3 2 0 83
7200 rpm
SSD-1 Samsung 840 Pro 0 1 1 0 1 1 150
256 GB
SSD-2 Samsung 840 Pro 0 0 8 0 0 8 289
512GB

3.2 Cost analysis

The previous section’s Terasort evaluation shows that using DRAM or an SSD as
intermediate data storage significantly reduces shuffle phase execution time. When
deploying SSDs as HDFS storage, Hadoop map and reduce phase performance
considerably improves. However, because of SSD cost-per-bit, it is presently not eco-
nomically feasible to replace all HDDs, though the SSD cost-per-bit is still rapidly
decreasing. In this section, we considered both Datanode configuration cost and Datan-
ode performance to estimate Datanode cost effectiveness.

First, we determined the cost to build the various machine configurations our inves-
tigations used. Table 3 shows components counts and prices. We note that a 10GE
network is employed but the network interface bandwidth larger than 1GE barely
impacts on the throughput of Terasort in all configurations in the table.

From the component prices, we can calculate unit price of Datanodes in Fig. 10.
In the figure, A + B (C) represents the storage A is used for HDFS, the storage B
is used for intermediate data, and the amount of DRAM is C GB. All values in the
figure are normalized to the HDD + HDD (16) result values. For fair comparisons,
we assumed the SSD + SSD (16) and SSD + SSD (48) configuration had as many
SSDs as required to provide the same amount of HDFS storage capacity as with the
HDDs (4TB). Providing intermediate data storage requires one 256 GB SSD. We find
that the SSD performance is stable regardless of its capacity because its capacity is
provided enough to accommodate intermediate data. The effectiveness (higher values
are better) is computed by dividing throughput by price.

The results show that using SSDs as intermediate data storage is the best option in
terms of calculated effectiveness. The effectiveness is 15 % better than HDD + HDD
(16). However, while expanded DRAM is also beneficial, simultaneously expanding
DRAM and introducing SSDs as temporary storage does not help. Finally, replacing
all HDFS HDDs with SSDs is only appropriate when it is imperative to increase

@ Springer

Optimizing the Hadoop MapReduce Framework with... 3539

Fig. 10 Cost of a Datanode M Price % Throughput M Efficiency (Throughput / Price)
running Terasort normalized to
the HDD + HDD/16 GB value

HDD+HDD HDD+SSD SSD+SSD HDD+HDD HDD+SSD SSD+SSD
16GB 16GB 16GB 48GB 48GB 48GB

DRAM Size
HDFS Storage + Intermediate Storage

Table 4 Power consumption statistics of a Datanode running Terasort

Voltage (V) Current (A) Power (W) PFactor Runtime(s) Energy (Wh)

HDD +HDD 119.20 1.75 204.82 —-0.98 1885 107.25
HDD + SSD 119.30 1.77 208.09 —-0.98 1727 99.83
SSD + SSD 118.62 1.84 215.37 —0.98 1518 90.81

performance despite obvious significant cost differentials. Its effectiveness is 34 %
worse than HDD + HDD (16)’s effectiveness.

3.3 Energy consumption analysis

The previous section’s cost analysis is a one-time expense until device replacement
occurs. In contrast, energy consumption is a primary recurring expense that can be
more important in large-scale data center. In this section, the energy consumption of
different Hadoop configurations is discussed.

We installed a power-meter device directly to a Datanode running Terasort. Table 4
shows observed current, voltage, power, and energy consumption of the Datanode.

It is counter intuitive that SSD + SSD configuration requires more power than
HDD + HDD and HDD + SSD. We found that in the HDD + HDD and HDD + SSD con-
figurations, CPU and memory are less utilized because HDDs are a system bottleneck.
Hence, configurations with HDDs demand less average power than configurations with
SSDs. However, resulting Terasort run time energy consumption totals are larger with
HDD configurations than with SSD configurations. The total energy consumption of
the HDD + HDD configuration is 18 % higher than the SSD + SSD configuration and
7 % higher than the HDD + SSD configuration.

This suggests many interesting topics to consider in large-scale MapReduce cluster
designs. First, energy consumption should be the amount of energy used to complete
a job instead of instantaneous power demands. We show the gap between HDDs
and SSDs in instant power is marginal while the gap in total energy consumption
is considerably larger. Second, most SSD energy consumption benefit comes from
reduced run times.

In this section, we have shown that SSD + HDD is the best option in terms of
performance, cost, and energy. However, SSD + HDD configuration only optimizes

@ Springer

3540 S. Moon et al.

(a) (b)
~=Write(3s) -®Write(1s) Read(3s) —*Read(1s) ~=Write(3s) ~®Write(1s) Read(3s) —*Read(1s)
200 200
GE) Q
£ 150 ﬂ € 150
= —_ - Z
< s —
,§ 100 S 100 S e
M 3
§ 50 © s0 — -
&5 ‘ &
0+ T T T : :) 0+ T T T : :
1 2 4 8 16 32 1 2 4 8 16 32
Tasks / Node Tasks / Node

Fig.11 DFSIO execution time vs. the number of concurrent tasks per node with different heartbeat intervals.
a HDD, DFSIO 10 GB, 10GE; b SSD, DFSIO 10 GB, 10GE

Fig. 12 Terasort run time (s) B Map % Total
with/without JVM reuse option 600
and a 1-s heartbeat interval 500 - %7//
7
w0077 A
/ ,: 7

Execution Time
w
o
o
‘
Y

TR

R

R
RS

_

HS32 ‘ $532 | HS32 ‘ $532 ‘HS32 ‘ 5532 ‘ HS32 ‘ 5532 ‘

Baseline ‘ Heartbeat ‘ JVM Reuse ‘ All ‘

shuffle phase, while map and reduce phase have a considerable portion in a MapReduce
framework. In the next section, we will explore different optimization techniques for
map/reduce phases.

4 Optimize map performance

According to our experiment results, introducing SSDs for intermediate data improves
Hadoop performance significantly by eliminating shuffle phase delay. The proposed
HDD + SSD configuration is optimal when considering performance, cost, and power
consumption together. However, the HDD + SSD configuration has less performance
than the SSD + SSD configuration because map phase performance highly relies on
storage media sequential read performance (HDDs in the HDD + SSD configuration
and SSDs in the SSD + SSD configuration). We conducted several additional exper-
iments to reduce the performance gap between HDDs and SSDs in the map phase.
Figures 11 and 12 show DFSIO and Terasort execution time with different Hadoop
options to boost map phase performance. This section discusses the details.

4.1 Heartbeat interval

There are two types of heartbeat in Hadoop. First, Hadoop Datanodes send a heartbeat
signal to the Namenode to indicate Datanode health status. This type of heartbeat
interval is configurable.

@ Springer

Optimizing the Hadoop MapReduce Framework with... 3541

In addition, Hadoop’s Task Tracker also sends a heartbeat signal to the Job Tracker
every 3 s. Heartbeats carry task completion messages and result in scheduling delays
of up to 3 s between two consecutive tasks (per wave). Unlike the previous one, this
type of heartbeat interval is not configurable. We have modified Hadoop source code
to reduce the Task Tracker heartbeat interval.

The frequency of the two heartbeat types may impact Hadoop map phase perfor-
mance. We conducted DFSIO benchmarks with different heartbeat intervals in Fig. 11.
The result shows that frequent heartbeat marginally enhances HDFS performance since
DFSIO benchmark schedules tasks only at initial stage of benchmark running.

Figure 12 shows Terasort benchmark execution time with different heartbeat inter-
vals. In contrast to the result in Fig. 11, frequent heartbeats reduce Terasort running
time considerably. In the map phase, 17 waves (48 map tasks per wave) run in a
Datanode. We expected map phase execution times to decrease by up to 54 s on aver-
age assuming slow heartbeat delays would be 0-3 s on average between two waves.
However, the time we earned in map phase is surprisingly high (up to 74 s in the
HDD + SSD configuration without the JVM reuse option, exceeding our expectation).
This implies, with HDDs, there is an unrecognized heartbeat interval side effect in
map phase. The shorter heartbeat interval reduces map phase run times by 38.0 and
32.7 % for HDD + SSD and SSD + SSD, respectively.

Despite our experimental result showing that frequent heartbeat improves Hadoop
performance, a frequent heartbeat is not always beneficial. In large-scale cluster,
frequent heartbeat signals may overwhelm the Namenode’s processing ability and
degrade overall performance. More investigation is required to understand the rela-
tionship between heartbeat intervals and Hadoop performance and to find an optimal
heartbeat interval.

4.2 Java virtual machine reuse

Hadoop initiates Java Virtual Machines (JVMs) for each task and, by default, destroys
JVMs at task completion. Unlike the shuffle and reduce phases, which typically have
a single wave of tasks, in map phases, many waves force repetitive JVM construction
and destruction. This leads to severe map phase performance degradation.

The JVM reuse option enables Datanodes to reduce map phase delay by reusing
JVMs. Figure 12 compares execution time of Terasort with/without the JVM reuse
option enabled.

The JVM reuse option is useful when a large number of map task waves are required.
This is an unforeseen delay in original Hadoop design that assumed large-scale clusters
requiring a few waves. However, small-size or medium-size Hadoop clusters experi-
ence a large number of waves. The result shows that 22.3 and 16.5 % of map phase
execution time in HDD + SSD and SSD + SSD configurations, respectively, is wasted
for unnecessary JVM construction and destruction.

It is an interesting observation that using both frequent heartbeat intervals and
enabling the JVM reuse option makes Terasort faster than using a single approach.
For example, total Terasort execution time in the HDD + SSD configuration decreased
by 27.4 and 15.2 % just using 1-s heartbeat or just the JVM reuse option, respectively,
while it does by 32.2 % using both options.

@ Springer

3542 S. Moon et al.

4%

3%

1% A | | ‘ . AR

Fig. 13 Garbage collection overhead in Terasort (SSD + SSD configuration) using JVM reuse option. In
this figure, the x-axis shows the elapsed time (min) and the y-axis shows how much time (%) was spent for
garbage collection

The JVM reuse option is not always beneficial for map phase performance. When
reusing a JVM, data the JVM previously used are garbage and should be cleaned out.
The cleaning is done by JVM garbage collection which may be CPU and memory
usage expensive.

Consequently, recycling a JVM many times requires heavy garbage collection
processing, potentially delaying execution time. We use JProfiler [13] to track how
many garbage collection processes JVM reuse requires. Figure 13 shows the garbage
collection overhead during Terasort map phase when JVM reuse is enabled.

We see a number of garbage collections occurred. However, in our experiments,
garbage collection performance degradation is less than that from JVM reuse.

4.3 Native file system access time option

We tried to optimize native file system (ext4) performance using the noatime option.
The noatime option is recognized to be effective in improving traditional Hadoop’s
performance (with HDDs only) [14—17]. We expect this is also effective in SSD con-
figurations. However, our experimental results show no significant improvement from
the change. We found that the noatime option is only effective when small size files are
massively overwritten in the native file system because benefits come from reduced
metadata modification. Since the HDD + SSD and SSD + SSD configuration use SSDs
in the shuffle phase, small and random access is not a Hadoop framework bottleneck.
This minimizes the noatime optimization benefit in HDD + SSD and SSD + SSD con-
figurations. This implies that other options to relieve random access speed in Hadoop
would not favor HDD + SSD and SSD + SSD configurations because SSDs sufficiently
addresses required random access.

@ Springer

Optimizing the Hadoop MapReduce Framework with... 3543

Fig. 14 DFSIO execution time =0=NVMe (W) =E=NVMe (R) SSD (W) =>¢=SSD (R)
of SSD (SAS) and NVMe SSD 200
o
£ 150 -
[
s
S 100 —— 5 ;
5 .
3 e e————
Q50 —E—— -)
w
0
1 2 4 8 16 32
Tasks / Node

This section has explored different options such as frequent heartbeat, JVM reuse,
and noatime in ext4 filesystem to reduce execution time in map and/or reduce phase.
Frequent heartbeat and JVM reuse options are effective and more when both of them are
used, while noatime option has a marginal impact on the performance of MapReduce
framework.

5 NVM express SSD

We investigated the effectiveness of using high-end SSDs connected to a PCle bus
that exposed an NVM express (NVMe) interface. The NVMe [18] interface is a vari-
ation of PCI express interface supporting high-performance PCI express-based SSDs.
Specifically, we used Samsung XS1715 SSDs (1.6TB) [19] in our experiment. In this
section, a single 10 Gbit Ethernet is used instead of 20 Gbit Ethernet composed of two
bonded 10 Gbit Ethernet interfaces.

The NVMe SSD has 3.0 GB/s sequential read bandwidth and 1.5 GB/s sequential
write bandwidth which is several times faster than an SAS SSD can provide. With
NVMe SSDs, we expected the Terasort execution time to considerably decrease since
Terasort map/reduce phase performance highly depends on storage media sequential
I/O performance.

We first conducted a DFSIO benchmark using an NVMe SSD. Figure 14 compares
DFSIO execution time using a SAS SSD (denoted SSD) and an NVMe SSD (denoted
NVMe). NVMe SSD reduces DFSIO read/write execution time by 33.9/26.5 % on
average (by up to 36.4/33.5 %) as long as SSD. Despite NVMe SSDs being several
times faster than SAS SSDs, this improvement was below expectation.

We determined that when using an NVMe SSD, network bandwidth throttles max-
imum storage device throughput. As described in Sect. 2.2.1, (full duplex) network
bandwidth should be more than 0.67 times storage bandwidth. Based on our analysis,
more than a 10 Gbit network bandwidth is required to fulfill an NVMe SSD’s high-
performance potential. In other words, 10 Gbit full duplex Ethernet network bandwidth
supports less than 1880 MB/s storage throughput which looks sufficient for an NVMe
SSD. Figure 15 shows the CPU, network, and I/O usage profile during the DFSIO write
benchmark where the number of tasks per node is 32. Note that 10 Gbit Ethernet turns
out to sustain throughput less than 1600 MB/s instead of 2500 MB/s in full duplex

@ Springer

3544 S. Moon et al.

(a) (

—usr (max) —total (avg) total (max)

=2
~

—RX —TX Total

120

100

80

60

40
20 f
0 o

1 11 21 31 41 51 61 71 81

2000
1500
1000

0

1 11 21 31 41 51 61 71 81

CPU Utilization (%)

Network Throughput (MB/s)

Time (Sec) Time (Sec)

(©

—Write (MB/s) — Utilization (%)
& 1500 100
=3 80 §
3
-?n 1000 60 ,§
3 40 8
S 500 T-s
=5 20 5
2 o 0

1 11 21 31 41 51 61 71 81

Time (Sec)

Fig. 15 DFSIO write, 32 tasks per node. a CPU usage profile, b network usage profile, ¢ I/O usage profile

Fig. 16 Terasort (100 GB data) B Map ¥ Shuffle BReduce #Total
execution times for different 600
configurations with 16 GB
()] 7
DRAM and 10 Gbit Ethernet. £ 200 Z y/
Map output compression option = 400 % % 7 7
is enabled/disabled for each s 300 é % % %7
configuration] % % % %
& 100 —7 7 \= =
0 7 ; 7 7.
SSD+SSD | NVMe+NVMe | SSD+SSD | NVMe+NVMe
Compression No Compression

mode. Unlike the analysis result above, it is a cluster bottleneck and the network con-
strains storage bandwidth to less than 1.2 GB/s. In the figure, it is clearly shown that
the 10 Gbit Ethernet’s bandwidth is fully utilized while I/O and CPU bandwidths are
not, and overall system performance is determined by the network bandwidth.

Figure 16 compares Terasort running times for the SSD + SSD and NVMe + NVMe
configurations. Unfortunately, we could not see much improvement from NVMe SSDs.
Unlike the DFSIO benchmark, we found this is due to the overloaded CPU in map
phase in those configurations.

This result is not surprising. As explained in Sect. 3, the SSD + SSD configuration
performance bottleneck is not the SSD but the CPU. In Figs. 8i and 9i, we see that the
SSD is utilized less than 50 %. Because the CPU is a map phase bottleneck for both
the SSD + SSD and the NVMe + NVMe configurations, the map phase performance
for them is exactly equal.

@ Springer

Optimizing the Hadoop MapReduce Framework with... 3545

(@) (b)
—usr (max) —total (avg) total (max) —usr (max) —total (avg) total (max)
~ 120 ~ 120
&3 g
c c
o o
5 b=
8]
=] 2
= =)
3] 5] -
501 501
Time (Sec) Time (Sec)
(© (d)
—usr (max) —total (avg) total (max) —usr (max) —total (avg) total (max)
~ 120 = 120
€ 100 ;t. LA W[” e € 100 Q\ m 7
S 80 i I\t ik | i S 80 t
E 60 L‘ L‘ TL L\ ‘\[‘vm j{ E €0 |
g 40 1 ‘ g 40 ;
S 20 ,L“ ‘ HHH S 20
% 0 Ml A i e-) 0 L W
1 101 201 301 401 501 1 101 201 301 401 501
Time (Sec) Time (Sec)

Fig.17 Datanode CPU utilization during Terasort. a NVMe + NVMe, compress map output; b SSD + SSD,
compress map output; ¢ NVMe + NVMe, no compression; d SSD + SSD, no compression

Figure 17 illustrates the CPU utilization of the SSD + SSD and the NVMe + NVMe
configurations. CPUs are mostly utilized for map phase user processing: 0-200 s in
time (x-axis) with many peaks. To relieve the heavy user process CPU workloads,
we disabled the compression option and ran Terasort again. However, deselecting
the compression option does not reduce CPU utilization. It turns out that, without
compression, CPUs write about five times more map output data. This equals the CPU
utilization saving from disabling compression. Moreover, the larger amount of map
output data significantly increases shuffle and reduce phase execution times.

Note that Terasort is a MapReduce application baseline because it does nothing but
sorts key value pairs. Typical MapReduce applications may suffer more from CPU
power shortages than from storage I/O throttling.

According to our experiment, it seems not effective to use faster SSDs in MapRe-
duce frameworks. However, we cannot conclude that high-performance storage
devices are always inefficient. The result shows just a typical case when high-
performance storage devices are not a MapReduce workflow performance bottleneck.
To enjoy maximum high-performance storage benefits, we can increase network band-
width for HDFS I/O performance using Eq. (1) in Sect. 2.2.1. Moreover, since CPUs
can be a MapReduce cluster bottleneck, more careful consideration when select-
ing configuration resources is required when designing Hadoop clusters employing
high-end SSDs for MapReduce frameworks. Hadoop benefits can be optimized when
storage performance simultaneously matches CPU capability and network bandwidth.
In addition, the high-performance storage can benefits the mixed workloads where
multiple jobs share the storage as observed in multi-thread experiments.

In summary, the NVMe SSD is expected to boost the MapReduce performance
further. However, we have shown that considerable amount of network and CPU
resources should be provided to support the maximal throughput of the NVMe SSD.

@ Springer

3546 S. Moon et al.

6 Related work

Related work [20,21] explores performance improvements achieved by combining
SSDs and increasing network bandwidth. It correctly identifies network bandwidth as
apotential HDFS bottleneck. However, our investigations include an HDFS throughput
and network bandwidth quantitative analysis.

A recent work [22] investigates a cost-efficient Hadoop MapReduce Framework.
The study compares a workstation cluster to a single high-performance server, while we
compare HDD storage systems to SSD storage systems and to SSD/HDD hybrid stor-
age systems. They simply examine execution time, while our study explores resource
utilizations with extensively different configurations and identifies which factors delay
overall system performance.

Another work [6] reveals multiple concurrent read/write requests can cause severe
HDD performance degradation, significantly impacting Hadoop performance. It mit-
igates this problem by modifying I/O scheduling to HDFS storage devices. Our
benchmarks also demonstrate that HDDs suffer from multiple concurrent I/Os and
suggest using SSDs in places where concurrent I/Os concentrate. While other work
focuses on micro-analyzing HDFS read/write primitives, we investigate end-to-end,
system-wide performance.

Recent work [23] studied efficient employment of flash memory for a specific appli-
cation (Facebook messages) in Hbase + HDFS. Similar to this paper, they also reveal
that using flash tier is more cost-effective configuration than using RAM or HDDs in
the application. In this paper, a different application (Hadoop MapReduce framework)
from the related work is studied. While the related work built layered architecture of
DRAM, flash memory and HDDs, this paper uses an SSD as intermediate storage
which is simple to implement. In addition, many Hadoop configuration issues such as
frequent heartbeats and JVM reuse options are discussed in this paper.

It is widely investigated in industry to enhance the performance of Hadoop with
SSDs. A recent work [24] shows that using SSD for intermediate data is the cost-
effective configuration. This paper originally studies the issue earlier and in detail
with resource profiling analysis.

The work [25] built a resource profile suite for Hadoop and HDFS, and measured the
performance of Hadoop with SSDs, whereas we exploit Linux mpstat and sysstat tools
with our own automation scripts and focus more on finding cost-effective configuration
with SSDs.

JVM and its garbage collection impact on Hadoop Terasort is explored in [26].
While the work studied a vanilla Hadoop, we focused on different Hadoop configura-
tions with HDDs and SSDs.

Map phase compression is not always beneficial. One study [27] argued that dis-
abling compression may be better for MapReduce framework energy efficiency.

7 Conclusion

This paper demonstrated that building balanced Hadoop systems via proper system
configurations is critical to maximize potential SSD benefits. Sufficient network band-

@ Springer

Optimizing the Hadoop MapReduce Framework with... 3547

width and increased I/O parallelism to utilize maximum SSD performance are critical
to HDFS and Hadoop MapReduce Framework performance. Specifically, SSDs help
when they are used as temporary storage for intermediate data which consists of heavy
random and concurrent I/O. We observed that using SSDs for temporary storage and
HDDs for permanent HDFS storage is the most cost-effective configuration today.
Judiciously mixing SSDs and HDDs within heterogeneous HDFS designs enables
enterprises to leverage and capture SSD strengths and benefits.

We found that enterprise level SSDs (NVMe SSDs) cannot maximize their potential
performance until other resources such as CPU and network bandwidth are sufficiently
provided. It is advantageous to revisit Hadoop MapReduce system design periodically
with consideration of balance of resource utilizations.

References

1. Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: OSDI’04:
6th symposium on operating system design and implementation, San Francisco

2. Ghemawat S, Gobioff H, Leung S (2003) The Google file system. In: SOSP’03: 19th ACM symposium

on operating systems principles

. Apache Hadoop Project. http://hadoop.apache.org. Accessed 21 May 2015

4. Shvachko K, Kuang H, Radia S, Chansler R (2010) The Hadoop distributed file system. In: MSST’10:

26th IEEE symposium on massive storage systems and technologies

. Dell. Solid state drive vs. hard disk drive price and performance study. [White paper]

6. Shafer J, Rixner S, Cox A (2010) The Hadoop distributed filesystem: balancing portability and per-
formance. In: ISPASS’10: IEEE international symposium on performance analysis of systems and
software

7. Moon S, Lee J, Kee Y (2014) Introducing SSDs to Hadoop MapReduce Framework. In: IEEE Cloud’

14: 7th IEEE international conference on cloud computing
. Flexible IO Tester. Available in http://git.kernel.dk/?p=fio.git;a=summary. Accessed 21 May 2015
9. DFSIO program. Available in Hadoop source distribution: src/test/org/apache/hadoop/fs/TestDFSIO.

Accessed 21 May 2015

10. Linux iostat manual page. http://sebastien.godard.pagesperso-orange.fr/man_iostat.html. Accessed 21
May 2015

11. Terasort program. http://hadoop.apache.org/docs/r0.23.6/api/org/apache/hadoop/examples/terasort/
package-summary.html. Accessed 21 May 2015

12. Twitter’s Hadoop-LZO. http://github.com/twitter/hadoop-1zo. Accessed 21 May 2015

13. JProfiler, ej-technologies GmbH. https://www.ej-technologies.com/products/jprofiler/overview.html.
Accessed 21 May 2015

14. Cloud Computing, Intel Inc., Optimizing Hadoop deployments. [White paper]

15. Intel Xeon Processor-Based Servers, Big data analytics, Intel Inc., Optimizing Hadoop Deployments.
[White paper]

16. Hortonworks Inc., Best practices: Linux file systems for HDFS. http://hortonworks.com/kb/
linux-file-systems-for-hdfs. Accessed 21 May 2015

17. White Tom (2012) Hadoop: the definitive guide. O’Reilly Media Inc, USA

18. NVM Express Interface. http://www.nvmexpress.org. Accessed 21 May 2015

19. Samsung Enterprise Class SSD Datasheet. http://www.samsung.com/global/business/semiconductor/

file/product/XS1715_ProdOverview_2014_1.pdf
20. Sur S, Wang H, Huang J, Ouyang X, Panda D (2010) Can high-performance interconnects benefit
Hadoop distributed file system. In: MASVDC’10: workshop on micro architectural support for virtu-
alization, data center computing, and clouds in conjunction with MICRO’ 10

21. Islam N, Rahman M, Jose J, Rajachandrasekar R, Wang H, Subramoni H, Murthy C, Panda D (2012)
High performance RDMA-based design of HDFS over InfiniBand. In: SC *12: the international con-
ference on high performance computing, networking, storage and analysis

w

W

oo

@ Springer

http://hadoop.apache.org
http://git.kernel.dk/?p=fio.git;a=summary
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://hadoop.apache.org/docs/r0.23.6/api/org/apache/hadoop/examples/terasort/package-summary.html
http://hadoop.apache.org/docs/r0.23.6/api/org/apache/hadoop/examples/terasort/package-summary.html
http://github.com/twitter/hadoop-lzo
https://www.ej-technologies.com/products/jprofiler/overview.html
http://hortonworks.com/kb/linux-file-systems-for-hdfs
http://hortonworks.com/kb/linux-file-systems-for-hdfs
http://www.nvmexpress.org
http://www.samsung.com/global/business/semiconductor/file/product/XS1715_ProdOverview_2014_1.pdf
http://www.samsung.com/global/business/semiconductor/file/product/XS1715_ProdOverview_2014_1.pdf

3548 S. Moon et al.

22.

23.

24.

25.

26.

27.

Appuswamy R, Gkantsidis C, Narayanan D, Hodson O, Rowstron A (2013) Scale-up vs scale-out for
Hadoop: time to rethink? In: ACM symposium on cloud computing, 2 October 2013

Harter T, Borthakur D, Dong S, Aiyer A, Tang L, Arpaci-Dusseau A, Arpaci-Dusseau R (2014) Analysis
of HDFS under HBase: a Facebook messages case study. In: FAST"14: 12th USENIX conference on
file and storage technologies

SanDisk, Increasing Hadoop performance with SanDisk solid state drives (SSDs). [White paper]

Dai J, Huang J, Huang S, Huang B, Liu Y (2011) HiTune: dataflow-based performance analysis for
big data cloud. In: Usenix ATC’11: USENIX annual technical conference

Joshi S, Liaskovitis V (2012) Java garbage collection characteristics and tuning guidelines for Apache
Hadoop TeraSort workload. [White paper]

Chen Y, Ganapathi AS, Katz RH (2010) To compress or not to compress—compute vs. 1O tradeoffs for
MapReduce energy efficiency. Technical Report No. UCB/EECS-2010-36, University of California at
Berkeley

@ Springer

	Optimizing the Hadoop MapReduce Framework with high-performance storage devices
	Abstract
	1 Introduction
	2 HDFS characteristics
	2.1 Investigation environment
	2.2 Storage vs. network
	2.2.1 Network bandwidth requirement for high-performance storage devices

	2.3 Multiple readers/writers

	3 MapReduce from a storage perspective
	3.1 Terasort performance analysis
	3.2 Cost analysis
	3.3 Energy consumption analysis

	4 Optimize map performance
	4.1 Heartbeat interval
	4.2 Java virtual machine reuse
	4.3 Native file system access time option

	5 NVM express SSD
	6 Related work
	7 Conclusion
	References

