
J Supercomput (2015) 71:3482–3499
DOI 10.1007/s11227-015-1445-5

SP-ChainMail: a GPU-based sparse parallel ChainMail
algorithm for deforming medical volumes

Alejandro Rodríguez1 · Alejandro León1 ·
Germán Arroyo1 · José Miguel Mantas1

Published online: 23 May 2015
© Springer Science+Business Media New York 2015

Abstract ChainMail algorithm is a physically based deformation algorithm that has
been successfully used in virtual surgery simulators, where time is a critical factor.
In this paper, we present a parallel algorithm, based on ChainMail, and its efficient
implementation that reduces the time required to compute deformations over large
medical 3D datasets by means of modern GPU capabilities. We also present a 3D
blocking scheme that reduces the amount of unnecessary processing threads. For this
purpose, this paper describes a new parallel boolean reduction scheme, used to effi-
ciently decide which blocks are computed. Finally, through an extensive analysis, we
show the performance improvement achieved by our implementation of the proposed
algorithm and the use of the proposed blocking scheme, due to the high spatial and
temporal locality of our approach.

Keywords GPU programming · Stencil computation · Physically based deforma-
tion · Parallel algorithms

1 Introduction

Over the last few years, graphics processing units (GPUs) have been widely used to
accelerate a huge variety of algorithms in different fields. This is due to the fact that
modern GPUs are designed following a highly parallel single instruction, multiple
data (SIMD) scheme, containing hundreds or thousands of processors and dedicated
memory.

Many approaches for physically based deformation of medical volumetric models
take advantage of these capabilities such as the parallel implementation of the finite

B Alejandro Rodríguez
alejandrora@ugr.es

1 University of Granada, Granada, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1445-5&domain=pdf

SP-ChainMail: a GPU-based sparse parallel... 3483

element method proposed by Comas et al. [2] or the parallel mass–spring system pro-
posed by Georgii et al. [8], since they can be adapted to operate in parallel over a
huge amount of data elements. The ChainMail algorithm, introduced by Gibson [10],
is a two-stage physical deformation algorithm which, unlike other physically based
deformation algorithms, follows a purely geometrical approach that is therefore capa-
ble of handling several orders of magnitude more elements. It has been successfully
used to simulate surgical procedures, such as a vitrectomy [19] or arthroscopic knee
surgery [9], where a low response time is a strong requirement.

In this paper, we present a parallel version of the ChainMail algorithm which
efficiently handles deformations over large areas of the dataset. Our algorithm allows
a parallel implementation of the tasks that are computationally intensive using the
GPU, thus avoiding costly memory transfers to visualize the deformations since the
rendering is also carried out using theGPU.Unlike previous approaches, our algorithm
is capable of interleaving its two stages, allowing intermediate visualizations of the
current state of the deformation. Therefore, our algorithm is able to provide a more
interactive visual feedback.

We also propose a partitioning method that, taking into account the sparse nature of
our algorithm, splits up the computation of the dataset elements into blocks that can be
processed independently. This blocking method prevents the processing of blocks that
do not require any computation, reducing the number of idle threads, thus decreasing
the overall computation time.

Additionally, we present a novel parallel reduction approach that is limited to reduc-
tion of boolean sets, but improves the performance of the general parallel reduction
approach.

This paper is organized as follows. In Sect. 2, previous related work is reviewed.
Our parallel ChainMail algorithm is described in Sect. 3, which also includes a brief
introduction to the original ChainMail algorithm, as well as details about the imple-
mentation. In Sect. 4, the blocking method is described and the required algorithms
and data structures to efficiently handle the blocks are detailed. Also, the proposed
boolean reductionmechanism is presented. In Sect. 5, we present an analysis of results,
testing our approach under different blocking configurations and several datasets and
comparing its performance against an optimized multithreaded implementation of the
original ChainMail algorithm. We extend the analysis to several hardware configu-
rations, demonstrating the portability and scalability of the blocking scheme and the
benefits achieved by our approach. Finally, our conclusions are given in Sect. 6.

2 Related works

To take advantage of general-purpose computing on graphics processing units
(GPGPU), it is necessary to map the algorithms to the graphics hardware, which is not
always an easy task. Kirk et al. [11] presented an excellent introduction to massively
parallel general-purpose computation using modern graphics hardware, compiling
recent developments, common techniques and several practical examples. Due to the
SIMD nature of modern GPUs, a common approach to perform parallel computation
is the iterative stencil computation scheme [3]. This scheme consists of a sequence

123

3484 A. Rodríguez et al.

of iterations over a given dataset, stored in a grid of cells. Each iteration performs
local neighborhood computations to obtain new values for the cells. Examples of this
approach are the stencil-based GPU algorithm proposed by Micikevicius [14] to per-
form 3D finite difference calculations, and the iterative parallel approach proposed by
De la Asunción et al. [4] to simulate shallow water systems on the GPU.

The original ChainMail algorithm [10] has been used by many authors for med-
ical applications, such as angioplasty simulation [12] , heterogeneous deformation
of medical datasets [20] and generation of medical illustrations [13]. Unfortunately,
interactivity is only achieved if the amount of affected elements is relatively small.
Since the original ChainMail algorithm presents an important computational stage
which is inherently sequential, a direct mapping to parallel platforms computation has
a very limited impact on the performance.

A two-stage parallel approach based on the ChainMail algorithm was introduced
by Rößler [17] and has been also used inmedical applications by Fortmeier et al. [5,6].
This parallel approach achieves good performance for small deformations, but suffers
from a high amount of idle computation when large deformations are applied, hurting
the overall performance. Moreover, the visualization can only be performed after
the whole deformation is completed, decreasing the visual feedback and interactivity
during large deformations.

Unlike previous approaches, our algorithm handles both the propagation and the
relaxation stage at the iteration level following a stencil computation scheme, allowing
overlapping both stages to generate partial visualizations of the deformations. More-
over, the use of our blocking scheme avoids unnecessary computation, increasing the
performance of the overall process.

Bandwidth and computation problems associated with the stencil computation
approach have been widely studied. Many cache-based blocking schemes palliate
bandwidth problems. An example is discussed in the work of Nguyen et al. [16],
introducing a 3.5D spatial and temporal blocking scheme applied to the input grid
into on-chip memory to optimize bandwidth bounded kernels. Brodtkorb et al. [1]
proposed an early exit mechanism to avoid further computation of blocks marked as
non-contributing in the previous iteration. Sætra [18] proposed methods to reduce the
computational burden and required memory to perform stencil operations over sparse
domains.

Our blocking scheme extends the work of Brodtkorb et al. [1] to efficiently han-
dle the activation and deactivation of the blocks, further reducing the unnecessary
computation performed in each iteration of our stencil computation.

3 SP-ChainMail

The original ChainMail algorithm [10] defines a mesh structure over the elements
of the volumetric model. Each element is connected to its six adjacent neighbors. A
deformation is handled by two separate stages: propagation stage and relaxation stage.

In the propagation stage, a valid spatial region is defined for each neighbor of a
given element. While a neighbor remains within that region, the state is valid and no
updates are needed. Since the regions are defined relative to the current position of

123

SP-ChainMail: a GPU-based sparse parallel... 3485

(a) (b) (c)

(d) (e)

Fig. 1 2D depiction of an element deformation using the ChainMail algorithm. a Given an initial configu-
ration, b the element defines valid regions for its neighbors, c when the element is displaced, it defines new
valid regions, d the neighbors violating those new constraints are shifted to fulfill them. e The final stable
state is reached when all the constraints are satisfied

each element, the valid regions for the neighbors of an element are displaced when
that element is displaced. Due to this displacement, a neighbor may be outside the
new valid region. If this happens, the neighbor is shifted to a new location to fulfill
the constraint, as shown in Fig. 1. The shifting of a neighbor may, in turn, lead to
new constraint violations and cause further displacement of elements, propagating the
deformation through the mesh elements.

Once all the constraints are satisfied, the relaxation stage begins: each element is
iteratively displaced towards its equilibrium position based on a midpoint calculation
of the positions of its neighbors. Rigid, plastic and elastic behaviors can be achieved
by tuning up the geometric constraints between elements andmodifying the relaxation
scheme, as described by Gibson [7].

TheChainMail algorithm is implemented using theCPUsince the propagation stage
of the algorithm is inherently sequential, and the deformed mesh must be transferred
to the graphics device memory to perform the visualization. For large models, this
memory transfer is expensive and impedes an interactive visualization of the applied
deformations.

3.1 Sparse parallel ChainMail

In our approach, the volumetric model is arranged as a regular, structured 3D grid of
cells. Each cell corresponds to an element of the ChainMail mesh. Hence, a cell stores
the 3D position of its associated element and the connections with its neighbors.

123

3486 A. Rodríguez et al.

Two copies of the grid are used following a Jacobi sweep scheme [16]: one grid
is designated to stencil read operations and the other is designated to stencil write
operations, swapping roles after each iteration. Both grids are stored in the device
memory (dedicated memory of the GPU). Operations over cells corresponding to
the propagation and relaxation stages are performed following a stencil computation
approach:

– In the propagation stage the original propagation mechanism is inverted as
explained by Rößler [17], adapting it to follow an iterative stencil-based approach:
for each cell, if a neighbor has been displaced on the previous iteration, the new
constraint is checked. If the constraint is not satisfied, the element is shifted to
meet the existing geometric constraint with its neighbor. This process is repeated
iteratively until all the constraints are satisfied.

– In the relaxation stage, a minimization process is applied based on the elastic
and plastic properties of the model as explained by Gibson [7]. This energy mini-
mization process also follows an iterative stencil-based approach, since each cell
updates its position as a result of a computation regarding the current positions of
its neighbors.

The computation performed for each cell during a propagation iteration, as well as
during a relaxation iteration, is independent of the computation performed for the rest
of the cells, allowing a parallel computation of each iteration.

Unlike the previous solutions, we introduce a mechanism to handle the stages
at the iteration level. This mechanism requires adding a control flag for each cell.
This flag tracks whether the cell has already been reached by the current propagation
front. Therefore, when a new external deformation is applied to a cell, it is flagged as
reached and the rest of the cells are flagged as not reached. During subsequent propa-
gation iterations, when an element is reached by the propagation front, it is flagged as
reached.

After each iteration of the propagation stage, this flag allows to identify the cells
that have already been reached by the propagation front. If a cell and its neighbors
have already been reached, the cell is ready to perform the relaxation stage. There-
fore, this flag allows overlapping the propagation and relaxation stages by alternating
propagation and relaxation iterations. This overlapping mechanism allows to visualize
partial results of the deformations and, since the updated data after any propagation or
relaxation iteration is already present in the device memory, no memory transfers are
required, allowing a more interactive visual feedback. An overview of the proposed
algorithm integrated in a virtual surgery system is depicted in Fig. 2.

3.2 Parallel implementation

In our approach, all the computationally intensive tasks are executed in parallel using
the GPU. Hence, the 3D dataset is loaded into the device global memory as an array
of cells. Each cell stores the following information:

– Element data: position and constraint values.

123

SP-ChainMail: a GPU-based sparse parallel... 3487

Source Dataset

Loader to
GPU memory

New applied
deformation

SP-Chainmail

Launcher

Propagation
Kernel

Relaxation
Kernel

Visualization
(to screen)

Deformation
complete?

yes

no

Fig. 2 Overview of the simulation system. The SP-ChainMail algorithm runs in parallel on the GPU,
allowing partial visualizations of the deformations. Blue stages are carried out using the GPU, and red
stages are carried out using the CPU

– Neighbors flags: a set of six flags indicating whether the element is connected or
not with each of its neighbors (its six surrounding cells in the grid).

– Activity flag: a flag indicating if the element has been displaced in the preceding
propagation iteration.

– Reach flag: a flag indicating if the element has already been reached by the current
propagation.

To cope with the Jacobi sweep scheme, we duplicate the whole array supporting
read and write operations. The current read array will be referred to as global read
array, and the current write array will be referred to as global write array.

3.2.1 Propagation stage

The propagation stage is implemented as a GPU kernel that is iteratively invoked.
Each kernel invocation computes a single iteration of the propagation, generating one
thread per cell. The kernel is described in Algorithm 1:

1. The cell data corresponding to the current thread is read from the global read array
(lines 2–3).

2. For each neighbor, the following condition is checked (lines 5–6): the neighbor
has been shifted in the previous propagation iteration and the new restrictions are
violated.

3. If this condition is met, the current element is shifted to fulfill the new constraints
and it is flagged as reached and active (lines 7–9).

4. Otherwise, the current element is flagged as inactive (line 4).
5. Finally, the cell data are written to the global write array (line 12).

If no elements are shifted during the kernel invocation, the propagation stagefinishes
and no more propagation iterations are needed.

123

3488 A. Rodríguez et al.

1 propagation_kernel (Cell readArray[], Cell
writeArray [])

2 Integer id = get_thread_id ();
3 Cell current = readArray[id];
4 current.activityFlag = False;
5 FOREACH neighbor IN activeNeighbors(current)
6 IF ((neighbor.activityFlag == True) AND

(restrictionsNotSatisfied (current , neighbor))
)

7 relocate(current);
8 current.activityFlag = True;
9 current.reachFlag = True;

10 ENDIF
11 ENDFOREACH
12 writeArray[id] = current;
13 END

Algorithm 1 Pseudo-code of the propagation kernel. During the kernel invocation, each
instance of this kernel operates over a single cell, writing the resulting updated cell to the
current global write array

3.2.2 Relaxation stage

The relaxation stage is also implemented as a GPU kernel that is iteratively invoked.
Each invocation of the kernel computes a single relaxation iteration, generating one
thread per cell. The kernel is described in Algorithm 2:

1. The cell data corresponding to the current thread is read from the global read array
(lines 2–3).

2. The following condition is checked (line 4): the current element has already been
reached, but it is not active.

3. If this condition is met and all the neighbors of the current element have already
been reached (lines 5–11), the relaxation process is applied to the current element
(line 12).

4. Finally, the cell data are written to the global write array (line 15).

If none of the elements is shifted during a relaxation iteration and the propagation
stage has been already completed, the relaxation stage alsofinishes and the deformation
is completed.

After an invocation of any of these kernels, the global arrays switch their roles,
allowing the next kernel invocation to read from the updated array. Since the relax-
ation kernel only affects the elements already reached by the propagation, excluding
those belonging to the current propagation front, both kernels can be interleaved. The
visualization of the current state of the deformation is also possible by accessing the
array data updated by the latest iteration.

Some details regarding our implementation have been omitted for the sake of clarity.
To improve the efficiencyof theGPUkernels,wehave adopted the following strategies:

– The foreach loops are completely unrolled.
– The GPU shared memory is used to optimize the access to neighboring cells.

123

SP-ChainMail: a GPU-based sparse parallel... 3489

1 relaxation_kernel (Cell readArray [], Cell
writeArray [])

2 Integer id = get_thread_id ();
3 Cell current = readArray[id];
4 IF ((current.reachFlag == True) AND (current

.activityFlag == False))
5 Boolean continue = True;
6 FOREACH neighbor IN activeNeighbors(

current)
7 IF (neighbor.reachFlag == False)
8 continue = False;
9 ENDIF

10 ENDFOREACH
11 IF (continue == True)
12 applyRelaxationFunction(current);
13 ENDIF
14 ENDIF
15 writeArray[id] = current;
16 END

Algorithm 2 Pseudo-code of the relaxation kernel. During the kernel invocation, each
instance of this kernel operates over a single cell, writing the resulting updated cell to the
current global write array

– The actual data of the cells are stored in a structure-of-arrays fashion, more
amenable to the regular memory access patterns of the kernels.

4 Computational blocking method

Our stencil approach presents a high spatial and temporal locality of the computational
burden, since the deformations applied to the model propagate iteratively through the
regular grid following a wavefront pattern. This leads to a highly sparse computation
in the propagation stage, resulting in a high amount of unnecessary computation.

This unnecessary computation is produced because many of the elements may have
already been shifted in a previous iteration or have not yet been reached by the current
propagation. A less severe sparse computation is also present in the relaxation stage
because of the same reason. Due to this sparse computation, many of the launched
threads would be idle, wasting GPU resources, since these threads also need to read
from the device global memory to compute the data.

Since our solution follows an iterative stencil computation approach, we can intro-
duce a blocking method to reduce the number of idle threads, optimizing the usage of
the computation power offered by the GPU.

For this purpose, the computational domain is divided into blocks that can be
computed independently. The storage of the dataset in the device memory remains the
same, but each block is handled by an independent kernel launch instead of a single
kernel launch over the whole dataset.

To maintain this structure, we store the corresponding 3D offset for each block.
During a kernel launch for a particular block, the kernel receives this offset information
to access the data of the cells in that block.

123

3490 A. Rodríguez et al.

After each iteration, the blocks are flagged as active or inactive. Active means that
the block may require further computation in the next iteration, while inactive means
that the block will not need further computation in the following iteration. These flags
allow launching the kernel only over active blocks to avoid unnecessary computation.
This blocking scheme is applied to both stages of our algorithm in an efficient way as
explained in the following subsections.

4.1 Efficient activation and deactivation of blocks

To handle the activation and deactivation of blocks, we extend the solution proposed
byBrodtkorb et al. [1], which involves the use of an auxiliary boolean buffer to indicate
whether a block requires computation in the next iteration or not. In our approach, we
use several of these buffers, referred to as boolean maps, to update and control the
state of the blocks.

Each boolean map is stored as a global array on device memory containing one
binary flag per block in the partition. A first boolean map is associated with the
propagation stage. A second boolean map is associated with the relaxation stage.

In each iteration, for any of the two stages, the blocks that need to be computed
in the next iteration are flagged as active in the corresponding boolean map. A new
condition test, added to the end of the kernels code, decides whether a block requires
further computation or not by checking if any element in the block has been updated.
An element is considered updated by a propagation iteration if it has been reached
by the propagation front. An element is considered updated by a relaxation iteration
if it has been displaced by the relaxation function. On the other hand, if none of the
elements in a block have been updated during the current iteration, the block is flagged
as inactive. Figure 3 shows a 2D illustration of this mechanism.

4.1.1 Activation of neighboring blocks

When the propagation front or the relaxation process reaches the border of a block, the
neighboring block must be activated. Six additional boolean maps are defined, each
one associated with one of the borders for all the blocks.

Therefore, if an element belonging to the border of a block is updated in the current
iteration, the position of that block in the boolean map corresponding to that border is
set as active.

In the host memory (main memory), two lists of active blocks are maintained. At
the end of each iteration, for any of the two stages, the corresponding boolean maps
are copied to the host memory and the corresponding list is updated using the boolean
maps as look-up tables. At the beginning of the next iteration, only the blocks indexed
in the corresponding list are processed by the kernel.

Figure 4 presents the steps and memory accesses during an iteration of the algori-
thm. Notice that the dataset is always stored in the device memory and operated from
the GPU, and only the boolean maps are transferred to the host memory.

123

SP-ChainMail: a GPU-based sparse parallel... 3491

Propagation
Boolean Map

Relaxation
Boolean Map

Cell shifted in the
last relaxation
iteration

Cell reached in the
last propagation
iteration

Fig. 3 2D simplification of the boolean map mechanism. Blocks containing cells reached in the last
propagation iteration are flagged in the propagation boolean map, and blocks containing cells shifted in the
last relaxation iteration are flagged in the relaxation boolean map

Device Memory Steps for one
iteration

Host Memory

Boolean Maps

..
.

Global Arrays

R/W Array

W/R Array

S
W

A
P
P
IN

G

List of
active blocks

1. Reset Boolean Maps

2. Launch of kernel for
active blocks

3. Execute Per-block kernels

4. Update list of
active blocks

Fig. 4 Steps and memory accesses during an iteration. The blue steps (steps 1 and 3) run on the GPU,
while the red steps (steps 2 and 4) run on the CPU. The only memory transfer between device memory and
host memory is performed in step 4 to update the active blocks list

4.2 Parallel boolean reduction

As mentioned earlier, the boolean maps are updated by the kernels, but, since each
launched thread handles only one cell, it is necessary to perform a gathering process
regarding each block. Instead of a parallel reduction approach as in [1] and [18], we
propose a novel two-step parallel boolean reduction (PBR) mechanism:

1. All the flags of the boolean maps are set as inactive before launching the kernels
corresponding to the active blocks, assuming that none of the blocks will need
further computation in the next iteration.

2. The kernels corresponding to the active blocks are launched. If an element of a
block is updated, a write operation is performed to set as active the position of that
block in the corresponding boolean map.

Although the concurrent writing of several threads to the same variable does not
guarantee the integrity of data, in this case all the threads write the same value. This
fact ensures the final state of the boolean values while avoiding the additional latency

123

3492 A. Rodríguez et al.

Parallel reduction PBR

Fig. 5 Left parallel reduction of eight boolean values using the binary OR operation. Right parallel boolean
reduction (PBR) of the same eight boolean values

introduced by a parallel reduction approach. A depiction of both approaches operating
over the same set of values is shown in Fig. 5. A performance comparison of both
methods is presented in the next section.

5 Experiments and results

Todemonstrate the benefits of the proposedmethods, several tests have been conducted
using different hardware configurations to also evaluate the portability and scalability
of the proposed blocking scheme. Three hardware configurations have been used:

– GTS-250 configuration: Intel Core i3-530 2.93 GHz, 4 GB RAM, Nvidia GeForce
GTS 250 (Tesla microarchitecture, 128 cores) with 1 GB of video memory
GDDR3. OpenCL 1.1 driver included in CUDA 6.

– R9-270X configuration: Intel Core i5-3570 3.4 GHz, 8 GB RAM, AMD Radeon
R9 270X (1280 cores) with 2 GB of video memory GDDR5. OpenCL 1.2 driver.

– GTX-670 configuration: Intel Core i7-3770 3.4GHz, 16GBRAM,NvidiaGeForce
GTX 670 (Kepler microarchitecture, 1344 cores) with 2 GB of video memory
GDDR 5. OpenCL 1.1 driver included in CUDA 6.

Two different datasets have been used for the tests. The first dataset, referred to as
Cube dataset, is a synthetic regular 3D cube, consisting of 96×96×96 elements. The
second dataset, referred to as Leg dataset is a section of a leg from the Visible Human
Project of the National Library ofMedicine (see Fig. 6), consisting of 160×160×160
elements.

5.1 SP-ChainMail performance

To evaluate the performance of our approach, the SP-ChainMail algorithm has been
implemented, together with the blocking scheme, using OpenCL [15], integrating it
into a virtual surgery system prototype.

The original ChainMail algorithm [10] has also been implemented as a reference.
The propagation stage of the original algorithm is inherently sequential and cannot
be parallelized for multicore processors, but the relaxation stage has been parallelized

123

SP-ChainMail: a GPU-based sparse parallel... 3493

Fig. 6 Left the Leg dataset, used in the performance tests. Right the Leg dataset deformed by the sparse
parallel ChainMail algorithm, using the developed virtual surgery system

using OpenMP by dividing the ChainMail elements in balanced groups and assigning
the computation of each group to one thread.

A deformation has been applied to each dataset, causing a propagation relaxation
through the whole dataset affecting all the elements. For the Cube dataset, the SP-
ChainMail algorithm took 285 propagation iterations and 468 relaxation iterations
until a completely stable configuration was reached. The original ChainMail algo-
rithm also required 468 relaxation iterations after the propagation (not measurable in
iterations). For the Leg dataset the SP-ChainMail algorithm took 477 propagation iter-
ations and 788 relaxation iterations. The original ChainMail algorithm also required
788 relaxation iterations after the propagation. Each test has been repeated five times,
although no noticeable differences were encountered through the different executions
due to the deterministic behavior of the algorithms. The results presented here report
the average of the measured times.

The original ChainMail was tested only on the GTX-670 configuration, our most
modern hardware configuration. Using eight threads for the relaxation computation
(grouping the elements into 8 groups), the stable state was reached after 10,648 ms
for the Cube dataset and 49,283 ms for the Leg dataset.

We tested the SP-ChainMail implementation on both datasets using different block
sizes for the blocking scheme, resulting in different rates of reduction on the total
number of launched GPU threads. As can be seen in Table 1, a smaller block size
always implies a higher reduction in the number of launched threads, which is expected
since the smaller block sizes lead to a finer adjustment of the active blocks to the actual
propagation front.

Table 2 shows the measured times using the Cube dataset and Table 3 shows the
measured times using the Leg dataset. The times reported represent the time taken to
reach the stable state for the same applied deformation to the dataset. The speed-up

123

3494 A. Rodríguez et al.

Table 1 Thread launch reduction achieved using different block sizes

Block size Cube dataset Leg dataset

of
blocks

Launched
threads

Thread launch
reduction (%)

of
blocks

Launched
threads

Thread launch
reduction (%)

No blocks – 666,206,208 – – 5,181,440,000 –

32 × 32 × 32 27 234,553,344 64.79 125 1,018,888,192 80.33

32 × 16 × 16 108 148,873,216 77.65 500 639,262,720 87.66

16 × 16 × 16 216 107,683,840 83.83 1000 465,821,696 91.01

32 × 8 × 8 432 103,868,416 84.40 2000 451,835,904 91.27

16 × 8 × 8 864 67,950,592 89.80 4000 297,355,264 94.26

8 × 8 × 8 1728 49,827,840 92.52 8000 219,824,128 95.75

Table 2 Measured times of our SP-ChainMail implementation using the Cube dataset

Block size GTS-250 R9-270X GTX-670

Time (ms) Speed-up Time (ms) Speed-up Time (ms) Speed-up

No blocks 8159 1.31× 1131 9.41× 1545 6.89×
32 × 32 × 32 4293 2.48× 693 15.36× 705 15.10×
32 × 16 × 16 3476 3.06× 815 13.06× 635 16.76×
16 × 16 × 16 3720 2.86× 1015 10.49× 598 17.80×
32 × 8 × 8 3923 2.71× 1484 7.17× 893 11.92×
16 × 8 × 8 4363 2.44× 1973 5.39× 1064 10.01×
8 × 8 × 8 5668 1.87× 2678 3.97× 1443 7.37×
Speed-up factors relative to the original ChainMail are also shown, highlighting the highest achieved speed-
up for each configuration

with respect to the original ChainMail (running on the GTX-670 configuration) is also
reported in both tables.

The tests reveal that the SP-ChainMail outperforms the original ChainMail even
using relatively old GPUs, achieving notable speed-up factors higher than 20× when
using a modern GPU. Interestingly, the results show that smaller blocks do not always
lead to a higher speed-up, although the number of launched threads is smaller. This is
due to the fact that the smaller kernel launches do not create enough parallel threads to
fully hide thememory access latency, and this overhead, added to the overhead ofman-
aging more kernel launches, gradually decimates the gain of the reduced computation
load.

5.2 Blocking method portability

For the GTS-250 configuration, any of the tested block sizes leads to a significant
speed-up with respect to the non-partitioned case (i.e., the SP-ChainMail without
using the blocking scheme), with the speed-up factor being higher when using the Leg
dataset, since the thread launch reduction is higher. As already mentioned, the gain is

123

SP-ChainMail: a GPU-based sparse parallel... 3495

Table 3 Measured times of our SP-ChainMail implementation using the Leg dataset

Block size GTS-250 R9-270X GTX-670

Time (ms) Speed-up Time (ms) Speed-up Time (ms) Speed-up

No blocks 61,271 0.80× 7601 6.48× 11448 4.30×
32 × 32 × 32 20,658 2.39× 2683 18.36× 2810 17.53×
32 × 16 × 16 16,130 3.05× 3207 15.36× 2428 20.29×
16 × 16 × 16 17,261 2.85× 3910 12.60× 2243 21.97×
32 × 8 × 8 18,128 2.72× 5742 8.58× 3438 14.33×
16 × 8 × 8 19,030 2.59× 7718 6.39× 4207 11.71×
8 × 8 × 8 25,291 1.95× 11,240 4.38× 5960 8.27×
Speed-up factors relative to the original ChainMail are also shown, highlighting the highest achieved speed-
up for each configuration

N
o
B
lo
ck

s

32
×3

2×
32

32
×1

6×
16

16
×1

6×
16

32
×8

×8
16

×8
×8

8×
8 ×

8

(a) GTS 250: Cube dataset

1

1.5

2

4

6

8

T
im

e
(s
)

N
o
B
lo
ck

s

32
×3

2 ×
32

32
×1

6×
16

16
×1

6 ×
16

32
×8

×8
16

×8
×8

8×
8×

8

(b) R9 270X: Cube dataset

0.5

1

1.5

1

2

N
o
B
lo
ck

s

32
×3

2 ×
32

32
×1

6 ×
16

16
×1

6 ×
16

32
× 8

×8
16

×8
×8

8×
8×

8

(c) GTX 670: Cube dataset

1

1.5

2

2.5

Sp
ee
d
up

1

1.5

N
o
B
lo
ck

s

32
×3

2×
32

32
×1

6×
16

16
×1

6×
16

32
× 8

×8
16

×8
×8

8×
8×

8

(d) GTS 250: Leg dataset

1

2

3

4

20

40

60

T
im

e
(s
)

N
o
B
lo
ck

s

32
×3

2×
32

32
×1

6×
16

16
× 1

6×
16

32
×8

×8
16

×8
×8

8×
8×

8

(e) R9 270X: Leg dataset

1

2

3

2

4

6

8

10

12

N
o
B
lo
ck

s

32
× 3

2×
32

32
× 1

6×
16

16
× 1

6×
16

32
×8

×8
16

×8
×8

8×
8×

8
(f) GTX 670: Leg dataset

2

4

Sp
ee
d
up

5

10

Fig. 7 Plots showing the time reduction and speed-up factor measured for the different block sizes with
respect to the non-partitioned SP-ChainMail case. The top row shows the results using the Cube dataset.
The bottom row shows the results using the Leg dataset, a GTS 250: cube dataset, b R9 270X: cube dataset,
c GTX 670: cube dataset, d GTS 250: leg dataset, e R9 270X: leg dataset, f GTX 670: leg dataset

gradually decimated as the block size is reduced, due to the added overhead, as can
be seen in Fig. 7a, d.

R9-270X and GTX-670 configurations exhibit a similar behavior (Fig. 7b, c, e
and f) but, since the more recent GPUs present in those configurations have a much
higher amount of stream processing units, they require an even higher amount of
parallel threads to hide memory latency, and the smaller block sizes cannot even fully

123

3496 A. Rodríguez et al.

32K
1.6M

3.2M
4.8M

6.3M
8.0M

9.5M
11.2M

0

5

10

15

Number of elements in dataset

T
im

e
(s
)

No blocks
16x16x16

Fig. 8 Measured times of the scalability test, using the GTX-670 configuration

populate the GPU cores, leading to a loss of effective computation power. This loss
is most severe in the case of the R9-270X configuration, on which the use of small
block sizes even yields a worse performance than the non-partitioned case.

Despite this effect, the use of a reasonable block size (which depends on the
particular GPU architecture) leads to a noticeable speed-up using any of the three
configurations, showing the portability of the proposed blocking method and the per-
formance gain obtained through its use.

5.3 Scalability test

Notice that the previous tests on the Leg dataset achieve a higher speed-up than their
counterparts using the Cube dataset, suggesting a good scalability of the blocking
method regarding the dataset size. To further analyze the scalability of our blocking
method with respect to the dataset size, a second test using synthetic regular datasets,
with dimensions ranging from 32× 32× 32 to 224× 224× 224, was performed.

The most modern configuration (the GTX-670 configuration) was used to perform
this test. A deformation affecting all the elements of the dataset was applied, mea-
suring the propagation time without using the blocking method and measuring the
propagation time of the same deformation using a block size of 16× 16× 16, which
achieved the best performance gain on the GTX-670 configuration.

The measured times corresponding to this second test, presented in Fig. 8, show a
significant reduction of the propagation time for all the tested dataset sizes, and they
also show a good scalability of the proposed method since the speed-up factor, shown
in Fig. 9, also increases when increasing the dataset size.

5.4 Memory requirements

5.4.1 SP-ChainMail memory requirements

The memory requirements of our SP-ChainMail algorithm (corresponding to the
Global Arrays in Fig. 4) scale linearly with the number of elements in the input
dataset.

123

SP-ChainMail: a GPU-based sparse parallel... 3497

32K
1.6M

3.2M
4.8M

6.3M
8.0M

9.5M
11.2M

1

2

3

4

5

6

Number of elements in dataset

Sp
ee
d-
up

fa
ct
or

Fig. 9 speed-up factor achieved for the increasing dataset size of the scalability test, using the GTX-670
configuration

For each element, 30 bytes of device memory are required, which leads to a total
amount of 480 MB for an input dataset of 256 × 256 × 256 elements, and a total
amount of 3.75 GB for an input dataset of 512 × 512 × 512 elements, an amount
currently offered only by high-end GPUs. However, this limitation is not reached in
most scenarios, such as virtual surgery applications, since the simulation is usually
performed on a sub-region of the dataset, and SP-ChainMail information would only
be generated for the elements of the sub-region in those cases.

5.4.2 Blocking method memory requirements

The blocking method has very low host and device memory requirements.
In host memory (list of active blocks in Fig. 4), 64 bytes are required per block. In

device memory, only 8 bytes are required per block.
In our most memory-demanding test (the Leg dataset with a 8 × 8 × 8 block

size, generating 8000 blocks in the partition) required 500 KB of device memory and
62.5 KB of device memory. As mentioned in Sect. 4.1.1, only the boolean maps are
transferred from device memory to host memory at the end of each iteration. Even in
our most memory demanding test, this transfer consumes<1ms, which is a negligible
overhead considering the achieved gain.

5.5 PBR performance test

A performance test comparing the proposed parallel boolean reduction (PBR) algo-
rithm with a general parallel reduction algorithm was conducted. Both algorithms
were applied to reduce several arrays of boolean elements of a wide range of sizes.

Themeasured times of both algorithms using theGTX-670 configuration are shown
in Fig. 10. The PBR algorithm shows a better performance for all the array sizes, since
less read/write operations are needed and no synchronization steps are required.

6 Conclusions and future work

In this work, we have presented a sparse parallel ChainMail algorithm. The proposed
algorithm has been implemented and integrated into a virtual surgery system, allowing

123

3498 A. Rodríguez et al.

10 30 50 70 90 110
130

150
170

0

2

4

6

8

Array size (millions of elements)

T
im

e
(m

s)

PBR
Parallel reduction

Fig. 10 Comparison of the times required by the parallel reduction algorithm and the PBR algorithm to
perform a reduction over several boolean arrays, using the GTX-670 configuration

an interactive visual feedback during the manipulation of large volumetric models.
Following a stencil computation approach, our algorithm adapts to the modern GPU
computation paradigm.

We have proposed and implemented a 3D blocking method to deal with the sparse
nature of the SP-ChainMail computation, drastically reducing the amount of idle GPU
threads created.

A novel parallel boolean reduction mechanism has been used to efficiently handle
the activation and deactivation of blocks. This reduction approach has been proven
faster than a generic parallel reduction approach and can be used in any context in
which the reduced value has a boolean nature, i.e., there are only two possible output
values.

The tests conducted in this work show that our implementation considerably outper-
forms a parallel multithreaded implementation of the original ChainMail algorithm,
and our blocking method effectively reduces the computation time required for the
deformations, enhancing the interactivity of the simulation system. The tests also
show a good portability and scalability of the blocking scheme, which increases its
effectiveness as the dataset size increases, while the required additional memory is
negligible.

As future lines of research, we intend to include an auto-tuning mechanism to
determine the optimal block size automatically for each hardware and software con-
figuration. Another interesting future line of work is the generalization and further
testing of the blocking scheme for stencil computation approaches.Moreover, it would
be interesting to test the use of dynamic parallelism to perform the handling and launch-
ing of the blocks directly from the GPU.

Acknowledgments This work was supported by the “Formación de Profesorado Universitario, Plan
Propio de Investigación” program of the University of Granada. This work was also supported by the
project TIN2014-60956-R of the Spanish Ministry of Economy and Competitiveness. JMM acknowledges
the Spanish MINECO project MTM2014-52056-P.

References

1. Brodtkorb AR, Sætra ML, Altinakar M (2012) Efficient shallow water simulations on GPUs: imple-
mentation, visualization, verification, and validation. Comput Fluids 55:1–12

123

SP-ChainMail: a GPU-based sparse parallel... 3499

2. Comas O, Taylor ZA, Allard J, Ourselin S, Cotin S, Passenger J (2008) Efficient nonlinear FEM for soft
tissue modelling and its GPU implementation within the open source framework SOFA. Biomedical
simulation. Springer, London, United Kingdom, pp 28–39

3. Datta K, Murphy M, Volkov V, Williams S, Carter J, Oliker L, Patterson D, Shalf J, Yelick K (2008)
Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. In: Pro-
ceedings of the 2008 ACM/IEEE conference on supercomputing. IEEE Press, Austin, Texas, p 4

4. De La Asunción M, Mantas JM, Castro MJ (2011) Simulation of one-layer shallow water systems on
multicore and CUDA architectures. J Supercomput 58(2):206–214

5. Fortmeier D,Mastmeyer A, Handels H (2013) Image-based palpation simulation with soft tissue defor-
mations using chainmail on the GPU. Bildverarbeitung für die Medizin 2013. Springer, Heidelberg,
Germany, pp 140–145

6. Fortmeier D, Mastmeyer A, Handels H (2014) An image-based multiproxy palpation algorithm for
patient-specific VR-simulation. Stud Health Technol Inform 196:107

7. Frisken-Gibson SF (1999) Using linked volumes to model object collisions, deformation, cutting,
carving, and joining. IEEE Trans Vis Comput Graph 5(4):333–348

8. Georgii J, Echtler F, Westermann R (2005) Interactive simulation of deformable bodies on GPUs. In:
SimVis, pp 247–258

9. Gibson S, Samosky J, Mor A, Fyock C, Grimson E, Kanade T, Kikinis R, Lauer H, McKenzie N,
Nakajima S et al (1997) Simulating arthroscopic knee surgery using volumetric object representations,
real-time volume rendering and haptic feedback. CVRMed-MRCAS’97. Springer, Grenoble, France
pp 367–378

10. Gibson SF (1997) 3D ChainMail: a fast algorithm for deforming volumetric objects. In: Proceedings
of the 1997 symposium on interactive 3D graphics. ACM, New York pp 149-ff

11. Kirk DB, Wen-mei WH (2012) Programming massively parallel processors: a hands-on approach.
Morgan Kaufmann, San Francisco, California

12. Le Fol T, Acosta-Tamayo O, Lucas A, Haigron P (2007) Angioplasty simulation using ChainMail
method. In: Medical imaging, pp 65092X–65092X. International Society for Optics and Photonics,
Bellingham

13. Mensmann J, Ropinski T, Hinrichs K (2008) Interactive cutting operations for generating anatomical
illustrations from volumetric data sets

14. Micikevicius P (2009) 3D finite difference computation on GPUs using CUDA. In: Proceedings of 2nd
workshop on general purpose processing on graphics processing units, pp 79–84. ACM, New York

15. Munshi A et al (2009) The OpenCL specification. Khronos OpenCL Work Group 1:l1–15
16. Nguyen A, Satish N, Chhugani J, Kim C, Dubey P (2010) 3.5-D blocking optimization for stencil

computations on modern CPUs and GPUs. In: Proceedings of the 2010 ACM/IEEE international
conference for highperformance computing, networking, storage and analysis. IEEEComputerSociety,
Washington, DC pp 1–13

17. Rößler F, Wolff T, Ertl T (2008) Direct GPU-based volume deformation. In: Proceedings of Curac, pp
65–68

18. Sætra M (2013) Shallow water simulation on GPUs for sparse domains. Numerical mathematics and
advanced applications 2011. Springer, Leicester, United Kingdom, pp 673–680

19. Schill MA, Gibson SF, Bender HJ, Männer R (1998) Biomechanical simulation of the vitreous humor
in the eye using an enhanced chainmail algorithm. Medical image computing and computer-assisted
interventation. Springer, Cambridge, Massachusetts, pp 679–687

20. Schulze F, Bühler K, Hadwiger M (2007) Interactive deformation and visualization of large volume
datasets. In: GRAPP (AS/IE), pp 39–46. Citeseer

123

	SP-ChainMail: a GPU-based sparse parallel ChainMail algorithm for deforming medical volumes
	Abstract
	1 Introduction
	2 Related works
	3 SP-ChainMail
	3.1 Sparse parallel ChainMail
	3.2 Parallel implementation
	3.2.1 Propagation stage
	3.2.2 Relaxation stage

	4 Computational blocking method
	4.1 Efficient activation and deactivation of blocks
	4.1.1 Activation of neighboring blocks

	4.2 Parallel boolean reduction

	5 Experiments and results
	5.1 SP-ChainMail performance
	5.2 Blocking method portability
	5.3 Scalability test
	5.4 Memory requirements
	5.4.1 SP-ChainMail memory requirements
	5.4.2 Blocking method memory requirements

	5.5 PBR performance test

	6 Conclusions and future work
	Acknowledgments
	References

