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Abstract Networks-on-chip (NOCs) are becoming the de facto communication fabric
to connect cores and cache banks in chip multiprocessors (CMPs). Routing algo-
rithms, as one of the key components that influence NOC latency, are the subject of
extensive research. Static routing algorithms have low cost but unlike adaptive rout-
ing algorithms, do not perform well under non-uniform or bursty traffic. Adaptive
routing algorithms estimate congestion levels of output ports to avoid routing traffic
over congested ports. As global adaptive routing algorithms are not restricted to local
information for congestion estimation, they are the prime candidates for balancing
traffic in NOCs. Unfortunately, destinations of packets are not considered for con-
gestion estimation in existing global adaptive routing algorithms. We will show that
having identical congestion estimates for packets with different destinations prevents
global adaptive routing algorithms from reaching their peak potential. In this work, we
introduce Fast, a low-cost global adaptive routing algorithm that estimates congestion
levels of output ports on a per-packet basis. The simulation results reveal that Fast
achieves lower latency and higher throughput as compared to those of other adaptive
routing algorithms across all workloads examined. Fast increases the throughput of
an 8 × 8 network by 54, 30, and 16% as compared to DOR, Local, and RCA on a
synthetic traffic profile. On realistic benchmarks, Fast achieves 5% average, and 12%
maximum latency reduction on SPLASH-2 benchmarks running on a 49-core CMP
as compared to the state of the art.

Keywords Adaptive routing · Chip multiprocessor · Congestion estimation ·
Network-on-chip

B Pejman Lotfi-Kamran
plotfi@ipm.ir

1 School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1439-3&domain=pdf


3420 P. Lotfi-Kamran

1 Introduction

Today’s information centric world is powered by processors. The unprecedented
growth of processors’ performance in the past 30years has enabled many useful appli-
cations and services to emerge. Many of these applications and services have inherent
parallelism [4,6,12,46]. Taking advantageof the parallelism in applications, anddriven
by the need to increase performance of processors, the industry and academia have
introduced multi-core processors (e.g., [3,16,18,30,39,43]).

In light of known scalability limitations for crossbar- and bus-based designs, exist-
ingmany-core chipmultiprocessors (CMPs), such as Tilera’s Tile series, have featured
a network-on-chip (i.e., a mesh-based interconnect fabric) and a tiled organization.
Typically, each tile integrates a core, a slice of the shared last-level cache (LLC) with
directory, and a router. The resulting organization enables cost-effective scalability to
high core counts.

In tiled processors, the network-on-chip is responsible to carry cores’ requests for
data and instructions to the LLC, and to bring back the responses to the requesting
cores. As the delay of delivering instructions and data is critical to the performance
of parallel applications, the design of a fast network-on-chip is the subject of many
research activities [1,2,22,25,29,33,34,38,44,45].

One of the key components that has a major impact on the speed of a network-
on-chip is routing algorithm [15,17,23,26,28,31,42]. At each router, the routing
algorithm decides how to route incoming packets to the destinations. The simplest
routing algorithm is dimension order routing (DOR) which statically routes packets
along one of the dimensions before moving to the next one. Static routing algorithms
are simple and have low complexity, but cannot adapt routing decisions to the traffic
in the network, and hence, result in high network delay and low performance under
non-uniform or bursty traffic.

To address the shortcomings of static routing algorithms, researchers have proposed
adaptive routing algorithms. An adaptive routing algorithm associates a congestion
estimate to each output port that a packet can be forwarded to. When a packet can be
routed over more than one output port, an adaptive routing algorithm picks the port
that has the lowest congestion.

A local adaptive routing algorithm uses metrics that are accessible in a router or
in the neighboring routers (e.g., number of free virtual channels (VCs), number of
free slots in the downstream buffer, etc.) to estimate congestion levels of output ports.
Local adaptive routing algorithms reduce latency of the network over static routing
algorithms. However, as they only observe the status of a small fraction of the network,
local adaptive routing algorithms greedily rely on local information to route packets,
and hence, frequently take suboptimal decisions [15].

Global adaptive routing algorithms benefit from global (or regional) metrics to esti-
mate congestion levels of output ports, and hence, can take better decisions. Regional
Congestion Awareness (RCA) [15], which is one of the state-of-the-art global adaptive
routing algorithms, aggregates the congestion estimates of links in a region (e.g., a row
or a column) of a NOC to estimate congestion levels of routers’ output ports. While
using an aggregated congestion estimate enables RCA to improve NOC performance
over local adaptive routing algorithms, existing aggregation methods introduce noise
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Fig. 1 Illustration of the
inefficiency of existing global
adaptive routing algorithms in
estimating the congestion levels
of output ports. The thickness of
a link in the shaded area is
proportional to the traffic
passing through it

into the congestion estimate, and prevent global adaptive routing algorithms to reach
their peak potential.

Figure 1 illustrates the inefficiency of existing global adaptive routing algorithms in
estimating congestion levels of routers’ output ports. Assume thatNode 6 has a packet
that needs to be sent toNode 11.Node 6 can either forward the packet on EAST port to
Node 7, or on SOUTH port to Node 10. A global adaptive routing algorithm combines
the congestion status of the EAST port of Node 6 and 7, and the congestion status
of the SOUTH port of Node 6 and 10 to estimate congestion levels of the EAST and
the SOUTH port, respectively. While the destination of the packet is Node 11, and
definitely, this packet will not pass through the EAST port of Node 7 or the SOUTH
port of Node 10, nevertheless, the congestion status of these ports are part of the
congestion estimates thatNode 6 will use to pick the favorite port. If one of these ports
is congested (e.g., EAST port of Node 7), and consequently, contributes significantly
to the congestion estimate, the global adaptive routing algorithm’s decision will be
suboptimal.

In this paper, we introduce Fast, a global adaptive routing algorithm that eliminates
noise in the process of global congestion estimation. Unlike existing global routing
algorithms that use an identical congestion estimate for all packets that may go through
an output port at a given time, Fast estimates, on a per-packet basis, a congestion level
for each port, taking into consideration the destinations of the packets. Fast uses a
novel mechanism that requires only 1-bit of global information for each router in the
row and column.Wewill show thatFast improves network latency by 5%, on average,
and 12%, at best, over the state of the art on SPLASH-2 benchmarks, while requiring
less hardware overhead.

The rest of this paper is organized as follows. Section 2 presents background infor-
mation on networks-on-chip. Section 3 reviews existing routing algorithms, and Sect. 4
discusses why existing global adaptive routing algorithms cannot reach their peak
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Fig. 2 Organization of a mesh
router

potential. Section 5 introduces Fast global adaptive routing algorithm. In Sect. 6, we
evaluate our proposal for global adaptive routing. Finally, we conclude in Sect. 8.

2 Background

Except for the boundary routers, every router in a 2D mesh has five input/output
ports (four connected to the neighboring routers and one for the local core). Main
architectural elements of a wormhole router includes the input FIFO for each port,
route computation unit, VC allocation unit, crossbar control logic, and the crossbar.
The packet transmission is performed by dividing it to smaller pieces called flits. A
flit enters into the router through one of the ports and is stored in its FIFO. If the flit
is a header, indicating the start of a new packet, it proceeds to the routing unit, which
determines the output port that the packet should use. Then, the header flit attempts to
acquire a virtual channel for the next hop. Upon a successful VC allocation, the header
flit enters the switch arbitration stage, where it competes for the output port with other
flits from the other router input ports. Once the crossbar passage is granted, the flit
traverses the switch and enters the channel. Subsequent flits belonging to the same
packet can proceed directly to the crossbar and go to the output port. The organization
of a router is shown in Fig. 2.

To eliminate the delay of routing from the critical path of a router, researchers
proposed look-ahead routing, in which routing decisions are performed one hop in
advance (i.e., For each packet, a router performs routing decision for the next hop, as
the previous router has already performed the routing for this hop) [13]. The delay of
the routing being off the critical path, researchers proposed dynamic routing methods,
which are more complex, for better distribution of traffic in the network.

The main difference between a static and dynamic router is that, depending on the
network condition, in a dynamic router, the route computation unit may select different
paths at different times for the same source–destination pair. Various factors may be
used for choosing an output port like (1) the number of free VCs, (2) the crossbar

123



Per-packet global congestion estimation . . . 3423

pressure, and (3) the number of free buffers at the corresponding input port in the
downstream router. We use (2) to estimate network condition for adaptive routers as
we experimentally verified that this metric works best across the range of workloads
that we examined (Our results also corroborate prior work [15]).

Packets can be routed in both X and Y directions without restriction, adaptive
routing algorithms need a mechanism to guarantee deadlock avoidance. In networks
having virtual channels (general case), usually the following method, which is called
virtual sub-network, is used to guarantee deadlock avoidance. Virtual channels in
Y dimensions are divided into two parts. The network is partitioned into two sub-
networks called +X sub-network and−X sub-network each having half of the channels
in the Y dimension. If the destination node is to the right of the source, the packet
will be routed through the +X sub-network. If the destination node is to the left of the
source, the packet will be routed through the −X sub-network. Otherwise that packet
can be routed using either sub-network [36].

In this work, we only consider minimal routing algorithms, as they are by far the
most dominant method in the literature and real machine implementations. Investigat-
ing the usefulness of the techniques that we present in this work under non-minimal
routing is part of our future work.

3 Existing routing algorithms

In this section,we review threemain classes of routing algorithms:DOR, local adaptive
routing, and global adaptive routing.

3.1 Dimension order routing (DOR)

The simplest type of routing is static routing, in which the path that a packet travels
is determined only based on the source and the destination of the packet. One of the
widely used static routing mechanism is DOR. Having a static order of the dimensions
(e.g., X, Y, etc.), with DOR, packets are routed to the correct position in the highest-
order dimension before moving to the next dimension.

DOR is easy to implement and has low complexity. However, as network conditions
do not have any roles in the routing decisions, this routing algorithm is incapable of
balancing non-uniform traffic in the NOC. Consequently, DOR leads to large network
latency when traffic is bursty (e.g., traffic of a CMP), and hence, is not well suited for
chip multiprocessors.

3.2 Local adaptive routing

To address the shortcomings of static routing algorithms, researchers proposed using
adaptive routing algorithms. In adaptive routing, the path that a packet travels not
only depends on the source and the destination of the packet, but also on the network
conditions. For this purpose, adaptive routers estimate congestion level of each output
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port. When a packet can be routed over two ports, the port with a smaller congestion
level is taken.

Local adaptive routing algorithms take advantage of metrics that are accessible in a
router to estimate congestion level of an output port. Various metrics have been used
in the literature for estimating congestion level of an output port. The number of free
VCs [7], the number of free buffer slots in the downstream router [23], and the active
demand that each output port experiences (i.e., crossbar demand) [15] are among such
metrics. Corroborating prior work [15], we experimentally verify that the crossbar
demand works best across all of the workloads that we examined.

A local adaptive routing algorithm distributes traffic just by observing the status of
a single router in the downstream path. If a link or router is congested further away, a
local adaptive routing algorithm has no knowledge of it, and hence, cannot avoid the
congested link or router.

3.3 Global adaptive routing

Global adaptive routing algorithms address the shortcoming of local adaptive routing
algorithms by estimating congestion level of a router’s output port, not just by the status
of the router itself, but also by taking into consideration the status of other routers.
For this purpose, a global adaptive routing algorithm requires a monitoring network
to send congestion status among routers. Every router aggregates (takes weighted
average of) its local congestion estimate and that of downstream routers. The resulting
global congestion estimate is being used for the output port selection, and also gets
propagated to upstream routers. Figure 3 shows how in a global adaptive routing
algorithm, congestion status is propagated in the EAST direction [15].

4 Why not existing global adaptive routing algorithms?

Global adaptive routing algorithms have the potential to reduce the network latency
beyond what is possible by local adaptive routing algorithms. However, as mentioned
in the Introduction Section, existing global adaptive routing algorithms cannot reach
their peak potential because they do not estimate congestion level of an output port on
a per-packet basis: congestion estimate of an output port is independent of packets’
destinations. Therefore, it is possible that a further away congested link that is not
on the path to the destination contributes significantly to the congestion estimate,
preventing global adaptive routing algorithms from balancing traffic in NOCs.

Congestion estimate being independent of a packet’s destination, congested links
that are outside the path to the destination may influence the routing decision while
they ideally should not. To quantify the importance of taking into consideration the
path to the destination while estimating congestion level, we count the number of
routing decisions where all congested links are outside the path to the destination but
still influence the routing decision (these congested links should not affect the routing
decision as they are outside the path to the destination but existing global routing
algorithms have no way of identifying such links) and normalize it to the number of
routing decisions where at least one congested link is on the path to the destination.
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Fig. 3 Congestion status flow in
a global adaptive routing
algorithm [15]

Fig. 4 Number ofmisleading global congestion notifications of existing global adaptive routing algorithms,
normalized to the number of useful global congestion notifications across SPLASH-2 benchmarks

Figure 4 shows the results of this experiment across all SPLASH-2 benchmarks. We
consider a link congested if two or more packets compete for that link in a given
cycle. When congested links are NOT on the path to the destination, and links that
are on the path to the destination are not congested, the congestion estimate gets
heavily influenced by the congested links that are outside the path, misleading global
adaptive routing algorithms. Figure 4 shows that the number of such misleading cases
is large across SPLASH-2 benchmarks: on average for every three useful congestion
notifications, there is a misleading one.

Congestion estimation being independent of packets’ destinations, existing global
adaptive routing algorithms are incapable of sifting useful congestion notifications
from misleading ones. As the number of misleading congestion notifications is high,
existing global adaptive routing algorithms cannot fully balance traffic in the network,
missing the opportunity to minimize latency.

5 Fast global adaptive routing algorithm

To exclusively take into consideration the congestion status of links that are on the
path to the destination, a global adaptive routing algorithm should include destinations
of packets in the process of estimating congestion levels of output ports. Destina-
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(a)

(b)

(c)

Fig. 5 Congestion flags of Fast global adaptive routing algorithm in a row of a network-on-chip. a Con-
gestion flags to the node in the middle. b Congestion flags of the node in the middle. c All congestion flags
in a row of a NOC

tions of packets enable global routing algorithms to dynamically include congestion
status of downstream routers that are on the path to the destination in the routing
decision.

Unfortunately, existing global routing algorithms are inherently incapable of selec-
tively excluding congestion status of not-on-the-path-to-the-destination downstream
routers from global congestion status. This is due to the fact that as congestion sta-
tus of downstream routers gets mixed with each other (i.e., the weighted average) to
form global congestion status, it is no longer possible to extract congestion status of
a particular downstream router from the global congestion status.

To address this shortcoming, we rely on concatenation, instead ofweighted average,
to form global congestion status. As with concatenation, the correspondence between
bits in global congestion status and status of downstream routers is preserved, a global
routing algorithm can take advantage of packets’ destinations to dynamically include
congestion status of routers that are on the path to the destination in the routing
decision.

In this work, we associate a 1-bit congestion flag per routers’ output port. This 1-bit
flag is ONE when the port is congested and ZERO otherwise. Each router propagates
its congestion flags to downstream routers in the same row and column. As a result,
every router receives a congestion flag for each router in the same row and column.
Figure 5a shows the congestion flags that a node in the middle of a row receives from
other nodes in the same row.

For every output port, a router propagates the congestion flag of the port to the
neighbor that is connected to the port. The neighbor has access to the congestion flag
(i.e., can use it in the routing process) and also propagates the flag further in the row
or column for the use of other upstream routers. Figure 5b shows the wires that carry
two of the four congestion flags of a node to the rest of the nodes in the same row
(there are other wires propagating the other two congestion flags to the nodes in the
column, but are not shown).
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Every router requires n 1-bit wire segments (i.e., each wire segment connects two
neighboring nodes) to propagate the two congestion flags of EAST and WEST ports
to all the nodes in the row, where n is the number of nodes in the row. Likewise, there
will be another n 1-bit wire segments to propagate the congestion flags of NORTH
and SOUTH ports to all the nodes in the column. In total, we need n × n 1-bit wire
segments in a row (or a column) to propagate all congestion flags of all the nodes in
the row (or the column) as shown in Fig. 5c.

In this work, we introduce Fast, a simple and low-cost global routing algorithm
to demonstrate the potentials of per-packet congestion estimation. Fast leverages the
following heuristic to minimize NOC delays: as links become further away from the
current node, their congestion status becomes less important. The heuristic states that
a congested link near the current router is more important (i.e., has more negative
impact) than a congested link that is further away.

Having the congestion flags of all the routers in the same row and column, the
routing logic can be as simple as the following. If the destination is on the same row
or column as the current node (i.e., there is only one option for routing the packet),
pick the only possible output port. Otherwise, if local congestion metrics favor a port,
pick that port. Otherwise, for every possible output port, calculate the length of the
continuously uncongested path to the destination in the row or column using global
congestion flags. Pick the port with longer uncongested path to the destination.

As a near congested link has more negative impact on performance than a further
away congested link, Fast relies on local congestion metrics to pick the favorite port.
If local congestion metrics do not favor an output port over the other one, Fast uses
global congestion flags to break the tie. Using congestion flags and for each possible
output port, Fast calculates the length of the straight path to the destination that starts
from the output port and ends with the first congested link. Fast picks the output port
that enables a packet to travel more hops before facing a congested link.

The pseudocode of theFast adaptive routing algorithm is shown asAlgorithm1.The
inputs of this algorithm are pos_x, pos_y, diff_x, diff_y, local_x, local_y, g_cong_x,
and g_cong_x. pos_x and pos_y determine the X and Y position of current router.
diff_x and diff_y show both the distance (i.e., the absolute value) to the destination
and the direction (i.e., the sign) of the destination in each of the X and Y dimensions,
respectively. local_x and local_y are the congestion estimates of neighboring routers,
and g_cong_x, and g_cong_y are the global congestion flags of routers in the X and Y
dimensions, respectively.

Line 2 of the pseudocode checks if there are two options for routing the packet. If the
condition does not hold, the control goes to Line 37 and picks the only available option
using standard routing techniques. Otherwise if the condition holds and consequently
two options are available for routing the packet, Line 3 checks if local congestion
metrics (congestion level of neighbors) are different. If they are different, Fast relies
on these localmetrics to route the packet (i.e., no global congestionmetricwill be used).
Otherwise, Lines 6–19 determine the direction and the distance to the destination in
each of the X and Y dimensions. Lines 20–25 count how many hops the packet passes
through on the path to the destination before encountering a congested link in each of
the X and Y dimensions. Finally, Lines 26–35 pick the option (out of the two available
options) in which the packet faces a congested link further away.
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Algorithm 1 Pseudocode of Fast Global Adaptive Routing
1: procedure Fast
2: if ((diff_x <> 0) & (diff_y <> 0)) then
3: if local_x <> local_y then
4: Local adaptive routing based on local_x and local_y
5: else
6: if diff_x > 0 then
7: dist_x ← + diff_x
8: dir_x ← + 1
9: else
10: dist_x ← – diff_x
11: dir_x ← – 1
12: if diff_y > 0 then
13: dist_y ← + diff_y
14: dir_y ← + 1
15: else
16: dist_y ← – diff_y
17: dir_y ← – 1
18: cnt_x ← 0
19: cnt_y ← 0
20: while ((dist_x <> 0) & (g_cong_x[pos_x + cnt_x] == 0)) do
21: cnt_x ← cnt_x + dir_x
22: dist_x ← dist_x – 1
23: while ((dest_y <> 0) & (g_cong_y[pos_y + cnt_y] == 0)) do
24: cnt_y ← cnt_y + dir_y
25: dist_y ← dist_y – 1
26: if cnt_x >= cnt_y then
27: if dir_x == +1 then
28: Pick EAST
29: else
30: Pick WEST
31: else
32: if dir_y == +1 then
33: Pick SOUTH
34: else
35: Pick NORTH
36: else
37: Just one option: pick the only possible direction

5.1 Hardware realization of fast adaptive routing algorithm

In this part,wepropose a hardware implementation forFast adaptive routing algorithm,
and evaluate its critical path delay. To this goal, we suggest a hardware implementation
for computing cnt_x and cnt_y (see Algorithm 1 for details of cnt_x and cnt_y), and
then provide a complete hardware implementation for Fast algorithm using hardware
implementation of cnt_x and cnt_y.

cnt_x and cnt_y store the distance to the first congested link in the X and Y dimen-
sions, respectively. We use a chain of multiplexers to implement this computation.
Figure 6 shows the hardware realization of cnt_x (Hardware realization of cnt_y is
identical). As the chain ofmultiplexers do not take into consideration the destination of
the packet, we take the minimum of the output of the mux-chain and the distance to the
destination as the value of cnt_x (The same is true for cnt_y). The suggested hardware
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Fig. 6 Hardware realization of cnt_x and cnt_y

Fig. 7 Hardware realization of Fast adaptive routing algorithm

realization of cnt_x is simple, because it only requires standard digital components
(2-input multiplexer, 2’s complement, comparator, and sign extractor). Moreover, it is
fast, because it operates on values with few bits (4–8 bits).

Having a hardware realization for cnt_x and cnt_y, the hardware implementation
of the whole Fast routing algorithm is trivial. Figure 7 shows the hardware realization
of Fast routing algorithm. It essentially checks the condition to determine if local or
global routing should be used. In case local routing is appropriate, the output comes
from the standard local router. Otherwise, the output is determined using cnt_x and
cnt_y (the one that is larger wins).

We use detailed technology models to derive component latencies. The worst-case
delay of the routing algorithm happens in a router in the corner of an 8 × 8 network-
on-chip that has the highest number of multiplexers in the mux-chain. At 32 nm
technology, the routing easily fits in one clock cycle for frequencies up to 5 GHz given
the critical-path delay of the Fast routing algorithm.
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While Fast is simple and has low cost, it estimates congestion levels of output ports
on a per-packet basis. Consequently, it can showcase the importance of per-packet
congestion estimation by global routing algorithms.

6 Evaluation

To assess the effectiveness of the proposed routing algorithm (i.e.,Fast), we compare it
against DOR, Local, and RCA (the latter is the state-of-the-art global adaptive routing
algorithm). We use synthetic and real workloads for the evaluation.

6.1 Methodology

Todetermine latency-throughput characteristics,weuse a detailed cycle-accurateNOC
simulator for the virtual channel routers. Each input virtual channel has a buffer (FIFO)
depth of six flits. The congestion threshold value forFast routing is set to two,meaning
that an output port of a router is considered to be congested when at least two packets
compete for the same output port in a given cycle. The per-hop latency for packets
is three cycles and congestion flags can pass one hop in a single cycle (as they do
not need routing or arbitration). In all of the simulations, the latency is measured by
averaging the latency of the packets when each local core generates 10,000 packets.
The routers use the minimally fully adaptive virtual sub-network deadlock avoidance
technique discussed in [36]. Table 1 shows the baseline network configuration, and
the variations used in the sensitivity studies.

6.1.1 Technology parameters

We use publicly available tools and data to estimate the area and energy of global
routing algorithms. Our study targets a 32-nm technology node with an on-die voltage
of 0.9V and a 2-GHz operating frequency.

We use customwiremodels, derived from a combination of sources [2,20], tomodel
links and router switch fabrics. For links, we model semi-global wires with a pitch of

Table 1 Baseline network
configuration and variation

Characteristic Baseline Variation

Topology 7 × 7 2D mesh 4 × 4, 15 × 15

Routing Minimal, fully adaptive,
virtual sub-network
deadlock avoidance

–

Per-hop latency 3 –

VC/port 2 4

Flit buffers/VC 6 –

Packet size (flits) 5 10

Traffic workload Bit-rotate, hotspot,
transpose, uniform

SPLASH-2

Packets/node 10,000 –
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200nm and power-delay-optimized repeaters that yield a link latency of 125ps/mm.
On random data, links dissipate 50 fJ/bit/mm, with repeaters responsible for 19% of
link energy. For area estimates, we assume that link wires are routed over logic or
SRAM and do not contribute to network area; however, repeater area is accounted
for in the evaluation. Our buffer models are taken from ORION 2.0 [21]. We model
flip-flop-based buffers.

6.1.2 Workloads

We evaluate Fast using four standard synthetic traffic patterns: bit-rotate, hotspot 5%,
transpose, and uniform random. These synthetic traffic patterns provide insight into
the relative strengths and weaknesses of the competing routing algorithms.

Moreover, we evaluateFast using traces of SPLASH-2 benchmarks [46]. The traces
are obtained from a 49-core CMP, arranged in a 7 × 7 2D mesh topology [25].

6.2 Synthetic traffic patterns

We evaluate various routing algorithms on a 7× 7 2D mesh network with two virtual
channels using standard synthetic traffic patterns. The packet length is set to five flits.
The packet latency for different traffic profiles are shown in Fig. 8.

6.2.1 Uniform random traffic profile

In this traffic profile, every node sends packets to other nodes while using a uniform
distribution to construct the destination set of packets [27]. Figure 8a shows the average
communication delay as a function of the average packet injection rate. For this traffic
profile, DOR, RCA, and Fast routing algorithms lead to lower latencies (uniform
traffic is balanced under DOR routing [15]).

6.2.2 Hotspot traffic profile

The same as uniform random, each node sends packets to other nodes in the network.
But nodes at positions (3, 3), (3, 5), (5, 3), and (5, 5) receive 5% more packets . The
average communication delays as a function of average packet injection rate for this
traffic pattern are shown in Fig. 8b. For this traffic pattern, adaptive routing algorithms
perform much better than DOR, while Fast and RCA leading to the lowest latencies.
This is due to the non-uniform nature of the traffic pattern.

6.2.3 Transpose traffic profile

In transpose traffic profilewithin an n×nmesh network, a node at position (i, j)(i, j ∈
[0, n−1)) only sends packets to the node at position (n− i −1, n− j −1). This traffic
pattern is similar to the concept of transposing a matrix [14]. This traffic profile leads
to a non-uniform traffic distribution with heavy traffic in the center of the mesh. As
the results shown in Fig. 8c reveal, if the packet injection rate is very low, the routing
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(a) (b)

(c) (d)

Fig. 8 Latency versus packet injection rate for DOR, Local, RCA, and Fast on a 7× 7 2D mesh with two
virtual channels per port and 5-flit packets. a Uniform random traffic, b hotspot 5% traffic, c transpose
traffic, and d bit-rotate traffic

techniques behave similarly. As the injection rate increases and links get congested,
the Fast and RCA routing algorithms lead to smaller average delays, with Fast being
the absolute best.

6.2.4 Bit-rotate traffic profile

In an n × n mesh network, a node at position (i, j)(i, j ∈ [0, n − 1)) is assigned
an address i ∗ n + j . In bit-rotate traffic profile, a node with address s sends packets
only to the node with address d, where di = si+1 mod n . This traffic profile leads to a
non-uniform traffic distribution. With this traffic profile, Fast routing algorithm leads
to the lowest latencies, beating DOR, Local, and RCA.

6.3 Sensitivity analysis

In this section, we change some of the NOC parameters to evaluate the sensitivity of
the routing algorithms to the change in the network parameters.

6.3.1 NOC size

Figures 9 and 10 show the latency versus packet injection rate for a small (i.e., 4× 4)
and a large (i.e., 15 × 15) mesh NOC under the hotspot 5% (9a, 10a), and transpose
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(a) (b)

Fig. 9 Latency versus packet injection rate for DOR, Local, RCA, and Fast on a 4× 4 2D mesh with two
virtual channels per port and 5-flit packets. a Hotspot 5% traffic, and b transpose traffic

(a) (b)

Fig. 10 Latency versus packet injection rate for DOR, Local, RCA, and Fast on a 15 × 15 2D mesh with
two virtual channels per port and 5-flit packets. a Hotspot 5% traffic, and b transpose traffic

(9b, 10b) traffic profiles with 5-flit packets. For hotspot 5%, nodes at positions (1, 1),
(1, 2), (2, 1), and (2, 2) for the 4 × 4, and nodes at positions (3, 3), (3, 12), (12, 3),
and (12, 12) for the 15× 15 mesh receive 5% more traffic. For the small network, the
results in Fig. 9 show that Fast performs very well on Hotspot 5%, achieving 42%
and 26% better throughput than DOR and Local and slightly exceeding that of RCA.
On transpose traffic profile, Fast is 6% better than Local and DOR and slightly better
than RCA. On smaller networks, Fast provides excellent visibility into the congestion
state of the network.

For the large network (i.e., Fig. 10), adaptive approaches do not perform as well
versus DOR. This is due to the fact that noise in congestion estimate is increased.
However, under both traffic profiles, Fast, which eliminates noise, is the absolute best
routing algorithm, with RCA and DOR being the second and third, respectively.

6.3.2 Packet length

Figure 11 shows load-latency graphs for long packets (i.e., packets that are 10 flits
long) in a 7 × 7 2D mesh under the hotspot 5% (11a), and transpose (11b), traffic
profiles. The average packet latencies for all routing algorithms are higher than those
of short packets. The increased latency is a known characteristic of wormhole routing
with long packets. The reason is that for long packets, an imbalance in the resource
utilization occurs because packets are likely to hold resources over multiple routers.
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(a) (b)

Fig. 11 Latency versus packet injection rate for DOR, Local, RCA, and Fast on a 7× 7 2D mesh with two
virtual channels per port and 10-flit packets. a Hotspot 5% traffic, and b transpose traffic

(a) (b)

Fig. 12 Latency versus packet injection rate for DOR, Local, RCA, and Fast on a 7 × 7 2D mesh with
four virtual channels per port and 5-flit packets. a Hotspot 5% traffic, and b transpose traffic

Similar to the case of 5-flit packets, Fast routing algorithm performs the best under
both traffic profiles, with RCA and Local being the second and third, respectively.

6.3.3 Network with four virtual channels

Figure 12 shows latency versus packet injection rate for DOR, Local, RCA, and Fast
routers with four virtual channels. In this case, we consider a 7 × 7 2D mesh with
5-flit packets. As the results show, Fast continues to perform better than other routing
algorithms in a network with four virtual channels.

6.4 SPLASH-2 benchmarks

Figure 13 shows the average packet latency of Fast routing algorithm across
SPLASH-2 benchmarks, normalized to RCA. Contention is the cause of significant
packet latency in barnes, lu, ocean, and water-nsquared; thus global adaptive rout-
ing algorithms have an opportunity to improve performance. Although Fast provides
equal or lower latency than RCA for all benchmarks, the greatest benefit is on ocean
with over 12% reduction in latency. On average, Fast provides a latency reduction of
5% across all benchmarks, and 10% across contended benchmarks versus the state of
the art.
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Fig. 13 Average latency of Fast across SPLASH-2 benchmarks normalized to the latency of RCA

6.5 Hardware overhead

RCA requires nine bits of information per output port to propagate global congestion
status to upstream routers, and Fast only requires an average of three bits per port.
Consequently, Fast requires 3× fewer wires for global congestion propagation, which
represents a 8% reduction in the number of wires for a 64-bit flit network.

The 8% reduction in the number of wires is important for wire-intensive designs
that are wire limited. But, as most of the area of a mesh network is due to the buffers
and crossbars, in absolute terms, the difference between the area of RCA and Fast is
small (1.29 versus 1.27mm2).

6.6 Power dissipation

Our analysis confirms findings of prior work that CMP NOC is not a significant con-
sumer of power at the chip level [24,29]: NOC power is below 1W under SPLASH-2
workloads. Good L1 cache performance is the main reason for the low power con-
sumption at the NOC level.

7 Related work

In [19], a static routing algorithm for two-dimensional meshes which is called XY is
introduced. In this routing algorithm, each packet first travels along the X and then the
Y direction to reach the destination. For this method, deadlock never occurs but no
adaptivity exists in this algorithm. An adaptive routing algorithm named turn-model is
introduced in [14] based on which another adaptive routing algorithm called OddEven
turn is proposed in [5]. To avoid deadlock, OddEven method restricts the position that
turns are allowed in the mesh topology. Another algorithm called DyAD is introduced
in [17]. This algorithm is a combination of a static routing algorithm called oe-fix,
and an adaptive routing algorithm based on the OddEven turn algorithm. Depending
on the congestion condition of the network, one of the routing algorithms is invoked.
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Another adaptive routing is hot potato or deflection routing [11,35,37] which is
based on the idea of delivering a packet to an output channel at each cycle. If all
the channels belonging to minimal paths are occupied, then the packet is misrouted.
When contention occurs and the desired channel is not available, the packet, instead
of waiting, will pick any alternative available channels (minimal or non-minimal) to
continue moving to the next router; therefore, the router does not need buffers. In
hot potato routing, if the number of input channels is equal to the number of output
channels at every router node, packets can always find an exit channel and the routing
is deadlock free. However, livelock is a potential problem in this routing. Also, hot
potato increases message latency even in the absence of congestion and bandwidth
consumption. Accordingly, performance of hot potato routing is not as good as other
wormhole routing methods [8].

There are adaptive routing algorithms for increasing fault tolerance of the on-chip
network. Stochastic communicationmethod has been proposed to deal with permanent
and transient faults of network links and nodes [9]. This method has the advantage of
simplicity and low overhead. The selection of links and of the number of redundant
copies to be sent on the links is stochastically done at runtimeby the network routers.As
a result, the transmission latency is unpredictable and, hence, it cannot be guaranteed.
Also, stochastic communication is not efficient in terms of power dissipation and
latency.

A local adaptive deadlock-free routing algorithm called Dynamic XY (DyXY) has
been proposed in [26]. In this algorithm, which is based on the static XY algorithm, a
packet is sent either to the X or Y direction depending on the congestion condition. It
uses local informationwhich is the current queue length of the corresponding input port
in the neighboring routers to decide on the next hop. It is assumed that the collection
of these local decisions should lead to a near-optimal path from the source to the
destination. The main weakness of DyXY is that the use of the local information in
making routing decision could forward the packet in a path which has congestion
in the routers farther than the current neighbors. The technique described in [15]
overcomes this problem. It uses global information in making a routing decision. The
technique requires a mechanism to mix local and global congestion information. The
main problem of this work, as is discussed in this paper, is the lack of correspondence
between a router in the downstream path and the global congestion value.Fast resolves
this problem by having a dedicated single-bit congestion wire for each router in the
downstream path. Several other techniques also attempted to address this problem [10,
31,32,40,41], but they either use low-cost mechanism which cannot reach the full
potential of global adaptive routing [31] or significantly increase the complexity and
hence the hardware overhead of the routers [10,32,40,41]. In this work, we showed
that by using a few wires in a smart way, a low-cost fast adaptive routing algorithm
for networks-on-chip emerges.

8 Conclusion

Chipmultiprocessors require fast networks-on-chip tomaximize performance. A rout-
ing algorithm is one of the key components that influences network’s latency. A
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static/local adaptive routing algorithm has no/limited visibility into the network, and
hence, cannotminimize network’s latency.A global routing algorithm,which hasmore
visibility into the network, is an alternative that has the potential to minimize latency
and maximize performance. One of the key components of a global routing algorithm
is congestion estimation unit, which measures the likelihood of a packet experiencing
congestion if it gets forwarded to a particular router’s output port. Unfortunately, exist-
ing congestion estimation units ignore destinations of packets, and hence, introduce
noise into the congestion estimate, preventing existing global routing algorithms from
minimizing network’s latency.

This work introduced Fast, a global adaptive routing algorithm that does conges-
tion estimation on a per-packet basis. Fast benefits from a low-cost congestion status
network (1-bit per port) that informs upstream routers of congestion in downstream
routers. Taking advantage of the congestion status network,Fast dynamically forwards
packets to output ports, where the first congested link is further away. We showed that
while Fast requires fewer wires, and hence silicon area, it reduces network’s latency
by up to 12% over the state-of-the-art global adaptive routing algorithm.
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