
J Supercomput (2015) 71:3037–3053
DOI 10.1007/s11227-015-1426-8

Multi-step-ahead host load prediction using
autoencoder and echo state networks in cloud
computing

Qiangpeng Yang1 · Yu Zhou1 · Yao Yu1 ·
Jie Yuan1 · Xianglei Xing2 · Sidan Du1

Published online: 19 April 2015
© Springer Science+Business Media New York 2015

Abstract Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources that
can be rapidly provisioned and released with minimal management effort or service
provider interaction. There are many proposals for resource management approaches
for cloud infrastructures, but effective resource management is still a major challenge
for the leading cloud infrastructure operators (e.g., Amazon, Microsoft, Google),
because the details of the underlying workloads and the real-world operational
demands are too complex. Among those proposals, accurate host load prediction is one
of the most effective measures to address this challenge. In this paper, we proposed a
new method for host load prediction, which uses an autoencoder as the pre-recurrent
feature layer of the echo state networks. The aim of our proposed method is to predict
the host load in the future interval based on Google cluster usage dataset. Experiments
performed on Google load traces show that our proposed method achieves higher
accuracy than the state-of-the-art methods.

Keywords Host load prediction · Autoencoder · Echo state networks

B Qiangpeng Yang
yqp0424@gmail.com

Yu Zhou
nackzhou@nju.edu.cn

1 School of Electronic Science and Engineering, Nanjing University, Nanjing, China

2 Harbin Engineering University, Harbin, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1426-8&domain=pdf


3038 Q. Yang et al.

1 Introduction

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction [18]. A cloud is a type of
parallel and distributed system, which means the ability to run a program or applica-
tion on many connected computers at the same time. Although cloud computing has
beenwidely adopted by industries, many existing issues have not been fully addressed,
whereas new challenges [28] continue to emerge from industry applications such as
dynamic resource provisioning [23], virtual machine migration [19], server consoli-
dation and energy management [8].

There have been many proposals for resource management approaches for cloud
infrastructures, but effective resource management is still a major challenge for the
leading cloud infrastructure operators (e.g., Amazon, Microsoft, Google), because the
details of the underlying workloads and the real-world operational demands are too
complex. The large-scale distributed applications on a cloud require service-based
software, which has the ability of monitoring the system status changes, analyzing
the acquired information, and adapting its service configuration while considering
tradeoffs among multiple QoS features simultaneously [14]. In distributed systems,
we often use some host load monitor tools to record the host load data as a time series
[26]. The aim of this work is to predict the host load in the future interval based on
the information obtained from the past load traces. In distributed systems, predicting
the host load in advance can benefit resource allocation, improve resource utilization
and enable the system to take prompt actions.

In 2011, Google released a substantial cluster usage dataset which used Run-time
Monitor (RTM) to monitor the characteristics of the hosts at run time. As cloud envi-
ronment is likely to be constructed from a variety of machine classes and heterologous
applications, the Google cluster trace lacks precise information about the purpose of
jobs and configuration of machines. Thus, we cannot use these information to infer
what is running. Nevertheless, we could predict the host load in the future interval
using the information of the past load trace.

In this paper, the load trace provided by Google has been used as our experimental
dataset. Most of the studied cluster load traces have fallen into one of three follow-
ing categories: long-running services, DAG-of-task systems and high-performance
(or throughput) computing [20], while the Google cluster trace captures a range of
behaviors that includes all the above categories, among others. To cope with such a
mixture of these and other categories, we proposed a new approach for host load pre-
diction. In our approach, we choose echo state network (ESN) as our basic prediction
model, which is a kind of recurrent neural network (RNN) belonging to a collection of
techniques called Reservoir Computing [13]. To achieve a better representation of the
inputs, we introduce an autoencoder to learn the higher level feature of the input data
instead of using the data directly. The pre-recurrent feature layer can further capture
the similarity between load traces.

The rest of the paper is organized as follows. The related work is presented in
Sect. 2. Section 3 describes the unsupervised feature learning algorithm. And the

123



Multi-step-ahead host load prediction. . . 3039

comparison between RNN and ESN is discussed in Sect. 4. In Sect. 5, we give the
details of our proposed approach. Afterwards, Sect. 6 presents the experimental results
and comparison. Finally, we conclude our work in Sect. 7.

2 Related work

Host load prediction has received focus from researchers for a long time due to its
potential profits. Many previous efforts have been made toward the host load in tra-
ditional Grids or HPC systems. Akioka et al. [1] combined the Markov model and
seasonal analysis to predict the host load for one-step-ahead in a computational Grid.
Wu et al. [25] used a hybrid model for multi-step-ahead host load prediction, which
combined the autoregressive (AR) model and a Kalman filter. Duy et al. [6] applied
an artificial neural network (ANN) to the task of host load prediction. Among these
methods, ANN is the most widely used approach to analyze the stochastic nonlinear
system and show good performance in traditional distributed system.

However, according to the comparison of workloads between Cloud and Grid [4],
the average noise in a Cloud is approximately 20 times larger than the average noise
in a Grid. Therefore, predicting the host load in a Cloud is more complicated than
that in a Grid. Many traditional methods for time series mining have been evaluated in
Cloud, such as Linear Regression [8] and Auto Regressive IntegratedMoving Average
[29]. But these methods achieve limited accuracy when they are applied to the cloud
environment.

Di et al. [5] first used the Bayesian model to predict the host load in a Cloud. They
proposed 9 novel features to characterize the recent load fluctuation in the evidence
window and could predict the mean load over consecutive time intervals. However,
their method has two limitations. The first is that the training period in evaluation
type B should contain the test period, which is not suitable for the cloud environment.
The other is that they used an exponentially segmented pattern, which means that the
length of the segment increases exponentially. With the growth of the segment length,
the mean load cannot fully reflect the fluctuation of the host.

In [27], the authors combine the Phase Space Reconstruction (PSR) and Group
Method of Data Handling method based on Evolutionary Algorithm (EA-GMDH) for
host load prediction. The PSRmethod is used to reconstruct the load trace from single-
dimensional time series to a multi-dimensional phase space, and the time series after
reconstruction are used as the input of the EA-GMDH network. The prediction perfor-
mance of thismethod is closely related to the parameters they chose, as the evolutionary
algorithm is a stochastic global search method which may fall into local optima.

ESN is a rather recent development in the field of RNN and it lead to a fast,
simple and constructive algorithm for supervised training of RNN. The basic idea
of ESN is to use a large reservoir RNN as a supplier of interesting dynamics from
which the desired output is combined. This idea has been independently discovered
and investigated under the name of liquid state machines by Wolfgang Maass and
collaborators [17]. The philosophy adopted in Reservoir Computing is to consider the
recurrent layer as a large reservoir of nonlinear transformations of the input data and
decouple the learning of parameters inside and outside the reservoir.

123



3040 Q. Yang et al.

Unsupervised feature learning refers to a class of machine learning techniques,
developed rapidly since 2006, where many stages of nonlinear information processing
in hierarchical architectures are exploited for pattern classification. Recently, unsu-
pervised feature learning technologies have been successfully used in many research
areas, such as handwritten digit images recognition [9], visual object classification
[21] and nature language process [10]. After initializing the deep neural network with
unsupervised feature learning algorithms [e.g., autoencoder, matrix factorization and
restricted Boltzmann machines (RBM)], the weights are starting at a better location
in parameter space than if they had been randomly initialized [22]. Because the deep
neural network can also be considered to perform feature learning, since they learn
a representation of their input at the hidden layers which is subsequently used for
classification or regression at the output layer.

In this paper, we propose a new framework which adds a pre-recurrent feature
layer to the conventional ESN. The intuition that led into the feature learning layer is
that by capturing the similarity between load traces, similar traces will have similar
trajectories in the reservoir state space. The feature learning algorithm we used is an
autoencoder neural network, because it is simple to implement and achieves satisfac-
tory performance. We give more details about the Autoencoder in Sect. 3, and discuss
the update of the weights of feature matrix in Sect. 5.2.

3 Autoencoder

An autoencoder neural network is an unsupervised learning algorithm that sets the
target values to be equal to the inputs, which means the autoencoder tries to learn
a function f (x) ≈ x . In other words, it is trying to learn an approximation to the
identity function, so that the output x̂ is similar to x . By applying constraints on the
network, such as by limiting the number of hidden units or the average activation of the
hidden units, we can discover high-level features of the input data. According to recent
research [9,10,22], the features learned automatically can improve the accuracy of the
classification and regression tasks comparing with the features designed manually.

The input of the autoencoder neural network is a set of n unlabeled examples
x (1)
u , x (2)

u , . . . , x (n)
u , where each x (i)

u ∈ R
n is an example of the host load in the history

window in our approach. Subscript u here indicates that it is an unlabeled example. The
unlabeled data are used to learn a slightly higher level, more succinct representation
of the inputs.

The network architecture is shown in Fig. 1. We denote the input host load by x and
the network reconstruction by x̂ = f (W(2) f (W(1)x+b(1))+b(2)), whereW(1),W(2)

are the weights, b(1), b(2) are the bias terms, and f (·) is the activation function in the
form of:

f (z) = 1

1 + exp(−z)
(1)

The middle layer of the network is called hidden layer h, whose output is a new rep-
resentation of the inputs. To remove the constraint of the number of hidden units,
autoencoder impose a sparsity constraint on the hidden units. As a result, the autoen-

123



Multi-step-ahead host load prediction. . . 3041

Fig. 1 Autoencoder network with input host load x (left) and reconstructed host load x̂ (right)

coder still can discover high-level features in the data effectively, even if the number
of hidden units is large.

Therefore, the optimization problem is to calculate the weights and bias item by
minimizing the cost function J (W, b), whose form is as follows:

J (W, b) = 1

n

n∑

i=1

(
1

2

∥∥∥ fW,b(x
(i)) − y(i)

∥∥∥
2
)

+λ

2

2∑

l=1

sl∑

i=1

sl+1∑

j=1

(
W(l)

j i

)2 + β

s2∑

j=1

KL(ρ‖ρ̂ j ) (2)

The first term in cost function is to ensure each input x (i)
u to be reconstructed well

by minimizing the average squares error, the second term is a regularization term that
prevents overfitting, sl is the number of the units in layer l, while the third term is to
restrict that the activations to be sparse, which means most of the activations to be
zero. In the third term,

ρ̂ j = 1

m

m∑

i=1

a(2)
j (x (i)) (3)

which indicates the average activation of hidden unit j , where a(2)
j (x (i)) is the

activation of the hidden unit j and ρ is the sparsity parameter. KL(ρ‖ρ̂ j ) is the
Kullback–Leibler (KL) divergence [15], and can be derived by

KL(ρ‖ρ̂ j ) = ρ log
ρ

ρ̂
+ (1 − ρ) log

1 − ρ

1 − ρ̂
(4)

KL divergence is a standard function for measuring how different two distributions
are, and the function has the property that KL(ρ‖ρ̂ j ) = 0 if ρ̂ j = ρ, and otherwise it
increases monotonically as ρ̂ j diverges from ρ.

123



3042 Q. Yang et al.

Fig. 2 The recurrent neural network

4 Echo state network

4.1 Recurrent neural network

RNN is an ANNwith internal loops, which is an expressive model for sequence tasks.
At each time step, the RNN receives an input, updates its hidden state, and makes
a prediction, which is shown in Fig. 2. The RNN is powerful because it has a high-
dimensional hidden state with nonlinear dynamics that enables it to remember and
process past information. Even if the nonlinearity used by each unit is quite simple,
iterating it over time leads to very rich dynamics.

The standard RNN is formalized as follows: given a sequence of input vectors
(x1, x2, . . . , xn), the RNN computes the hidden states (h1,h2, . . . ,hn) and the outputs
(y1, y2, . . . , yn) using the following equations:

ht = f (Winxt + Wht−1) (5)

yt = Woutht (6)

where t = 1, 2, . . . , n,Win,W,Wout are input-hidden, hidden-hidden, hidden-output
connection’ matrices.

The training algorithm of RNN is known as the back-propagation through time
(BPTT) [24] method. The RNN is unfolded through time. Then back-propagation
training is used to update theweights. However, Hochreiter [11] andBengio [2] proved
that the gradient decays exponentially as it is back-propagated through time, and argued
that RNN cannot learn long-range temporal dependencies when gradient descent is
used for training.

4.2 Echo state network

ESN [13] is a new RNN architecture, based on a rich reservoir of potentially interest-
ing behavior. The reservoir of ESN is the recurrent layer formed of a large number
of sparsely interconnected and randomly initialized recurrent layer composed of huge

123



Multi-step-ahead host load prediction. . . 3043

Fig. 3 The basic architecture of ESN

number of standard sigmoid units. Only output connections are modified during learn-
ing process. A significant advantage of this approach over standard RNN is that simple
linear regression algorithms can be used for adjusting output weights. This is a much
easier learning task and it works surprisingly well provided the recurrent connections
are carefully initialized so that the intrinsic dynamics of the network exhibits a rich
reservoir of temporal behaviors that can be selectively coupled to output.

The architecture of ESN used in this paper is shown in Fig. 3. A large RNN is
used as a dynamic reservoir, which can be excited by suitably presented input and/or
feedback output. The training algorithm of an ESN consists of the following steps:

(a) Generate a RNN randomly

The input-hidden matrix Win and hidden-hidden matrix W are generated randomly.
Once they have been generated, they will not change during the entire training process.

Only when a RNN has the “echo state property” [12] it can be used for dynamic
system modeling. Echo state property means for each internal unit hi there exits an
echo function ei such that the current state can be written as hi = ei (xt , xt−1, . . .),
the network state is an “echo” of the input history. The recent input presented to the
network has more influence to the network state than an older input, the input influ-
ence gradually fades out. Echo states are crucial for successful operation of ESN, their
existence is usually ensured by rescaling recurrent weight matrixW to specified spec-
tral radius λ. This can be achieved by simply multiplying all elements of a randomly
generated recurrent weight matrix with λ

λmax
, where λmax is the spectral radius of the

original matrix.

(b) Feed the training data to the ESN

When the input units are fed to ESN, they will activate dynamics within the dynamic
reservoir. At each time step, the internal dynamic reservoir states are computed accord-
ing to Eq. (5). Then, we collect the input units xi and hi together as the i-th row of
a matrix M at each time step. Meanwhile, the output data are collected into another
matrix T.

(c) Wash out the initial memory of the dynamic reservoir

123



3044 Q. Yang et al.

Since the arbitrarily generated network states contain an initial memory which is not
caused by the input, it is assumed that the effects of the arbitrary starting state have
died out. So we only keep a part of matrix M and T, the new matrices denoted as
Mforget and Tforget.

(d) Compute output weights

The output weights can be derived by the following equation:

WT
out = pseudoinverse(Mforget) · Tforget (7)

The reasons we chose ESN as our basic model are based on the following consid-
eration:

– ESNs can be trained very fast because they just fit a linear model [16].
– ESNs work surprisingly well if we initialize weights carefully.
– ESNs can do impressive modeling of one-dimensional time series.

5 Our approach

In traditional ESNs, the reservoir constructs a representation of the input data by
applying a complex nonlinear transformation to the input data. To achieve a better
representation of the inputs, we introduce the autoencoder to learn the higher level
feature of the input data instead of using the data directly. The intuition that led to the
introduction of the autoencoder is that by capturing the similarity between load traces,
similar traces will have similar trajectories in the reservoir state space. For example,
if two load traces appear in similar context, most of the time they will have similar
features and share the same function.

Another advantage of extracting features from the input data before feeding it to
the reservoir is that the feature vectors of dimension is smaller than the input vector,
which will reduce the computational complexity.

5.1 Model definition

The architecture of our approach is shown in Fig. 4. Suppose we have the input data
x = (x1, x2, . . . , xn), the equations describing the network are:

ht = f (Win · W f · xt + W · ht−1) (8)

yt = Wout · ht (9)

where ht is the output of the hidden units, f is the hidden units activation function,
W f , Win, W, and Wout are input-feature, feature-hidden, hidden-hidden, hidden-
output connections’ matrices, respectively.

Initialization strategies based on unsupervised pretraining of each layer have been
shown to be important both for supervised and unsupervised training of deep architec-
tures [3]. After initializing the deep neural network with unsupervised feature learning

123



Multi-step-ahead host load prediction. . . 3045

Fig. 4 Echo state network with
an autoencoder

algorithms, the weights are starting at a better location in parameter space than if they
had been randomly initialized. The ESN corresponds to a very deep architecture when
unfolded in time, so we should ensure the quality of the learned weight matrices. It is
found that initializingW f with a trained autoencoder yields less noisy filters according
to our experiments. The other matrices are initialized to small random values.

5.2 Details of gradient descent

The input-feature matrix W f is learned by minimizing the cost function C of every
load traces in the training set. At each time step, the prediction of the network yt is
compared to the real load rt ,

C = 1

2

n−1∑

t=1

(yt − rt )T(yt − rt ) (10)

To make the derivation of the learning procedure clearer, we briefly derive the
matrix formulation of back-propagation through time. Considering the ESN with a
load trace of length n (x = (x1, x2, . . . , xn)), the equations describing the unrolled
ESN are as follows,

ft = W f xt (11)

at = Wht−1 + Winft (12)

ht = f (at ) (13)

yt = Woutht (14)

123



3046 Q. Yang et al.

According to gradient descent, each weight change in the network should be pro-
portional to the negative gradient of the cost with respect to the specific weight we are
interested in modifying.

�W = −η
∂C

∂W
(15)

The gradient ofC with respect to the parameters of the autoencoder can be estimated
as the following equations,

∂C

∂W f,t
= ∂C

∂ft

∂ft
∂W f,t

= ∂C

∂ft
xt (16)

∂C

∂ft
= ∂C

∂at

∂at
∂ft

= ∂C

∂at
Win,t (17)

The gradient of C with respect to ft can be rewritten in the matrix form:

∇ft C = (Win)
Tδt (18)

where δt = ∂C
∂at

. The δt is usually called the error item at time t , and can be expressed
using δt+1.

δt = ∂C

∂at

= ∂C

∂at+1

∂at+1

∂ht

∂ht
∂at

= ∂C

∂at+1
W f

′
(at )

= δt+1W f
′
(at ) (19)

6 Performance evaluation

6.1 Dataset and parameters

To evaluate our approach, a dataset containing information of the host in Google data
center [7] has been employed. The most studied cluster workloads have fallen into
one of the three following categories [20]:

– long-running services: servers that require a certain amount of resources (usually
CPU resource) to achieve acceptable performance and run indefinitely.

– DAG-of-task systems: MapReduce-like systems that run many independent short
tasks that are assumed to CPU bound or I/O bound.

– high-performance (or throughput) computing: batch queuing systems that typically
run CPU-bound programs can usually tolerate substantial wait times, and often
require many machines simultaneously for a long period of time.

Eachof these categories brings different challenges to resourcemanagement.Unlike
the most previous clusters which have not been faced with the diverse workloads of

123



Multi-step-ahead host load prediction. . . 3047

multi-propose clouds, the Google cluster trace tends to capture a range of behaviors
that includes all the above categories, among others. The Google cluster traced over
670,000 jobs and over 40 million task events across about 12,000 machines over
1-month period. The trace lacks precise information about the purpose of jobs and
configuration of machines. The resource (RAM and CPU) information in the trace has
already been normalized to [0, 1].

In our experiment, we only predict the CPU load. Because CPU load is a vivid
aspect to exhibit the request and usage of resources. The fluctuation of CPU load can
indicate the application execution process, while high CPU load will considerably
slow down the host. And the prediction of CPU load is more challengeable comparing
to the memory load, the fluctuation of CPU load is more drastic [5]. To apply our
proposed method, we split Google’s 29-day trace data into three sets. A training set
which is used to update the feature weights and the output weights, a validating set
which is used to prevent overfitting and a predicting set which is used to evaluate our
proposed method.

To achieve best prediction performance, some important parameters should be cho-
sen. The most important parameters concerned in feature extraction are the number
of hidden units hiddenSize and the sparsity of the hidden units sparsityParam, which
are estimated according to the reconstruction error. The optimal values of these para-
meters that computed using the tenfold cross-validation method. According to the
experimental results in Fig. 5, the hiddenSize and sparsityParam, for the minimum
reconstruction error, are 200 and 0.1, respectively.

The parameters of ESN are also selected by the cross-validation method. Input
connection weights Win are set to small random values sampled from a uniform
distribution between [−0.1, 0.1]. The reservoir matrix W is rescaled to a spectral
radius of 0.1, thus ensuring the echo state property. The size of the reservoir layer

Fig. 5 The reconstruction errorwith differenthiddenSize and sparsityParam. The axishiddenSize represents
the number of hidden units of autoencoder, while the axix sparsityParm represents the sparsity constraints
of hidden units. The minimum reconstruct error is achieved when the number of hidden units is 200 and
the sparsity constraints is 0.1

123



3048 Q. Yang et al.

Fig. 6 The MSE as a function of the reservoir size. Different color of the curves indicates the different
prediction length

is far important than in a traditional RNN at a similar level of performance. In our
experiment, we chose the reservoir size by minimizing the MSE of the load traces in
the validation set, where MSE is defined as Eq. (20). According to Fig. 6, we set the
reservoir size to 100.

MSE = 1

T

T∑

i=1

(yi − ri )
2 (20)

6.2 Performance evaluation

6.2.1 Methods for comparison

To show the effectiveness of our proposed method, we also rigorously and compre-
hensively implemented three other load prediction methods. The parameters of these
baseline methods are chosen to achieve the best performance which are shown in
Table 1. Some details are given as follows:

– Auto regressive method (AR): the classic AR method is performed according to
Eq. (21), where y(t), ai , xi and εt refer to the predicted value, the coefficient, the
history value and the noise at time t , respectively.

y(t) =
n∑

i=1

ai xi + εt (21)

In general, the AR method can only predict the load value for the next moment,
while previous works extended it to long-term point prediction by applying the
AR method recursively on the predicted values.

123



Multi-step-ahead host load prediction. . . 3049

Table 1 Optimized parameters for the baseline methods

Methods Key parameters Values

AR Order of AR 7

ANN Input size 20

Hidden size 10

Learning rate 0.1

PSR+EA-GMDH Maximum generation 60

Population size 40

Crossover rate 0.9

Mutation rate 0.1

Number of layers 4

Number of neurons of each layer 9,6,3,1

Number of inputs to be selected 2–4

Polynomial type 1–3

Our method Hidden size 200

Sparsity constraint 0.1

Input scaling 0.1

Spectral radius 0.1

Reservoir size 100

Learning rate 0.01

Momentum 0.9

– ANN [6] method: the ANN method uses the load in the history window as the
input vector, and the load in the future interval as the output vector. After training
the network, the model it learned will be used for host load prediction.

– Bayes [5] method: the aim of Bayes method is to predict the vector of the load
values, denoted by l = (l1, . . . , ln)T, each of which represents the mean load value
over a particular segment. According to Di [5], the Bayes method we applied is the
best strategy using MMSE-BC with the single feature Fml based on the evaluation
type A.

– PSR+EA-GMDH method [27]: this method combines the PSR method and
EA-GMDH method. The PSR is used to reconstruct the load trace from single-
dimensional time series to a multi-dimensional phase space, and the time series
after reconstruction are used as the input of the EA-GMDH network.

6.2.2 Experimental results

We evaluated the accuracy of the prediction result by the mean squared errors (MSE),
defined as Eq. (20), where T is the length of the prediction step, yi and ri are the
predicted and real values, respectively. To compare our proposed method with the
Bayes method [5], we use our proposed method to predict the mean host load which
is quantified using the mean segment squared error (MSSE) [5]. The MSSE is defined
as follows:

123



3050 Q. Yang et al.

Fig. 7 Comparison of the conventional ESN and our proposed model

MSSE(s) = 1

s

n∑

i=1

si (li − Li )
2 (22)

where s1 = b, si = b · 2i−2, s = ∑n
i=1 si , si is the separate segment; li and Li are

the predict value and real value, respectively; n is the total number of segments in the
prediction interval. More details are presented in [5].

First, we compared our proposed method with the conventional ESN. According
to Fig. 7, the addition of the feature layer improved the prediction accuracy. The
introduction of the unsupervised feature learning layer before the recurrent layer
leads to a novel organization of the reservoir activation pattern. The features can
better capture the similarity between load traces, and therefore allow separating more
sharply the activations corresponding to different load traces. In Fig. 7, it is also
noted that although the prediction error increases with the prediction length increases,
our proposed method can still get a satisfactory performance the prediction length
is 3h ahead (The interval of Google load trace is 5min, so 3h ahead is 36 steps
ahead).

Figure 8 shows the comparison of our method and the methods we mentioned in
Sect 6.2.1 in actual host load prediction. As the Bayes method can only predict the
mean host load, we do not compare our method with Bayes method in this case.
The x-axis in the Fig. 8 represents the value of MSE, while the y-axis represents
cumulative distribution function (CDF) of MSE. The results show that our proposed
method outperforms the others in terms of lower MSE. Specifically, it is obvious
that our proposed method is better to predict different types of host traces, while
the other methods, such as AR method, will have poor performance in some host
traces.

In Fig. 9, we compare our proposed method to other four methods in mean host
load prediction. According to our statistics, our method improves the accuracy over
the second best method (PSR+EA-GMDH) by 26.1% in the 2.7h ahead prediction,
22.4% in 5.3h, and about 32.3% in 10.7h, respectively.

123



Multi-step-ahead host load prediction. . . 3051

(a) CDF of MSE(T = 0.5h) (b) CDF of MSE(T = 1h)

(c) CDF of MSE(T = 1.5h) (d) CDF of MSE(T = 2h)

Fig. 8 MSE of host load prediction

Fig. 9 The average of MSSE, where h represents hour, s1 is 5min

123



3052 Q. Yang et al.

7 Conclusions and future work

In this paper, we proposed a novel method for CPU load prediction. In our proposed
method, we use the ESN as our basic prediction model, considering that the ESN
can be trained very fast and modeling one-dimensional time series impressively. To
achieve a better representation of the inputs, we introduce a pre-recurrent feature
layer which is an autoencoder neural network. The autoencoder can better capture
the similarity between load traces. We evaluated our proposed method on one month
Google load trace. Compared with some other state-of-arts methods, our proposed
method could achieve higher accuracy. This implies that our work can be utilized
to solve the schedule problem in the future work. However, the features learned by
autoencoder is not easy to display when the input data is host load. We will try our
best to visualize the features in the future work.

Acknowledgments This work was partially supported by Grant No. BE2011169, BK2011563 from the
Natural Science Foundation of Jiangsu Province and Grant No. 61100111, 61300157, 61201425, 61271231
from the Natural Science Foundation of China.

References

1. Akioka S, Muraoka Y (2004) Extended forecast of cpu and network load on computational grid. In:
IEEE international symposium on cluster computing and the grid, 2004. CCGrid 2004. IEEE, pp
765–772

2. Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is
difficult. IEEE Trans Neural Netw 5(2):157–166

3. Bengio Y (2009) Learning deep architectures for ai. Found Trends® Mach Learn 2(1):1–127
4. Di S, Kondo D, Cirne W (2012) Characterization and comparison of cloud versus grid workloads. In:

2012 IEEE international conference on cluster computing (CLUSTER). IEEE, pp 230–238
5. Di S, Kondo D, CirneW (2012) Host load prediction in a google compute cloud with a bayesian model.

In: Proceedings of the international conference on high performance computing, networking, storage
and analysis. IEEE Computer Society Press, p 21

6. Duy TVT, Sato Y, Inoguchi Y (2011) Improving accuracy of host load predictions on computational
grids by artificial neural networks. Int J Parallel Emerg Distrib Syst 26(4):275–290

7. Google (2011) Google cluster data. Google reach blog. http://googleresearch.blogspot.com/2011/11/
more-google-cluster-data.html. Accessed 14 Oct 2013

8. Guenter B, Jain N,Williams C (2011)Managing cost, performance, and reliability tradeoffs for energy-
aware server provisioning. In: INFOCOM, 2011 Proceedings IEEE. IEEE, pp 1332–1340

9. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput
18(7):1527–1554

10. Hinton G, Deng L, Yu D, Dahl GE, Mohamed Ar, Jaitl N, Senior A, Vanhoucke V, Nguyen P, Sainath
TN et al (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views
of four research groups. IEEE Signal Process Mag 29(6):82–97

11. Hochreiter S (1991) Untersuchungen zu dynamischen neuronalen netzen. Master’s thesis, Institut fur
Informatik, Technische Universitat, Munchen

12. Jaeger H (2001) The echo state approach to analysing and training recurrent neural networks-with an
erratum note. Bonn Ger Ger Natl Res Cent Inf Technol GMD Tech Rep 148:34

13. Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in
wireless communication. Science 304(5667):78–80

14. Kang M, Kang DI, Crago SP, Park GL, Lee J (2011) Design and development of a run-time monitor
for multi-core architectures in cloud computing. Sensors 11(4):3595–3610

15. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86
16. Lukoševičius M (2012) A practical guide to applying echo state networks. In: Neural networks: tricks

of the trade. Springer, Berlin, pp 659–686

123

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html


Multi-step-ahead host load prediction. . . 3053

17. Maass W, Natschläger T, Markram H (2002) Real-time computing without stable states: a new frame-
work for neural computation based on perturbations. Neural Comput 14(11):2531–2560

18. Mell P, Grance T (2009) The nist definition of cloud computing. Natl Inst Stand Technol 53(6):50
19. Osman S, Subhraveti D, Su G, Nieh J (2002) The design and implementation of zap: a system for

migrating computing environments. ACM SIGOPS Opera Syst Rev 36(SI):361–376
20. Reiss C, Tumanov A, Ganger GR, Katz RH, Kozuch MA (2012) Heterogeneity and dynamicity of

clouds at scale: google trace analysis. In: Proceedings of the thirdACMsymposiumoncloud computing.
ACM, p 7

21. SpratlingMW(2006) Learning image components for object recognition. JMach LearnRes 7:793–815
22. Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in

deep learning. In: Proceedings of the 30th international conference on machine learning (ICML-13),
pp 1139–1147

23. Urgaonkar B, Shenoy P, Chandra A, Goyal P (2005) Dynamic provisioning of multi-tier internet appli-
cations. In: Second international conference on autonomic computing, 2005. ICAC 2005. Proceedings.
IEEE, pp 217–228

24. WerbosPJ (1990)Backpropagation through time:what it does andhow todo it. Proc IEEE78(10):1550–
1560

25. Wu Y, Yuan Y, Yang G, Zheng W (2007) Load prediction using hybrid model for computational grid.
In: 2007 8th IEEE/ACM international conference on grid computing. IEEE, pp 235–242

26. Yang L, Foster I, Schopf JM (2003) Homeostatic and tendency-based cpu load predictions. In: Inter-
national parallel and distributed processing symposium, 2003. Proceedings. IEEE, p 9

27. Yang Q, Peng C, Zhao H, YuY, Zhou Y,Wang Z, Du S (2014) A newmethod based on psr and ea-gmdh
for host load prediction in cloud computing system. J Supercomput 68(3):1402–1417

28. Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research challenges. J
Internet Serv Appl 1(1):7–18

29. ZhangQ,ZhaniMF,ZhangS, ZhuQ,BoutabaR,Hellerstein JL (2012)Dynamic energy-aware capacity
provisioning for cloud computing environments. In: Proceedings of the 9th international conference
on autonomic computing. ACM, pp 145–154

123


	Multi-step-ahead host load prediction using autoencoder and echo state networks in cloud computing
	Abstract
	1 Introduction
	2 Related work
	3 Autoencoder
	4 Echo state network
	4.1 Recurrent neural network
	4.2 Echo state network

	5 Our approach
	5.1 Model definition
	5.2 Details of gradient descent

	6 Performance evaluation
	6.1 Dataset and parameters
	6.2 Performance evaluation
	6.2.1 Methods for comparison
	6.2.2 Experimental results


	7 Conclusions and future work
	Acknowledgments
	References




