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Abstract The crossed cube is a popular network topology because it possesses many
attractive topological properties and its diameter is about half that of the hypercube.
Typically, a network topology is modeled as a graph whose vertices and edges rep-
resent processors and communication links, respectively. We define a graph G to be
2-disjoint-path-coverably r -panconnected for a positive integer r if for any four dis-
tinct vertices u, v, x , and y ofG, there exist two vertex-disjoint paths P1 and P2, such
that (i) P1 joins u and vwith length l for any integer l satisfying r ≤ l ≤ |V (G)|−r−2,
and (ii) P2 joins x and y with length |V (G)|− l −2, where |V (G)| is the total number
of vertices in G. This property can be considered as an extension of both panconnect-
edness and connectivity. In this paper, we prove that the n-dimensional crossed cube
is 2-disjoint-path-coverably n-panconnected.

Keywords Disjoint path cover · Panconnectedness · Connectivity · Crossed cube ·
Interconnection network

1 Introduction

In parallel and distributed computer systems, multiprocessors are connected using
various types of interconnection networks. A variety of interconnection mechanisms
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have been proposed during the last two decades to guarantee that system performance
can achieve the desired level [29,34,42]. Historically, interconnection networks, such
asmultidimensional cubes and their variations, have been successfully applied to solve
various hardware and software problems. For example, multidimensional cubes have
been used in data modeling of multidimensional databases. All possible aggregations
computed from a multidimensional database relation are stored in a data cube. A data
cube can support online analytical processing (OLAP), which has gained popularity
as a method for supporting decision making and can serve in a cloud-computing
environment [22,36,39].

Among the many kinds of network topologies, the binary n-dimensional cube (or
hypercube) is one of the most popular for parallel and distributed computation [40].
Not only is it ideally suited to both special- and general-purpose tasks, but it can
also efficiently simulate many other network types [34]. In addition to the hyper-
cube, reconfigurable networks [7,11–13] and ring-based transputer networks [4,5]
offer cost-effective alternatives to the hypercube multiprocessor architecture without
substantial loss in performance. In particular, parallel algorithms targeted at a recon-
figurable networkwere developed for various imaging processing, pattern recognition,
and computer vision tasks, such as edge detection in an image [10], rotation of digitized
images [3,6], and stereocorrelation [8,9].

However, even though hypercube networks have many promising advantages, they
are bipartite and do not have paths/cycles of many specified lengths. In addition,
the hypercube has the largest diameter of the cube family. To compensate for these
drawbacks,many researchers have tried to refashion a hypercube into otherswith lower
diameters [1,19,23,43]. One such network topology is the crossed cube, which was
first proposed byEfe [24]. The crossed cube is derived from the hypercube by changing
some link connections. Its diameter is about half that of the hypercube [15,24]. In
addition, the crossed cube hasmanyother attractive properties. For example, it contains
more cycles than the hypercube [27] and binary trees as subgraphs [32]. Moreover,
paths of odd and even lengths can be embedded in the crossed cube [25,26].

Typically, the topological structure of an interconnection network is modeled as a
graphwhose vertices and edges represent processors and communication links, respec-
tively, and the representations for graphs in data structures are commonly adjacency
matrix/lists.Global data structures extensively applied in the cube family include linear
arrays, cyclic queues, trees, and meshes [34]. Thus, diverse approaches to embedding
paths/cycles/trees/meshes in members of the cube family have been widely studied. A
comprehensive survey of related work can be found in [29,42]. Throughout this paper,
graphs are finite, simple, and undirected. Some important graph-theory definitions and
notations will be introduced first. For those not defined here, we follow the standard
terminology given by Bondy and Murty [14]. An undirected graph G is a graph with
vertex set V (G) and edge set E(G), where |V (G)| > 0 and E(G) ⊆ {(u, v)|(u, v) is
an unordered pair of elements of V (G)}. Two vertices u and v of G are adjacent if
(u, v) ∈ E(G). A graph H is a subgraph of G, denoted by H ⊆ G, if V (H) ⊆ V (G)

and E(H) ⊆ E(G), and H is a spanning subgraph of G (equivalently, H spans G)
if V (H) = V (G). Let S be a nonempty subset of V (G). The subgraph of G induced
by S is a graph whose vertex set is S and whose edge set consists of all the edges of
G joining any two vertices in S.
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A path P of length k, k ≥ 1, from vertex x to vertex y in a graph G is a sequence
of distinct vertices 〈v1, v2, . . . , vk+1〉, such that v1 = x, vk+1 = y, and (vi , vi+1) ∈
E(G) for every i, 1 ≤ i ≤ k. Moreover, a path of length zero, consisting of a single
vertex x , is denoted by 〈x〉. We can write P as 〈v1, v2, . . . , vi , Q, v j , . . . , vk+1〉 for
convenience if Q ⊂ P and Q = 〈vi , . . . , v j 〉, where i ≤ j . The i th vertex of P is
denoted by P(i), i.e., P(i) = vi . In particular, let rev(P) represent the reverse of P ,
i.e., rev(P) = 〈vk+1, vk, . . . , v1〉. We use l(P) to denote the length of P . The distance
between two distinct vertices u and v in G, denoted by dG(u, v), is the length of the
shortest path between u and v. The diameter of G is the maximum of all shortest
paths for all pairs of vertices in G. Furthermore, G is connected if there are paths
joining every pair of distinct vertices in G; otherwise, G is disconnected or trivial.
The connectivity κ(G) of a connected graph G is the minimum number of vertices
whose removal from G results in a disconnected or trivial graph. We say that G is
n-connected if κ(G) ≥ n ≥ 1. A cycle is a path with at least three vertices, such that
the last vertex is adjacent to the first one. For clarity, a cycle of length k, k ≥ 3, is
represented as 〈v1, v2, . . . , vk, v1〉 and denoted by Ck . A path (respectively, cycle) is
a Hamiltonian path (respectively, Hamiltonian cycle) of G if it spans G. We say that
G is Hamiltonian if it has a Hamiltonian cycle, and that G is Hamiltonian-connected
if it contains a Hamiltonian path joining any pair of distinct vertices.

A many-to-many k-disjoint path cover (k-DPC) of a graph G is a set of k vertex-
disjoint paths joining k sources and k sinks, in which each vertex of G is covered
by a path [37]. The problem of finding a k-DPC in a graph can be further addressed
from different perspectives of combinatorial optimization. For example, themaximum
weight disjoint-path cover problem is to find a disjoint-path cover of a weighted graph
G, such that the totalweight of these paths ismaximized [35]. For another example,Wu
and Manber [41] discussed the problem of finding disjoint-path covers (called perfect
path matching in their work) with constraints on the maximum length of paths. Cohen
et al. applied this problem in the study of optimized broadcasting and multicasting
protocols in networks, basing their approaches to connecting a given set of vertices on
finding a set of edge-disjoint paths [20] and vertex-disjoint paths [21], respectively. To
reduce broadcast delay, one approach is to address length-constrained path matching.
In [28], Ghodsi et al. studied the length-constrained path-matching problem for general
graphs. For these reasons, we are motivated to explore all possible path lengths of a
k-DPC. Obviously, the problem of finding a 1-DPC is equivalent to the problem of
finding a Hamiltonian path, which is known to be NP-complete. For k ≥ 2, the
embedding of a k-DPC can be achieved in the crossed cube and some other hypercube
variations [37,38]. However, owing to potential difficulties in controlling the lengths
of a k-DPC for any k ≥ 2, we focus on the 2-DPC problem as our first milestone.
Previous work [33] showed that there exists a 2-DPC in a crossed cube whose vertex-
disjoint paths have the same length. In this paper, we improve on this result, enabling
the path lengths of a 2-DPC in the crossed cube to meet all possibilities. To be precise,
we need to introduce the definition of panconnectedness and propose a new concept,
“2-DPC panconnectedness”.

A graph G is panconnected if for any two distinct vertices x and y, it contains a
path of length l joining x and y for any integer l satisfying dG(x, y) ≤ l ≤ |V (G)|−1
[2]. According to the above definition, we can define a graph G to be 2-disjoint-path-
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coverably r-panconnected (or 2-DPC r -panconnected for short) for a positive integer
r if for any four distinct vertices u, v, x , and y of G, there exist two vertex-disjoint
paths P1 and P2, such that (i) P1 joins u and v with length l for any integer l satisfying
r ≤ l ≤ |V (G)| − r − 2, and (ii) P2 joins x and y with length |V (G)| − l − 2. In
this paper, we investigate all aspects of 2-DPC r -panconnectedness with respect to the
crossed cube.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the
definition and some useful properties of the crossed cube. The main theorem and the
proof are described in Sect. 3. Concluding remarks are provided in Sect. 4.

2 The crossed cube and its properties

The n-dimensional crossed cube, denoted byCQn , contains 2n vertices, each of which
corresponds to an n-bit binary string. To define the crossed cube, we need to first
introduce an additional concept, “pair related”.

Definition 1 [24] Two 2-bit binary strings x = x2x1 and y = y2y1 are pair related,
denoted by x ∼ y, if and only if (x, y) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}.

The formal definition of CQn is given below.

Definition 2 [24] The n-dimensional crossed cube CQn is recursively constructed as
follows:

(i) CQ1 is a complete graph with vertex set {0, 1}.
(ii) CQ2 is isomorphic to aC4 with vertex set {00, 01, 10, 11} and edge set {(00, 01),

(00, 10), (10, 11), (01, 11)}.
(iii) For n ≥ 3, let CQ0

n−1 and CQ1
n−1 be two copies of CQn−1 with V (CQ0

n−1) =
{0un−1un−2 . . . u1 | ui = 0 or 1 for 1 ≤ i ≤ n − 1} and V (CQ1

n−1) =
{1un−1un−2 . . . u1 | ui = 0 or 1 for 1 ≤ i ≤ n − 1}. Then, CQn is formed
by connecting CQ0

n−1 and CQ1
n−1 with 2n−1 edges, so that a vertex u =

0un−1un−2 . . . u1 of CQ0
n−1 is adjacent to a vertex v = 1vn−1vn−2 . . . v1 of

CQ1
n−1 if and only if (1) un−1 = vn−1 when n is even, and (2) u2i u2i−1 ∼

v2iv2i−1 for all i, 1 ≤ i ≤ ⌊ n−1
2

⌋
. CQ0

n−1 and CQ1
n−1 are subcubes of CQn .

Figure 1 depicts CQ3 and CQ4. It has been proved that CQn is n-connected [31]
and has diameter

⌈ n+1
2

⌉
[24].

A vertex u = unun−1 . . . u1 of CQn is said to be adjacent to a vertex v =
vnvn−1 . . . v1 along the i th dimension, 1 ≤ i ≤ n, if the following four conditions are
all satisfied: (i)ui 
= vi , (ii)u j = v j for all j, i+1 ≤ j ≤ n, (iii)u2ku2k−1 ∼ v2kv2k−1

for all k, 1 ≤ k ≤ ⌊ i−1
2

⌋
, and (iv) ui−1 = vi−1 if i is even. Then, we say that u is

the i-neighbor of v, denoted by (v)i , and vice versa. The edge (u, (u)i ) is called an
i-dimensional edge. It is easy to see that v = (u)i if and only if u = (v)i .

The following lemma provides the basis for a method proposed by Chen et al. for
finding a C4 with an n-dimensional edge of CQn [17].

Lemma 1 [17] Let (u, v) be any n-dimensional edge of CQn, n ≥ 3. For any integer
i, 1 ≤ i ≤ n − 1, vertices u, v, (u)i , and (v)i induce a C4 if i is even or i = n − 1.
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Fig. 1 Illustration of CQ3 and CQ4

In [27], Fan et al. described how to locate a C5 in CQn .

Lemma 2 [27]Let (u, v) be any n-dimensional edge of CQn, n ≥ 3. Then, ((u)1)n =
((v)2)1 = ((v)1)2. Moreover,

(i) vertices u, v, (u)1, (v)2, and ((v)2)1 induce a C5, and
(ii) vertices u, v, (u)1, (v)1, and ((v)1)2 induce a C5.

Let F be a subgraph of G, and let G − F denote the removal of F from G.
A Hamiltonian graph G is f-fault-tolerant Hamiltonian (respectively, f-fault-tolerant
Hamiltonian-connected) if G − F remains Hamiltonian (respectively, Hamiltonian-
connected) for every F with |F | ≤ f , where |F | is the number of all vertices and
edges in F .

Lemma 3 [30] For any integer n, n ≥ 3, CQn is (n− 2)-fault-tolerant Hamiltonian
and (n − 3)-fault-tolerant Hamiltonian-connected.

Hereafter, we discuss some properties regarding fault-tolerance of CQn .

Lemma 4 Let F be a subset of V (CQn), where n ≥ 5 and 0 ≤ |F | ≤ n. In addi-
tion, let F0 = F ∩ V (CQ0

n−1) and F1 = F ∩ V (CQ1
n−1). If both CQ0

n−1 − F0
and CQ1

n−1 − F1 are Hamiltonian-connected, then CQn − F is also Hamiltonian-
connected. Moreover, for any two vertices u and v of CQn − F, there exists a
Hamiltonian path P in CQn − F joining u and v, such that P contains a Hamil-
tonian path of CQ0

n−1 − F0 or a Hamiltonian path of CQ1
n−1 − F1 as its subpath.

Proof Without loss of generality, assume u ∈ V (CQ0
n−1). Consider the following

two cases.

Case 1. v ∈ V (CQ0
n−1) − F0. Let R be a Hamiltonian path of CQ0

n−1 − F0 joining
u and v. For convenience, we write R as 〈u, R1, x, y, R2, v〉 for some vertices x
and y, where {(x)n, (y)n} ∩ F1 = ∅. Note that we can find such x and y because
|V (CQ0

n−1)−F0−{u, v}| ≥ 2n−1−n−2 and |F1| ≤ n. Let S be aHamiltonian path of
CQ1

n−1 − F1 joining (x)n and (y)n . Then, path P = 〈u, R1, x, (x)n, S, (y)n, y, R2, v〉
is a Hamiltonian path of CQn − F joining u and v with S ⊂ P .

Case 2. v ∈ V (CQ1
n−1) − F1. Let R be a Hamiltonian path of CQ0

n−1 − F0 joining u
and some vertex z ofCQ0

n−1− (F0∪{u}), where (z)n 
∈ {v}∪F1. Moreover, let S be a
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Hamiltonian path of CQ1
n−1 − F1 joining (z)n and v. Then, P = 〈u, R, z, (z)n, S, v〉

is a Hamiltonian path of CQn − F joining u and v with R ⊂ P and S ⊂ P . ��
Lemma 5 Let u be any vertex of CQn and (x, y) any edge of CQn − {u}, n ≥ 5.
Then, CQn − {u, x, y} is Hamiltonian-connected.
Proof By brute force, running our computer program [16], we can verify that CQ5 −
{u, x, y} is Hamiltonian-connected. For n ≥ 6, CQn − {u, x, y} is Hamiltonian-
connected by Lemma 3. ��
Lemma 6 Let (u, v) and (x, y) be any two vertex-disjoint edges of CQn, n ≥ 5.
Then, CQn − {u, v, x, y} is Hamiltonian-connected.
Proof For n = 5, we can verify correctness by brute force running of our com-
puter program [16]. For n ≥ 7, Lemma 3 states that CQn is at least 4-fault-tolerant
Hamiltonian-connected. Here, we need to show correctness for CQ6. Let F =
{u, v, x, y}. Moreover, let F0 = F ∩ V (CQ0

5) and F1 = F ∩ V (CQ1
5). Without

loss of generality, assume |F0| ≥ |F1|. Consider the following three cases.

Case 1. |F0| = 4 and |F1| = 0. As mentioned above for n = 5, CQ0
5 − F0 is

Hamiltonian-connected. Because CQ1
5 is also Hamiltonian-connected, CQ6 − F is

Hamiltonian-connected by Lemma 4.

Case 2. |F0| = 3 and |F1| = 1. It is obvious that F0 contains one vertex and two
adjacent vertices. By Lemma 5, CQ0

5 − F0 is Hamiltonian-connected. By Lemma 3,
CQ1

5 − F1 is also Hamiltonian-connected. Thus,CQ6 − F is Hamiltonian-connected.

Case 3. |F0| = 2 and |F1| = 2. By Lemma 3, both CQ0
5 − F0 and CQ1

5 − F1 are
Hamiltonian-connected. Then, CQ6 − F is Hamiltonian-connected. ��
Lemma 7 [18] Let F be any path of length m, m ≤ n − 2, in CQn for n ≥ 5. Then,
CQn − V (F) is Hamiltonian-connected.

Let (u, v) be an i-dimensional edge of CQn for any i, 1 ≤ i ≤ n. (u, v) is an even
edge, if i is even.

Lemma 8 Let F be a path of length one or two in CQn for n ≥ 5. There exists a
Hamiltonian path P in CQn − F joining any two vertices and P has at least four
vertex-disjoint even edges.

Proof We prove this lemma by induction. By brute force running of our computer
programs [16], we can verify the validity of the induction base on CQ5. The induc-
tive hypothesis is that the statement holds for all CQk, 5 ≤ k ≤ n − 1. We
show that the statement also holds for CQn . Let F0 = V (F) ∩ V (CQ0

n−1) and
F1 = V (F) ∩ V (CQ1

n−1). Without loss of generality, assume |F0| ≥ |F1|. Then, we
have the following cases: (1) |F0| = 3 and |F1| = 0, (2) |F0| = 2 and |F1| = 1, (3)
|F0| = 2 and |F1| = 0, and (4) |F0| = 1 and |F1| = 1. In each of the above cases,
both CQ0

n−1 − F0 and CQ1
n−1 − F1 are Hamiltonian-connected, and CQn − F is

Hamiltonian-connected. By the inductive hypothesis, we have a Hamiltonian path R
(respectively, S) joining any two vertices in CQ0

n−1 − F0 (respectively, CQ1
n−1 − F1)
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that contains at least four vertex-disjoint even edges. Then, by Lemma 4, there exists
a Hamiltonian path P in CQn − F joining any two vertices, such that P contains R
or S as a subpath, and P has at least four vertex-disjoint even edges. ��

Lemmas 9 and 10 discuss some properties regarding embedding paths of required
lengths in CQn .

Lemma 9 [17] Let u and v be any two vertices of CQn, n ≥ 4. Moreover, let l be
any integer with dCQn (u, v) ≤ l ≤ 2n − 1 and l 
= dCQn (u, v) + 1. There exists a
Hamiltonian path P of CQn, such that P(1) = u and P(l + 1) = v.

Lemma 10 Let w be any vertex of CQn, n ≥ 5. Moreover, let u and v be any two
vertices of CQn − {w}. There exists a path of length l, l ∈ {n − 1, n, n + 1}, joining
u and v in CQn − {w}.
Proof Without loss of generality, assume w ∈ V (CQ0

n−1). Moreover, assume u ∈
V (CQ0

n−1) if u and v are in different subcubes. The inductive proof proceeds as
follows. By brute force running of our computer program [16], we verify that the
statement holds for n = 5. The inductive hypothesis assumes that this lemma holds
for CQn−1 if n ≥ 6. Consider the following three cases.

Case 1. {u, v} ⊂ V (CQ0
n−1) − {w}. By the inductive hypothesis, we can find a path

of length m, m ∈ {n − 1, n} in CQ0
n−1 − {w} joining u and v. This path is certainly a

path of CQn − {w}. Because n ≥ 6, we have
⌈

(n−1)+1
2

⌉
+ 2 ≤ n − 1, which implies

that dCQ1
n−1

((u)n, (v)n) + 2 ≤ n − 1. By Lemma 9, there exists a path S of length

n − 1 in CQ1
n−1 joining (u)n and (v)n , and 〈u, (u)n, S, (v)n, v〉 is a path of length

n + 1 in CQn − {w} joining u and v.

Case 2. {u, v} ⊂ V (CQ1
n−1). Because n ≥ 6 and

⌈
(n−1)+1

2

⌉
+ 2 ≤ n − 1, we have

a path of length m, m ∈ {n − 1, n, n + 1} in CQ1
n−1 joining u and v by Lemma 9.

Certainly, such a path is also a path of CQn − {w}.
Case 3. u ∈ V (CQ0

n−1) − {w} and v ∈ V (CQ1
n−1). The following two subcases are

distinguished.

Subcase 3.1. (u)n 
= v. Let x ∈ V (CQ1
n−1) − {(u)n, v}. By the inductive hypothesis,

there exists a path S of lengthm,m ∈ {n−2, n−1, n}, inCQ1
n−1−{x} joining (u)n and

v. Then, 〈u, (u)n, S, v〉 is a path of CQn − {w} with length m, m ∈ {n − 1, n, n + 1}.
Subcase 3.2. (u)n = v. Let x = (u)i be a vertex of CQ0

n−1 − {w} with i even. Then,
vertices u, x, (x)n , and v form a C4. Because n ≥ 6, by Lemma 9, there exists a
path S of length m, m ∈ {n − 3, n − 2, n − 1}, in CQ1

n−1 joining (x)n and v. Then,
〈u, x, (x)n, S, v〉 is a path of CQn − {w} with length m, m ∈ {n − 1, n, n + 1}. ��

3 2-DPC n-panconnectedness of C Qn

In this section, we discuss the 2-DPC r -panconnectedness of the crossed cubewith two
vertex-disjoint paths P1 and P2, where P1 joins u and v, and P2 joins x and y for any
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(a) (b)
Fig. 2 Case 1 in the proof of Theorem 1 (a dashed line or a straight line represents an edge)

four verticesu, v, x andy. In [33], it is shown thatCQ3 andCQ4 will not have 2-DPCs
of equal length when vertex pairs (u, v) and (x, y) in CQ3 (respectively, CQ4) are
(000, 001) and (010, 011) (respectively, (0000, 0001) and (0010, 1110)). This implies
that CQ3 and CQ4 are not 2-DPC r -panconnected for any positive integer r . In our
search result on CQ5, if vertices u, v, x, and y form a C4 with v = (u)2, x = (u)1,
and y = ((u)1)2, then we cannot find any path of length four in CQ5 − {u, v} joining
x and y. Consequently, we will prove that CQn is 2-DPC n-panconnected for n ≥ 5
in the following theorem.

Theorem 1 Let u, v, x, and y be any four vertices of CQn, n ≥ 5. Moreover, let l1
and l2 be any two integers with l1 + l2 = 2n − 2, l1 ≥ n, and l2 ≥ n. There exist two
vertex-disjoint paths P1 and P2 in CQn, such that (i) P1 joins u and v with l(P1) = l1,
and (ii) P2 joins x and y with l(P2) = l2.

Proof We prove this theorem by induction. First, we can show the validity of the
induction base on CQ5 by brute force running of our computer program [16]. The
inductive hypothesis is that this theorem holds for all CQk, 5 ≤ k ≤ n − 1. Then,
we show that this theorem also holds for CQn . Without loss of generality, assume
u ∈ V (CQ0

n−1) and l1 ≥ l2, i.e., l1 ≥ 2n−1 − 1 and l2 ≤ 2n−1 − 1. Moreover, we
assume x ∈ V (CQ0

n−1) if x and y are in different subcubes. We demonstrate all values
of l2. Consider the following six cases.

Case 1. {u, v, x, y} ⊂ V (CQ0
n−1). Two subcases should be considered.

Subcase 1.1. 2n−2 + n − 1 ≤ l2 ≤ 2n−1 − 1. By the inductive hypothesis, there
exist two vertex-disjoint paths R1 and R2 in CQ0

n−1, such that (i) R1 joins u and
v with l(R1) = 2n−2 − 1, and (ii) R2 joins x and y with l(R2) = 2n−2 − 1.
We can write R1 and R2 as 〈u, R1

1, a,b, R2
1, v〉 and 〈x, R1

2,p,q, R2
2, y〉, respec-

tively, for some vertices a, b, p, and q. Also by the inductive hypothesis, there
exist two vertex-disjoint paths S1 and S2 in CQ1

n−1, such that (i) S1 joins (a)n

and (b)n with l(S1) = 2n−1 + 2n−2 − l2 − 2, and (ii) S2 joins (p)n and (q)n

with l(S2) = l2 − 2n−2. We set P1 = 〈u, R1
1, a, (a)

n, S1, (b)n,b, R2
1, v〉 and

P2 = 〈x, R1
2,p, (p)n, S2, (q)n,q, R2

2, y〉. Then, P1 and P2 are the required paths.
See Fig. 2a for illustration.

Subcase 1.2. n ≤ l2 ≤ 2n−2+n−2.By the inductive hypothesis, there exist two vertex-
disjoint paths R1 and R2 inCQ0

n−1, such that (i) R1 joins u and vwith l(R1) = 2n−1−
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(a) (b)
Fig. 3 Case 2 in the proof of Theorem 1 (a dashed line or a straight line represents an edge)

l2−2, and (ii) R2 joins x and ywith l(R2) = l2.We canwrite R1 as 〈u, R1
1, a,b, R2

1, v〉
for some vertices a and b. By Lemma 3, there exists a Hamiltonian path S of CQ1

n−1
joining (a)n and (b)n . We set P1 = 〈u, R1

1, a, (a)
n, S, (b)n,b, R2

1, v〉 and P2 = R2.
It is obvious that P1 and P2 are the required paths. See Fig. 2b for illustration.

Case 2. {u, x, y} ⊂ V (CQ0
n−1) and v ∈ V (CQ1

n−1). Let a be a vertex of CQ0
n−1 −

{u, x, y} with (a)n 
= v. Consider the following two subcases.

Subcase 2.1. 2n−2 + n − 1 ≤ l2 ≤ 2n−1 − 1. By the inductive hypothesis, we have
two vertex-disjoint paths R1 and R2 of CQ0

n−1, such that (i) R1 joins u and a with
l(R1) = 2n−2 − 1, and (ii) R2 joins x and y with l(R2) = 2n−2 − 1. Path R2 can be
written as 〈x, R1

2,p,q, R2
2, y〉 for some vertices p and q with v 
∈ {(p)n, (q)n}. Also

by the inductive hypothesis, we have two vertex-disjoint paths S1 and S2 in CQ1
n−1,

such that (i) S1 joins (a)n and v with l(S1) = 2n−1 + 2n−2 − l2 − 2, and (ii) S2
joins (p)n and (q)n with l(S2) = l2 − 2n−2. Then, P1 = 〈u, R1, a, (a)n, S1, v〉 and
P2 = 〈x, R1

2,p, (p)n, S2, (q)n,q, R2
2, y〉 are our required paths. Figure 3a shows this

subcase.

Subcase 2.2. n ≤ l2 ≤ 2n−2 + n − 2. By the inductive hypothesis, we can find two
vertex-disjoint paths R1 and R2 inCQ0

n−1, such that (i) R1 joins u and awith l(R1) =
2n−1 − l2 −2, and (ii) R2 joins x and y with l(R2) = l2. Because there exists a Hamil-
tonian path S in CQ1

n−1 joining (a)n and v, we can set P1 = 〈u, R1, a, (a)n, S, v〉 and
P2 = R2. Then, P1 and P2 are our required paths. Figure 3b shows this subcase.

Case 3. {u, v} ⊂ V (CQ0
n−1) and {x, y} ⊂ V (CQ1

n−1). The following subcases are
distinguished.

Subcase 3.1. l2 = 2n−1 − 1. Obviously, we have a Hamiltonian path P1 of CQ0
n−1

joining u and v and a Hamiltonian path P2 of CQ1
n−1 joining x and y. Then, P1 and

P2 are the required paths.

Subcase 3.2. l2 = 2n−1 − 2. Because n ≥ 6, by Lemma 2, we can find a
neighbor a of u in CQ0

n−1, such that {a,b, (b)1, ((b)1)2, (a)1} induces a C5 and
{a,b, (b)1, ((b)1)2, (a)1} ∩ {u, v, x, y} = ∅, where b = (a)n . By Lemma 8, there
exists a Hamiltonian path S in CQ1

n−1 − {b, (b)1, ((b)1)2} joining x and y, such that
S has at least four vertex-disjoint even edges. Among these even edges, we can find one
even edge (p,q) such that {(p)n, (q)n} ∩ {u, v} = ∅. It is noticed that ((p)n, (q)n) ∈
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(a) (b) (c)

(d) (e) (f)
Fig. 4 Case 3 in the proof of Theorem 1 (a dashed line or a straight line represents an edge)

E(CQn). Path S can be written as 〈x, S1,p,q, S2, y〉. By Lemma 6, there exists
a Hamiltonian path R in CQ0

n−1 − {u, a, (p)n, (q)n} joining (a)1 and v. Then,
P1 = 〈u, a,b, (b)1, ((b)1)2, (a)1, R, v〉 and P2 = 〈x, S1,p, (p)n, (q)n,q, S2, y〉 are
the required paths. See Fig. 4a for illustration.

Subcase 3.3. l2 = 2n−1−3. Let a andb be any two adjacent vertices ofCQ1
n−1−{x, y},

such that {u, v} ∩ {(a)n, (b)n} = ∅. By the inductive hypothesis, we can find two
vertex-disjoint paths R1 and R2 in CQ0

n−1, such that (i) R1 joins u and (a)n with
l(R1) = 2n−2 − 1, and (ii) R2 joins (b)n and v with l(R2) = 2n−2 − 1. By Lemma 3,
there exists a Hamiltonian path S in CQ1

n−1 − {a,b} joining x and y. We set P1 =
〈u, R1, (a)n, a,b, (b)n, R2, v〉 and set P2 = S. Then, P1 and P2 are the required paths.
Figure 4b illustrates this subcase.

Subcase 3.4. l2 = 2n−1 − 4. Let 〈a,b, c〉 be a path of length 2 in CQ1
n−1 − {x, y},

such that {u, v} ∩ {(a)n, (c)n} = ∅. By the inductive hypothesis, we can find two
vertex-disjoint paths R1 and R2 in CQ0

n−1, such that (i) R1 joins u and (a)n with
l(R1) = 2n−2 − 1, and (ii) R2 joins (c)n and v with l(R2) = 2n−2 − 1. By Lemma 5,
there exists a Hamiltonian path S in CQ1

n−1 − {a,b, c} joining x and y. Then, P1 =
〈u, R1, (a)n, a,b, c, (c)n, R2, v〉 and P2 = S are our required paths. The illustration
of this subcase is shown in Fig. 4c.

Subcase 3.5. n ≤ l2 ≤ 2n−1 − 5. By Lemma 9, we can find a Hamiltonian path
S of CQ1

n−1, such that S(1) = x and S(l2 + 1) = y. Path S can be written as
〈x, S1, y, a, S2,b〉 for some vertices a and b, where a is a neighbor of y on S. The
following conditions are distinguished.

Condition 3.5.1. |{u, v} ∩ {(a)n, (b)n}| = 0. By the inductive hypothesis, we obtain
two vertex-disjoint paths R1 and R2 in CQ0

n−1, such that (i) R1 joins u and (a)n
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(a) (b)

(d) (e)

(c)

Fig. 5 Case 5 in the proof of Theorem 1 (a dashed line or a straight line represents an edge)

with l(R1) = 2n−2 − 1, and (ii) R2 joins (b)n and v with l(R2) = 2n−2 − 1. Then,
P1 = 〈u, R1, (a)n, a, S2,b, (b)n, R2, v〉 and P2 = S1 are our required paths. See
Fig. 4d for illustration.

Condition 3.5.2. |{u, v} ∩ {(a)n, (b)n}| = 1. Without loss of generality, we assume
that u = (a)n and v 
= (b)n . By Lemma 3, CQ0

n−1 − {u} has a Hamiltonian path R
joining (b)n and v. We set P1 = 〈u, a, S2,b, (b)n, R, v〉 and P2 = S1. Then, P1 and
P2 are our required paths. See Fig. 4e for illustration.

Condition 3.5.3. |{u, v} ∩ {(a)n, (b)n}| = 2. Without loss of generality, we assume
that u = (a)n and v = (b)n . We write S2 as 〈a, S12 ,p,q, S22 ,b〉 for some vertices p
and q. Obviously, there exists a Hamiltonian path R in CQ0

n−1 − {u, v} joining (p)n

and (q)n . Then, P1 = 〈u, a, S12 ,p, (p)n, R, (q)n,q, S22 ,b, v〉 and P2 = S1 are the
required paths. Figure 4f illustrates this condition.

Case 4. u ∈ V (CQ0
n−1) and {v, x, y} ⊂ V (CQ1

n−1). This case is similar to Case 2, in
which u and v are in different subcubes whereas x and y are in the same one.

Case 5. {u, v, x} ⊂ V (CQ0
n−1) and y ∈ V (CQ1

n−1). Consider the following subcases.

Subcase 5.1. 2n − 1 ≤ l2 ≤ 2n−1 − 1. Let p be a vertex of CQ0
n−1 − {u, v, x} with

(p)n 
= y. By the inductive hypothesis, there exist two vertex-disjoint paths R1 and R2
in CQ0

n−1, such that (i) R1 joins u and v with l(R1) = 2n−1 − n − 1, and (ii) R2 joins
x and p with l(R2) = n− 1. We can write R1 as 〈u, R1

1, a,b, R2
1, v〉 for some vertices

a and b, such that y 
∈ {(a)n, (b)n}. Also by the inductive hypothesis, there exist two
vertex-disjoint paths S1 and S2 in CQ1

n−1, such that (i) S1 joins (a)n and (b)n with
l(S1) = 2n−1 − l2 + n− 2, and (ii) S2 joins (p)n and y with l(S2) = l2 − n. By setting
P1 = 〈u, R1

1, a, (a)
n, S1, (b)n,b, R2

1, v〉 and P2 = 〈x, R2,p, (p)n, S2, y〉, P1 and P2
are the required paths. The illustration of this subcase is shown in Fig. 5a.
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Subcase 5.2. (x, y) 
∈ E(CQn) andn ≤ l2 ≤ 2n−2.ByLemma3, there exists aHamil-
tonian path R in CQ0

n−1 − {x} joining u and v. We can write R as 〈u, R1, a,b, R2, v〉
for some vertices a and b, such that y 
∈ {(a)n, (b)n}. By the inductive hypothesis,
there exist two vertex-disjoint paths S1 and S2 inCQ1

n−1, such that (i) S1 joins (a)n and
(b)n with l(S1) = 2n−1−l2−1, and (ii) S2 joins (x)n and ywith l(R2) = l2−1. Then,
P1 = 〈u, R1, a, (a)n, S1, (b)n,b, R2, v〉 and P2 = 〈x, (x)n, S2, y〉 are our required
paths. See Fig. 5b for illustration.

Subcase 5.3. (x, y) ∈ E(CQn) and n + 1 ≤ l2 ≤ 2n − 2. Let p be a neighbor of x in
CQ0

n−1 withp 
∈ {u, v}. ByLemma3,wehave aHamiltonianpath R ofCQ0
n−1−{x,p}

joining u and v. R can be written as 〈u, R1, a,b, R2, v〉 for some vertices a and b.
By the inductive hypothesis, we have two vertex-disjoint paths S1 and S2 in CQ1

n−1,

such that (i) S1 joins (a)n and (b)n with l(S1) = 2n−1 − l2, and (ii) S2 joins (p)n

and y with l(S2) = l2 − 2. We set P1 = 〈u, R1, a, (a)n, S1, (b)n,b, R2, v〉 and
P2 = 〈x,p, (p)n, S2, y〉. Then, P1 and P2 are our required paths as shown in Fig. 5c.

Subcase 5.4. (x, y) ∈ E(CQn) and l2 = n. The following conditions should be
considered.

Condition 5.4.1. n = 6. Let R1 = 〈x,w,p〉 = 〈x, (x)i , ((x)i )1〉 be a path of CQ0
n−1

and S1 = 〈(p)n,q, t, y〉 = 〈(((y)i )1)2, ((y)i )1, (y)i , y〉 be a path of CQ1
n−1 for

some i , i ∈ {2, 4, 5}, such that {w,p} ∩ {u, v} = ∅. By Lemma 5, there exists
a Hamiltonian path R2 in CQ0

n−1 − V (R1) joining u and v. We can write R2 as
〈u, R1

2, a,b, R2
2, v〉 for some vertices a and b with {(a)n, (b)n} ∩ {q, t} = ∅. By

Lemma 6, there exists a Hamiltonian path S2 in CQ1
n−1 − V (S1) joining (a)n and

(b)n . Then, P1 = 〈u, R1
2, a, (a)

n, S2, (b)n,b, R2
2, v〉 and P2 = 〈x, R1,p, (p)n, S1, y〉

are the required paths. See Fig. 5d for illustration.

Condition 5.4.2. n ≥ 7. Let R1 = 〈x, z,w,p〉 = 〈x, (x)i−1, ((x)i )i−1, (x)i 〉 be a path
of CQ0

n−1 for some i, i ∈ {2, 4, 6}, such that {z,w,p} ∩ {u, v} = ∅. Then, Lemmas 1
and 9 ensure thatCQ1

n−1 has a path S1 of length n−4 joining (p)n and y. By Lemma 6,
there exists a Hamiltonian path R2 in CQ0

n−1 − V (R1) joining u and v. We write R2

as 〈u, R1
2, a,b, R2

2, v〉 for some vertices a and b with {(a)n, (b)n} ∩ V (S1) = ∅. By
Lemma 7, we have a Hamiltonian path S2 of CQ1

n−1 − V (S1) joining (a)n and (b)n .
Then, P1 = 〈u, R1

2, a, (a)
n, S2, (b)n,b, R2

2, v〉 and P2 = 〈x, R1,p, (p)n, S1, y〉 are
the required paths. See Fig. 5e for illustration.

Case 6. {u, x} ⊂ V (CQ0
n−1) and {v, y} ⊂ V (CQ1

n−1). Four subcases should be
considered.

Subcase 6.1.2n−1 ≤ l2 ≤ 2n−1−1.Leta andpbe twovertices ofCQ0
n−1−{u, x}with

{(a)n, (p)n} ∩ {v, y} = ∅. By the inductive hypothesis, there exist two vertex-disjoint
paths R1 and R2 in CQ0

n−1, such that (i) R1 joins u and a with l(R1) = 2n−1 − n− 1,
and (ii) R2 joins x and p with l(R2) = n − 1. Also by the inductive hypothesis, there
exist two vertex-disjoint paths S1 and S2 in CQ1

n−1, such that (i) S1 joins (a)n and v
with l(S1) = 2n−1 − l2 + n − 2, and (ii) S2 joins (p)n and y with l(S2) = l2 − n. We
set P1 = 〈u, R1, a, (a)n, S1, v〉 and P2 = 〈x, R2,p, (p)n, S2, y〉. Obviously, P1 and
P2 are the required paths as shown in Fig. 6a.
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(a) (b) (c)

(d) (e) (f)
Fig. 6 Case 6 in the proof of Theorem 1 (a dashed line or a straight line represents an edge)

Subcase 6.2. (x, y) 
∈ E(CQn) and {(x)n, (y)n} 
= {u, v} and n ≤ l2 ≤ 2n − 2. With-
out loss of generality, assume (y)n 
= u. Let a be a vertex ofCQ0

n−1−{u, x, (y)n}with
(a)n 
= v. By the inductive hypothesis, we have two vertex-disjoint paths R1 and R2 in
CQ0

n−1, such that (i) R1 joins u and a with l(R1) = 2n−1 − l2 − 1, and (ii) R2 joins x
and (y)n with l(R2) = l2 −1. Because we have a Hamiltonian path S of CQ1

n−1 −{y}
joining (a)n and v, we can set P1 = 〈u, R1, a, (a)n, S, v〉 and P2 = 〈x, R2, (y)n, y〉
to form our required paths. See Fig. 6b for illustration.

Subcase 6.3. (x, y) 
∈ E(CQn) and {(x)n, (y)n} = {u, v} and n ≤ l2 ≤ 2n − 2. Let p
be a neighbor of x in CQ0

n−1 with p 
= u. The following conditions are distinguished.

Condition 6.3.1. n + 1 ≤ l2 ≤ 2n − 2. Let a be any vertex of CQ0
n−1 − {u, x,p}. By

Lemma 3, we have a Hamiltonian path R of CQ0
n−1 − {x,p} joining u and a. By the

inductive hypothesis, there exist two vertex-disjoint paths S1 and S2 in CQ1
n−1, such

that (i) S1 joins (a)n and v with l(S1) = 2n−1 − l2, and (ii) S2 joins (p)n and y with
l(S2) = l2 − 2. By setting P1 = 〈u, R, a, (a)n, S1, v〉 and P2 = 〈x,p, (p)n, S2, y〉,
P1 and P2 are our required paths as shown in Fig. 6c.

Condition 6.3.2. l2 = n. By Lemma 10, we have a path S of length n − 2 in
CQ1

n−1 − {v} joining (p)n and y. We write S as 〈(p)n, S′,q, y〉. By Lemma 7, there
exists a Hamiltonian path T in CQ1

n−1 − V (S′) joining y and v, and T can be writ-
ten as 〈y, z, T ′, v〉. In CQ0

n−1 − {x,p}, we have a Hamiltonian path R joining u and
(z)n . Then, P1 = 〈u, R, (z)n, z, T ′, v〉 and P2 = 〈x,p, (p)n, S′,q, y〉 are our required
paths. See Fig. 6d for illustration.

Subcase 6.4. (x, y) ∈ E(CQn) and n + 1 ≤ l2 ≤ 2n − 2. Let p be a neighbor of x in
CQ0

n−1 with p 
= u and (p)n 
= v. Moreover, let a be a vertex of CQ0
n−1 − {u, x,p}

with (a)n 
= v. By Lemma 3, there exists a Hamiltonian path R in CQ0
n−1 − {x,p}
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joining u and a. By the inductive hypothesis, we have two vertex-disjoint paths S1
and S2 in CQ1

n−1, such that (i) S1 joins (a)n and v with l(S1) = 2n−1 − l2, and
(ii) S2 joins (p)n and y with l(S2) = l2 − 2. Then, P1 = 〈u, R, a, (a)n, S1, v〉 and
P2 = 〈x,p, (p)n, S2, y〉 are the required paths.

Subcase 6.5. (x, y) ∈ E(CQn) and l2 = n. Let p be a neighbor of x in CQ0
n−1, such

that p 
= u and (p)n 
= v. By Lemma 10, there exists a path S of length n − 2 in
CQ1

n−1−{v} joining (p)n and y. We write S as 〈(p)n,q, S′, y〉. By Lemma 7, we have
a Hamiltonian path T of CQ1

n−1 − V (S′) joining (p)n and v, and T can be written as
〈(p)n, z, T ′, v〉. Then, consider the following two conditions.

Condition 6.5.1. (z)n 
= u. Because there exists a Hamiltonian path R in CQ0
n−1 −

{x,p} joining u and (z)n , we can set P1 = 〈u, R, (z)n, z, T ′, v〉 and P2 =
〈x,p, (p)n,q, S′, y〉. Then, P1 and P2 are the required paths. SeeFig. 6e for illustration.
Condition 6.5.2. (z)n = u. For convenience, we rewrite T ′ as 〈z, T1, a,b, T2, v〉 for
some vertices a and b. By Lemma 5, there exists a Hamiltonian path R in CQ0

n−1 −
{u, x,p} joining (a)n and (b)n . Then, P1 = 〈u, z, T1, a, (a)n, R, (b)n,b, T2, v〉 and
P2 = 〈x,p, (p)n,q, S′, y〉 are our required paths. See Fig. 6f for illustration.

The above argument of all cases completes the proof. ��

4 Concluding remarks

The crossed cube architecture is a popular variant of the hypercube network owing to
its useful topological properties. In particular, a k-DPC can be found in the crossed
cube [37,38]. Previous work [33] addressed a method for finding a 2-DPC of a crossed
cube whose vertex-disjoint paths have the same length. In this paper, we studied the
2-DPC panconnectedness of the crossed cubewhose vertex-disjoint paths have diverse
lengths. The brute force search result of running a computer programonCQ5 indicated
that there is no path of length four in CQ5 − {u, v} joining x and y, if u, v, x, and y
form a C4 with conditions such as (i) v = (u)2, x = (u)1, and y = ((u)1)2, and (ii)
v = ((u)1)2, x = (u)1, and y = (u)2. Furthermore, there is no path of length three
in CQ5 − {u, v} joining x and y, if u, v, x, and y form a C4 with conditions such as
v = (u)1, x = (u)2, and y = ((u)2)1. Consequently, we showed that the crossed cube
CQn is 2-DPC n-panconnected for n ≥ 5.

Acknowledgments This work was supported in part by the National Science Council of the Republic of
China under Contracts NSC 99-2221-E-167-025 and NSC 98-2218-E-468-001-MY3.
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