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Abstract The development of big data challenges the computing power and commu-
nication capability of cloud architecture, but traditional resource-allocation algorithms
performpoorly due to the large-scale communication among cloud nodes. In this paper,
a dynamically hierarchical, resource-allocation algorithm is proposed for multiple
cloud nodes collaborating in big data environment. Using fuzzy pattern recognition,
the algorithm dynamically divides tasks and nodes into different levels based on com-
puting power and storage factors. Thus a dynamically adjusted mapping is generated
between tasks and nodes. When a new task arrives, only the nodes corresponding to
the task level join in the bid. The algorithm takes advantages of dynamical hierarchy
to reduce the communication traffic during resource allocation. Both theoretical and
experimental results illustrate that the proposed algorithm outperforms the MinMin
algorithm in terms of communication traffic and makespan.

Keywords Cloud computing environment · resource-allocation · Task level · Fuzzy
pattern recognition

1 Introduction

Cloud computing [1] and big data [2,3] are the blistering issues in the modern day.
Many researchers have done a lot of research and gained some achievements. Cloud
computing is a computing prototype, which serves cloud users by providing comput-
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ing resources through a network. A cloud contains a parallel and distributed system
interconnecting computing resources or virtual computing resources [4]. There are
many popular cloud computing environments, such as Amazon EC2 [5] and IBM
Smart Cloud [6]. In cloud computing environments, the users of the cloud service
consume cloud resources as a service and pay for the service they use. The service
is based on the service level agreement (SLA), which specifies the quality of service
(QoS) between a service provider and a service consumer [7,8]. SLA usually includes
the service price, with the level of QoS adjusted by the price of the service. The typi-
cal pay-per-use model reduces the initial cost of enterprises, thus most of them adopt
clouds.

Recently, the rapid development of terminal devices led to certain amount of data
surge into the Internet. Petabyte-scale collections of data come from click streams,
transaction histories, sensors [9,10]. These data must be processed quickly, which has
become an immense challenge to the computing power of the supercomputer and cloud
architecture [11,12]. Thus, some cloud providers deploy geographically distributed
data centers, or take some heterogeneous computer cluster as the nodes of cloud. These
new cloud architectures insistently obliged an efficient resource-allocation algorithm
[13,14].

Resource allocation in cloud computing environment is responsible for assigning
the available resources to a set of tasks which form the workload. The resource-
allocation algorithm contains some protocols and policies that can choose the most
suitable resources and improve system performance [15]. Concerning resource-
allocation problem, immediate policy and best effort policy [16] are typical in cloud
environment. In recent years, some new heuristic algorithms such as deadline-drive
[16–18] and energy-aware [19–21] have been proposed to improve the traditional
algorithms, and havemade certain progress. The resource-allocation algorithmswhich
executed with virtual machines also have achieved better system efficiency [22–24].

However, most algorithms only consider a single factor, either the task execution
time or communication traffic [25]. Therefor some multi-objective algorithms [26,27]
are proposed to improve system performance in the distributed systems. These multi-
objective algorithms integrate multiple factors such as computing power, workload
and storage capacity. Furthermore, these algorithms still have limitations with regard
to the dynamical changes of resources.

However, in the process of allocating resources, the node which generates tasks
needs to notify all the other nodes and collect their information. Thus, a large number
of communication messages burst out in a short time and as results it will increase
the communication traffic, complexity and decrease the system performance severely.
To solve this problem, we divide tasks and nodes into different levels to reduce the
nodes number during the bidding process. In order to assign tasks to different levels,
we compute task levels by using the fuzzy pattern recognition method [28,29]. Fuzzy
pattern recognition is based on fuzzy information of an object in accordance with the
principle of fuzzy mathematics [30]. The direct fuzzy pattern recognition method uses
fuzzy sets to describe pattern type based on the principle of maximum membership
degree. It aims at determining the mapping between the pattern and the task. In recent
years, this technology is applied to task scheduling and resource allocation [31,32] in
distributed systems [33], grid computing [34] and cloud computing [35]. After using
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fuzzy pattern recognition it successfully stabilizes the result of task leveling, leading
to a robust result. The robustness contributes towards simplifying the subsequent
resource-allocation process.

In this paper, we propose a dynamically hierarchical, resource-allocation algorithm
(DHRA) to solve the problem of a colossal number of messages generated during
resources allocation. DHRA divides tasks into different levels through the method of
fuzzy pattern recognition and heaves task information into the corresponding level in
the task pool. Thus any nodes with idle ability choose tasks from the corresponding
level of the task pool. That is to say only the nodes that are corresponding to the level
of target task and having idle ability are able to join the bidding. Then the number of
messages is reduced effectively, and communication traffic will also be reduced. Each
node in DHRA has independent decision-making ability. The proposed algorithm not
only increases system reliability, but alsomeets large-scale application service demand
in cloud computing environment. By analyzing and experimenting with DHRA, the
feasibility and effectiveness of DHRA can be proved and communication messages
and communication traffic can be reduced.

In Sect. 2, we review the related works. In Sect. 3, we introduce the system frame-
work. In Sect. 4, we describe DHRA algorithm. DHRA contains the level of task, the
dynamic mapping between task level and nodes and the bidding process. In Sect. 5, we
analyzeDHRAand prove thatDHRAcan reduce the number ofmessages significantly.
In Sect. 6, we prove DHRA can reduce the communication traffic and makespan more
effective thanMinMin algorithmby related experiments.We reach our final conclusion
in Sect. 7.

2 Related work

On the verge of a big data era, the cloud computing system has become one of the
most crucial research issues. The large-scale data center has helped relieve this issue
to a certain degree. In the meantime, there has also been a considerable amount of
research conducted using software approaches, such as resource allocation and task
scheduling [16–24,26,27].

The deadline-drive algorithms are popular. In [16], the authors propose dynamic
planning based scheduling algorithm, which supports deadline sensitive leases in
Haizea while minimizing the total number of leases rejected by it. They find multiple
slots in addition to finding a single slot while scheduling a deadline sensitive lease.
It also applies two concepts (swapping and backfilling) in addition to preemption,
while rescheduling already accommodated leases to make space for a newly arrived
lease. Researchers in [17] present Aneka’s deadline-driven provisioning mechanism.
This allocation decision is driven by the application QoS, which is expressed in terms
of the deadline for application completion. The deadline-driven policy considers the
time left for the deadline and the average execution time of tasks that compose an
application to determine the number of resources required. Similarly, in [18], deadline
and budget constrained cost-time optimization algorithm is proposed in order to rely
on sub tasks with considerations of communications between each other.
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The energy-efficient algorithms are also a research hotspot. In [19], Anton et al.
propose architectural principles for energy-efficient management in clouds. Further
they have proposed energy-efficient resource-allocation policies and scheduling algo-
rithms considering QoS expectations and power usage characteristics of the devices.
It improves energy efficiency of the data center, while delivering the negotiated QoS.
In [20], two energy-conscious task consolidation heuristics also have been presented.
These heuristics assign each task to the resource on which the energy consumption
for executing the task is explicitly or implicitly minimized without the performance
degradation of the task. Wu et al. [21] propose a green energy-efficient scheduling
algorithm using the DVFS technique for cloud computing data centers. The schedul-
ing algorithm searches available servers to create VMs for allocating a job under the
requirements of the job and selects the solution that consumes the least energy. These
energy scheduling algorithm all efficiently increase resource utilization; hence, they
can decrease the energy consumption for executing jobs.

Some researchers try to deal with resource allocation by using virtual machine.
Xiao et al. [22] propose that uses virtual technology to allocate data center resources
dynamically. They introduce the concept of “skewness” to measure the unevenness in
the multi-dimensional resource utilization of a server. Daniel and Odej [23] introduce
project Nephele, which explicitly exploits the dynamic resource allocation offered
by today’s IaaS clouds for both task scheduling and execution. Particular tasks of
a processing job can be assigned to different types of virtual machines, which are
automatically instantiated and terminated during the job execution. A new proactive
workload management model [24] proposed for virtual resources to inspect the work-
load behavior of the running virtual machines, and to assert an appropriate scheduling
and resource consolidation scheme in order to improve the system efficiency, utiliza-
tion, and throughput.

Some multi-objective algorithms are proposed. In [26], researchers design a multi-
agent based task scheduling mechanism, and schedule tasks according to multiple
factors, such as task execution time and communication traffic. In [27], they study the
multi-agent mechanism further, and discuss the weight of each factor. These multi-
objective scheduling algorithms have better intelligence and stability, while the system
efficiency and resource utilization are also improved.

3 System framework

DHRA is a hierarchical algorithm to reduce the number of messages and communica-
tion traffic in cloud computing environment. It divides tasks and nodes into different
levels and brings out a dynamicmapping between tasks and nodes. Therefore the range
of target nodes shrinks from all nodes to the nodes of the corresponding level inDHRA.
Then the number of messages is reduced, meaning the reduction of communication
traffic.

The system framework consists of: a task pool, nodes and the resource-allocation
algorithm named DHRA. The system framework is shown in Fig. 1.

As shown in Fig. 1, the upper part is the task pool with different levels, these
levels represented by L1, L2, L3 and so on. The lower part is nodes set. Each circle
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Fig. 1 The system framework

Fig. 2 The format of task information

represents a node (such as h1, h2, h3), which might be an independent computer or
a cluster. These nodes all can meet the minimum task requirement. The left part of
Fig. 1 shows that every node has two task queues. They are Queue_Wait (the queue
of tasks to be scheduled) and Queue_Allo (the queue of tasks that has been allocated
to the node). The arrows represent corresponding relations between nodes and levels.

The task poolwith hierarchy is proposed in our paper.When a new task is generated,
the task level is calculated according to the resource requirement (such as computation
load, required storage space and required disk space). To search a better target node,
information about every task should be recorded by the corresponding level of the task
pool. Task information includes TaskID, NodeID, computation load, required storage
space, required disk space and life cycle. A record in the task pool is formed by one
task information. The format of task information in the task pool is shown in Fig. 2.

Similarly, the nodes adopt the idea of hierarchy. That is, the nodes are also divided
into different levels. The level of nodes is decided according to their idle ability (such
as idle computing power, idle storage space, idle disk space and work load). Because
the idle ability of nodes is always changing, the mapping between tasks and nodes is
not static but dynamical.

DHRA publicizes and manages task information of different levels in the task pool.
Eachnode selects taskswhose resource requirement can bemet from the corresponding
level of the task pool, and sends the bid information to the task owner. DHRA chooses
the maximum bidder as the successful node and submits the task to it. The successful
node executes the task and returns the result to the task owner.

123



Dynamically hierarchical resource-allocation algorithm... 2753

4 The dynamically hierarchical resource-allocation algorithm

In this section, DHRA algorithm is presented and discussed in detail. The proposed
algorithm is based on FastBid algorithm [36] and task level. In this paper the resource-
allocation problem is described as follows: n nodes and m tasks in cloud computing
environment. Nodes set is represented by H = {h1, h2, . . . , h j , . . . , hn}. When m
tasks need to be executed, the set of tasks is defined as T = {t1, t2, . . . , ti , . . . , tm}.
Each task must be executed by one node. All nodes bid for target tasks which is in the
corresponding level.

For a given task, DHRA calculates the task level. Its owner packages task informa-
tion into a record and then throws it into the corresponding level of the task pool. Nodes
with idle ability read tasks in the corresponding level of the task pool. If the resource
requirement of the task can be met, the node will bid for it. For a specific task, only
nodes which can meet the resource requirement and in the corresponding level join the
bid for it. The successful bidder is selected according to the evaluation value which
comprehensively considerate computing power, storage capacity and bandwidth. Then
the target task was assigned to the successful node.

The algorithm contains the process of the task owner which is triggered by
Queue_Wait and the process of bidders which are periodically start-up for select-
ing tasks from the corresponding level of task pool. The flow chart of DHRA is shown
in Fig. 3.

The algorithm includes three main concerns:

1. The level of task.
2. The dynamic mapping of task level and node.
3. The evaluation value of task.

4.1 The level of task

In order to manage high efficiency of the dynamical hierarchical mapping, five levels
are defined in the task pool, respectively represented by L1, L2, L3, L4 and L5. Every
task belongs to one level. The process of deciding the level of a task is:

(1) The indicators of task level:

The indicators of task level are defined as a task information space,which is represented
by T while ti (1 ≤ i ≤ m) represents different task information. In this paper, the
information of a task which is considered as indicators to determine task level contains
computation load (TC), required storage space (TM) and required disk space (TD).
So the task information space is shown as:

T = {t1, t2, . . . , ti , . . . , tm}
TC = {tc1, tc2, . . . , tci , . . . , tcm}
TM = {tm1, tm2, . . . , tmi , . . . , tmm}
TD = {td1, td2, . . . , tdi , . . . , tdm}
ti = {(tci , tmi , tdi )|tci ∈ TC, tmi ∈ TM, tdi ∈ TD, 1 ≤ i ≤ m}

.
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Fig. 3 The flow chart of DHRA

According to these indicators, every task belongs to the five fuzzy sets of task levels
by a certain degree.

(2) Adjusting and conversion of task indicators:

For every task, in order to build the membership function of task level, the three task
indicators (i.e.tci , tmi , tdi ) need to be normalized and standardized.

In this paper, the linear function of conversion is used to normalize the parameters so
that it can obtain the value limited in (0, 1), then denote three parameters (i.e. tci , tmi ,
tdi ) after conversion them as tci_N , tmi_N and tdi_N . Using the standard deviation
standardization to eliminate the big gap of the indicators value, so that modify these
normalized parameters (i.e. tci_N , tmi_N , tdi_N ) and get the standard values tci_S,
tmi_S and tdi_S respectively.
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Fig. 4 The membership function of task level

(3) Membership function of task level:

The levels L1, L2, L3, L4 andL5 are a division of task information space, and constitute
a group of fuzzy sets of tasks level. The corresponding membership functions are
represented by _L1, _L2, _L3, _L4, _L5. x represents different value of tci_S, tmi_S
and tdi_S, then the membership function of fuzzy task level could be shown as:

_L1 =
⎧
⎨

⎩

1; x ≥ 0.8
(x − 0.6)∗5; 0.6 ≤ x < 0.8
0; x < 0.6

_L2 =

⎧
⎪⎪⎨

⎪⎪⎩

0; x ≥ 0.8
(0.8 − x)∗5; 0.6 ≤ x < 0.8
(x − 0.5)∗10; 0.5 ≤ x < 0.6
0; x < 0.5

_L3 =

⎧
⎪⎪⎨

⎪⎪⎩

0; x ≥ 0.6
(0.6 − x)∗10; 0.5 ≤ x < 0.6
(x − 0.4)∗10; 0.4 ≤ x < 0.5
0; x < 0.4

_L4 =

⎧
⎪⎪⎨

⎪⎪⎩

0; x ≥ 0.5
(0.5 − x)∗10; 0.4 ≤ x < 0.5
(x − 0.2)∗5; 0.2 ≤ x < 0.4
0; x < 0.2

_L5 =
⎧
⎨

⎩

0; x ≥ 0.4
(0.4 − x)∗5; 0.2 ≤ x < 0.4
1; 0 ≤ x < 0.2

. (1)

The figure of this membership function is shown in Fig. 4.
Hence the membership degree of each task indicator to each task levels can be

calculated according to the computation load of tasks, required storage space of tasks
and required disk space of tasks.
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(4) Calculation of task level:

tci_S, tmi_S and tdi_S are introduced into the membership function Eq. (1). Then the
membership degrees of computation load, required storage space and required disk
space of tasks to every level are obtained, and are represented by _y(tci_S), _y(tmi_S)
and _y(tdi_S) respectively while y ∈ (L1,L2,L3,L4,L5). Hence the membership
degree of each task to every level can be calculated according to Eq. (2).

_y(ti ) = x1
∗_y(tci_S) + x2

∗_y(tmi_S) + x3
∗_y(tdi_S); y ∈ (L1,L2,L3,L4,L5).

(2)
where _y(ti ) represents the membership degree of task ti to the task level y. x1, x2 and
x3 are the weight of each indicator, while x1, x2, x3 ∈ (0, 1) and x1 + x2 + x3 = 1.

Hence the task levels can be obtained on the basis of the maximum membership
principle. The Equation is shown as Eq. (3)

_y∗(ti ) = max{_y(ti )|y ∈ (L1,L2,L3,L4,L5), 1 ≤ i ≤ m}. (3)

Thus, we consider that level of task ti is y, and the degree of membership is _y∗(ti ).

4.2 The dynamic mapping between task level and node

In this paper a dynamic mapping between task level and node is created. Each node
corresponds to one task level at a certain point of time. The corresponding task level
of nodes is calculated by using the same method of task level. The indicators of
nodes are: the idle computing power (hc j (1 ≤ j ≤ n)), the idle memory space
(hm j (1 ≤ j ≤ n)), and the idle disk space (hd j (1 ≤ j ≤ n)). According to this
information of node, the corresponding level of nodes can be decided according to the
fuzzy pattern recognition. Since the workload of a node may change with the change
of system, so the corresponding level of a node are dynamic. The dynamic mapping
is constructed between tasks and nodes.

4.3 Get the evaluation value

A node can read all tasks in the corresponding level of the task pool. If it can meet the
demand of a task, it needs to calculate an evaluation of itself to join the bidding. Then
the task owner chooses the node which the maximum evaluation as the target node.

To achieve better comprehensive evaluation for multi-objective, we use Eq. (4) as
the evaluation function to calculate the evaluation value of bidders:

fi j = y1ci j + y2/t_endi j + y3/w j , (y1 + y2 + y3 = 1). (4)

fi j is the evaluation value of task ti on node h j . ci j represents the inter dependency
between task ti and node h j which is calculated by using Eq. (5). t_endi j represents
the earliest completion time of ti on h j , which is calculated by using Eq. (6). w j
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represents the load of h j which is calculated by using Eq. (8). y1, y2 and y3 are the
coefficients of ci j , 1/t_endi j and 1/w j .

The definition of the inter dependency ci j between ti and h j is:

ci j =

⎧
⎪⎨

⎪⎩

∑
j∈T j ei j∑
l∈T eil

; ∑

l∈T
eil �= 0

0; ∑

l∈T
eil = 0

⎫
⎪⎬

⎪⎭
(i = 1, 2, . . . ,m; j = 1, 2, . . . , n) (5)

where Tj is the task set which is allocated to h j ,
∑

j∈Tj
ei j represents total commu-

nication traffic between task ti and Tj , and
∑

l∈T eil represents total communication
traffic between task ti and all tasks. Allocating tasks to the node which has maximum
ci j can reduce communication traffic effectively.

The earliest completion time t_endi j of task ti on node h j is:

t_endi j = h_end j + t_Processi j + t_transi j (6)

where t_endi j represents the calculating completion time of all tasks in node h j which
is calculated by Eq.(7). t_Processi j represents the time of processing task ti on node
h j . And t_transi j represents the time of transferring task ti to node h j .

The calculating completion time of all tasks in a node is represented by h_end j .
The length of ready queue is defined as Queue_Length j . Task execution time of
Queue_Allo is defined as t_Processk(0 ≤ k ≤ Queue_Length j ). Then the completion
time h_end j of node h j is defined as:

h_end j =
Queue_Length j∑

k=1

t_Processk . (7)

The load of the node is according to various parameters related to efficiency of the
node timely, including network traffic S, CPU utilization U , memory utilization M
and disk utilization D. And then calculate load w of each node by Eq. (8) according
to these parameters.

w = x1S + x2U + x3M + x4D
(
xi ≥ 0,

∑
xi = 1

)
. (8)

The evaluation of nodes to a task according to ci j , t_endi j andw j can be calculated
by using Eq. (4) and sends it to the task owner.

5 Analysis

In DHRA, the bidding process can avoid a large number of messages in the process
of resources allocation. When allocating resources by using traditional algorithms, if
a task is generated, the owner has to collect information of all the other nodes. All
the other nodes also have to send their information to the task owner. If a system
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with a large number of nodes and tasks, extensive messages will be produced in
the process of resource allocation. Communication traffic will increase sharply and
system performance will certainly decrease. Moreover, with the increasing of nodes,
the complexity of resource allocation will also increase. DHRA uses task pool which
has different levels to publish tasks. It only needs to send task information to the
corresponding level in the task pool. Then any node can select reasonable task from
the corresponding level instead of blindly send their resource information. Therefore
the number of messages is reduced and communication traffic also decreases.

When there are n nodes and m tasks, the set of nodes is defined as H =
{h1, h2, . . . , hn} and the set of tasks is defined as T = {t1, t2, . . . , tm}.
(1) Traditional resource-allocation algorithms

In traditional resource-allocation algorithms, if there is task ti (1 ≤ i ≤ m) on node
h j (1 ≤ j ≤ n), h j has to notify all other nodes hk(1 ≤ k ≤ n, k �= j) that task ti is
generated. Nodes hk(1 ≤ k ≤ n, k �= j) should send their evaluation information to
h j after receiving the notification. Then the node h j selects the target node among all
bidders. Therefore, the number of messages is 2(n− 1) for each task. For m tasks, the
whole number of messages is represented by below formula:

a = 2m(n − 1). (9)

(2) DHRA

When allocating resources in DHRA, the tasks will be divided into different levels.
The set of levels is defined as L = {L1, L2, . . . , L p}. The process of selecting the
target node has three phases: recording tasks in different levels, selecting one task and
bidding.

(1) Recording tasks in different levels:

In DHRA, task level is calculated by using Eq. (3) and task information will be
packaged into a record and it will be sent to the corresponding level in the task pool.
Only a piece of information is produced when there is a new task to be executed is
generated. For m tasks, the number of messages in this phase is:

b1 = m. (10)

(2) Selecting one task:

In this phase, all nodes collect their resource information and calculate the correspond-
ing level of the node. Then nodes select one task from the corresponding level in the
task pool. If demand of the task can be met, task information will be sent to the node.

For the set of levels L = {L1, L2, . . . , L p}, assumed that the number of tasks in level
Lk is Nk(1 ≤ k ≤ p). Then the set of tasks in level Lk is defined as TLk (1 ≤ k ≤ p)
and the set of nodes in level Lk is defined as HLk (1 ≤ k ≤ p).
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The sets of tasks in different levels are:

TL1 = {ttaski1 , ttaski2 , . . . , ttaskiN1},
TL2 = {ttask j1, ttask j2 , . . . , ttask jN2},
. . .

TLp = {ttaskk1 , ttaskk2 , . . . , ttaskkNp },

t j ∈ T (1 ≤ j ≤ m) and thus TLi (1 ≤ i ≤ p) is a sub-set of T .
The sets of nodes of each level are:

HL1 = {hnodei1 , hnodei2 , . . . , hnodeiM1},
HL2 = {hnode j1 , hnode j2 , . . . , hnode jM2},
. . .

HLp = {hnodek1 , hnodek2 , . . . , hnodekMp },

h j ∈ H(1 ≤ j ≤ n) and thus HLi (1 ≤ i ≤ p) is a sub-set of H .
Because the node needs to select one task from the corresponding level, the number

of messages in this step is:

b2 = (hnodei1 + hnodei2 + · · · + hnodeiM1) + (hnode j1 + hnode j2 + · · · + hnode jM2)

+(hnodek1 + hnodek2 + · · · + hnodekMp ). (11)

And because of:

(hnodei1 + hnodei2 + · · · + hnodeiM1) + (hnode j1 + hnode j2 + · · · + hnode jM2)

+(hnodek1 + hnodek2 + · · · + hnodekMp ) = n. (12)

So according to Eqs. (11) and (12) there is:

b2 = n. (13)

If a node met the demand of one task, task information will be sent to the node.
Otherwise nomore information needs to be sent. So in this step the number ofmessages
is less than b2, which is:

b3 ≤ b2. (14)

So according to Eqs. (13) and (14), there is:

b3 ≤ n. (15)

(3) Bidding:
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Table 1 The comparison of the number of messages

m, n a = 2mn bmax =
m + 3n

m, n a = 2mn bmax =

m + 3n

m = 5, n = 5 40 20 m = 200, n = 50 19, 600 350

m = 10, n = 8 140 34 m = 500, n = 100 99, 000 800

m = 15, n = 10 270 45 m = 1000, n = 200 398, 000 1600

m = 50, n = 20 1900 110 m = 5000, n = 1000 9, 990, 000 8000

m = 100, n = 30 5800 190 m = 10,000, n = 2000 39, 980, 000 16, 000

This phase is accomplished by negotiation algorithm in DHRA. After reading tasks
information in the task pool, the node will send bidding information to the owner of
the target task. The number of messages in this phase is:

b4 ≤ b3. (16)

So according to Eqs. (15) and (16), there is:

b4 ≤ n. (17)

So the total number of messages of DHRA is:

b = b1 + b2 + b3 + b4 ≤ m + n + n + n = m + 3n. (18)

The maximum value of b is defined as bmax, according to Eq. (18), there is:

bmax = m + 3n. (19)

With the increasingnumber ofmandn, the numbers ofmessages byusing traditional
algorithms and DHRA are shown in Table 1.

Function g(m, n) is defined as g(m, n) = a − bmax = 2m(n − 1)− (m + 3n), and
there is:

g(m, n) = 2mn − 2m − m − 3n = (mn − 3m) + (mn − 3n)

= m(n − 3) + n(m − 3). (20)

When n ≥ 3 and m ≥ 3, there is g(m, n) ≥ 0, which equals to 2m(n − 1) − (m +
3n) ≥ 0. So we can draw the conclusion in Eq. (21).

2m(n − 1) ≥ (m + 3n), (n ≥ 3,m ≥ 3). (21)

According to Eqs. (9) and (21) there is:

a ≥ (m + 3n), (n ≥ 3,m ≥ 3). (22)
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And according to Eqs. (19) and (22) we can draw the conclusion in Eq. (23).

b ≤ a. (23)

FromTable 1, we can find that DHRA can savemore number ofmessages compared
to the traditional algorithm with the increasing of m and n. When the number of
tasks is small, the number of messages of traditional algorithms and DHRA have the
complexity of O(n). When m is close to n, the complexity of traditional algorithms
is O(n2) and the complexity of DHRA is still O(n).

So with the increasing number of tasks and nodes, DHRA can reduce the number
of messages effectively. Therefore, the communication traffic is also decreased.

Dividing tasks into different levels not only reduces the number of messages and
communication traffic, but also reasonable the choice of the target node during allocat-
ing resources. For tasks in corresponding level, nodes join only the bidding for tasks
whose resource demand can be met. Therefore the idle ability of nodes will be fully
used. The problem of nodes with great idle ability being occupied by small tasks can
be solved. Besides, if there are some nodes with great idle ability, the tasks with large
demand can be processed as early as possible.

6 Experiments and comparisons

In this section,we simulateDHRAbyusingCloudSim [37], and compare the efficiency
of DHRA with MinMin algorithm. In the experiments of the two algorithms, not only
the environment but also the dynamical changes of nodes should be same. The results
illustrate that DHRA have less makespan and communication traffic than MinMin
algorithm.

6.1 Parameter settings

In the simulation experiments, the number of tasks is t and the number of nodes is n.
While n = 10, n = 20 and n = 30, different number of random tasks are generated
respectively to compare DHRA and MinMin. When n = 10, the number of tasks
sets [30, 130]. When n = 20, the number of tasks sets [50, 150]. When n = 30, the
number of tasks sets [100, 200].

In the experiments, not only the number of tasks and nodes should be same for
two algorithms, but also the parameters of tasks and nodes should be same. Thus the
parameters of nodes are set as follows: the range of the rating of CPU (which represents
the computing power) is [1.8, 4.2GFlops]. The range of storage space is [600, 1400M].
The range of disk space is [60, 140 G]. The range of bandwidth is [1800, 4200 Mbps].
The parameters of tasks are set as follows: the range of computation load is [180,
420 GFlop]. The range of traffic with other tasks is [1, 3 M]. The range of required
storage space is [18, 42 M]. The range of required disk space is [60, 140 M]. In each
experiment, we allocate resources for the same set of tasks using the two algorithms
in the same environment.
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6.2 Comparison of communication traffic

The set of nodes and the set of tasks are generated randomly according to the scale
of parameters above. Firstly, compare DHRA and MinMin in communication traffic
through three sets of experiment with different number of nodes and tasks. The com-
munication traffic includes not only the communication traffic between tasks, but also
the communication traffic of sending tasks to the target node and the biding message.
When n = 10, the results of communication traffic of different number of tasks are
shown in Fig. 5. When n = 20, the results are shown in Fig. 6. When n = 30, the
results are shown in Fig. 7.

From Figs. 5, 6 and 7 we can see that DHRA has less communication traffic than
MinMin when n = 10, n = 20 and n = 30. The reason is that DHRA takes the
communication traffic into account in the process of allocation. And in DHRA the
negotiation algorithm is multi-level. So the biding relate to only the nodes in corre-
sponding level. The nodes with lack or too more computing power does not send the
bid messages, so DHRA has less communication traffic than MinMin.

As shown in Figs. 5, 6 and 7, the difference of communication traffic between
DHRA and MinMin increase with the increasing of the number of nodes and tasks. In
DHRA, for every task only the nodes with corresponding level join in the bid. Hence

Fig. 5 The comparison of communication traffic when n = 10

Fig. 6 The comparison of communication traffic when n = 20
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Fig. 7 The comparison of communication traffic when n = 30

Fig. 8 The comparison of makespan when n = 10

with the increasing of the number of nodes and tasks, the communication traffic of
DHRA grows slowly. That is to say, with the increasing of nodes and tasks number,
DHRA greater advantages in terms of communication traffic of system. This result
coincides with the analysis in Sect. 5.

6.3 Comparison of task completion time

After the comparison of communication traffic, we compare task completion time of
DHRA with MinMin based on the same set of nodes and tasks. When n = 10, the
results of makespan of different number of tasks are shown in Fig. 8. When n = 20,
the results are Fig. 9. When n = 30, the results are shown in Fig. 10.

As Figs. 8, 9 and 10, same to the communication traffic, the makespan of DHRA
also less than MinMin, and the difference between DHRA and MinMin grow with the
number of nodes and tasks. Compare between the three figures, with the increasing
number of tasks at the same number of nodes, the makespan of the set of dependent
tasks also increase. With the increasing number of nodes, the makespan is not increas-
ing and sometimes is decreasing. So we conclude that DHRA efficiently decreases the
communication traffic of cloud computing environment. At the same time, it not only
avoid prolong the makespan, but shorten it.
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Fig. 9 The comparison of makespan when n = 20

Fig. 10 The comparison of makespan when n = 30

7 Conclusions

In this paper, a dynamically hierarchical resource-allocation algorithm is proposed
to solve the problem of extensive messages generated by the increasing of nodes in
cloud computing environment. Tasks are divided into different levels based on com-
putation load, required storage space and required disk space through fuzzy pattern
recognition, and thrown into the corresponding levels of the task pool. The levels of
nodes computed through the same method based on the computing power and work-
load are dynamically related to the corresponding task pool levels. Thus the bidding
process only involves nodes and tasks of the same level and the number of messages
can be reduced effectively, which means the reduction of the communication traffic,
and the occupancy rates of computing, storage and communication in the system are
controlled into reasonable range at the same time, making it more adaptable to the big
data environment. In theoretical analysis and simulation experiments, we compared
the communication traffic and the task completion time between DHRA and MinMin.
The results show that DHRA can reduce message number and communication traf-
fic significantly, with the equal or even fewer tasks completion time compared with
MinMin. DHRA is proved to be efficient for resource allocation in cloud computing
environment.
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