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Abstract Using undersampled k-space data for reconstruction is an effective way to
accelerate data acquisition of magnetic resonance imaging (MRI). With the devel-
opment of compressed sensing (CS) theory, many solutions have been proposed for
undersampled data reconstruction. Moreover, dictionary learning method has shown
good results in improving reconstruction quality. However, CS reconstruction algo-
rithms are time consuming, especially at dictionary training and sparse coding step.
The computation overhead is even higher for three-dimensional reconstruction. With a
large number of slices, data size can be massive and more time consuming. In this paper,
we use three-dimensional dual-dictionary learning scheme for the reconstruction pro-
cedure. Three-dimensional dictionaries train the dictionary atoms in image blocks and
utilize spatial correlation among MR slices. Dual-dictionary learning method coop-
erates low-resolution dictionary and high-resolution dictionary for sparse coding and
image updating, respectively. Compute unified device architecture (CUDA) is utilized
to design the parallel algorithms on graphics processing unit (GPU). We mainly opti-
mize dictionary learning algorithm and image updating. We also develop parallel CPU
codes using OpenMP (Open Multi-Processing) and another version of CUDA codes
with algorithmic optimization. Experimental results show that more than 324 times
of speedup is achieved compared with CPU-only codes with 24 MRI slices and more
than 40 times of acceleration compared with OpenMP codes.
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1 Introduction

Magnetic resonance imaging (MRI) modality is safe and efficient. This method has
no radiation damages to patients and can achieve tomography in any direction with
high soft-tissue contrast. Therefore, MRI has been widely used clinically. However,
conventional MRI has a long sampling time, which may lead to patient discomfort and
motion artifacts in the reconstruction images. Hence, the use of MRI may be limited
in various areas, such as cardiac imaging and functional MRI.

One solution is to perform reconstruction from undersampled k-space data.
This procedure can improve data acquisition speed by sampling less data. Com-
pressed sensing (CS) theory [6,7] suggests that a sparse signal can be reconstructed
from its sparse representation under certain conditions. Therefore, reconstruction
of MRI images can be achieved using undersampled k-space data. CS theory has
been proved to have high quality reconstructions from undersampled measurements
[9,14,24].

Dictionary learning method [8,18,21] is an extremely effective way to estab-
lish adaptive dictionaries with good sparsity. The dictionary can be used to train
sparse representations of signals and reconstruct images. In our work, we uti-
lize k-singular value decomposition (K-SVD) [1] and orthogonal matching pur-
suit (OMP) [5,22,23] algorithm to train dictionaries and obtain sparse representa-
tions.

Ying Song et al. [18] propose a new algorithm for MRI reconstruction using under-
sampled k-space data. They use three-dimensional dictionaries and perform recon-
struction of multi-slice MRI images. In their method, the three-dimensional data are
divided into blocks. Hence, spatial correlation among slices can be used as prior knowl-
edge when training dictionaries and updating result images. Furthermore, they adopt a
new dictionary learning scheme,dual-dictionary learning, with low-resolution dictio-
nary D'°% and high-resolution dictionary D"&" for sparse coding and image updating,
respectively. Their work indicates that dual-dictionary learning scheme is better than
single dictionary learning scheme. In the image updating stage, replacing D'°% with
Dhigh results in significantly improved outputs. Consequently, the number of loops is
reduced and procedure speeds up.

However, three-dimensional reconstruction copes with massive amount of data,
which will increase with the increase in the number of slices. In addition, K-SVD and
OMP are both iterative algorithms which are computationally expensive. The situation
will become even worse when the amount of data increase. Therefore, accelerating
the reconstruction procedure is needed. With the development of cheap hardware and
parallel development tools, graphics processing unit (GPU)-based applications are
widely used and are experiencing rapid development. References [2—4, 16] present how
hardware and software can work in concert on scalable multi-processor systems with a
number of illustrative examples and applications. In our work, we first design parallel
algorithm on GPU directly under the scheme of compute unified device architecture
(CUDA) [12] (we call this version of CUDA code as “original CUDA”). This design
utilizes GPU’s strong computing power and high performance in parallel computing.
Then, we carry out algorithmic optimization proposed in [15], which will serve as basis
for the development of another version of CUDA code (called CUDA after Algorithmic
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Optimization, i.e., CUDA-AO). In both versions of CUDA codes, we emphasize the
optimization and parallelization of K-SVD and OMP algorithm. We also implement
the parallel version codes on CPU using open multi-processing (OpenMP) under nearly
the same parallelization mechanism for CUDA to further verify the efficiency of our
CUDA codes.

GPU has experienced staggering development in recent years. GPU exhibits strong
advantages, including having a stronger computing power than CPU, being cheaper
than CPU but having the same computing load, and natural parallelism. These fea-
tures have contributed to its rapid growth and widely use in scientific computing
and engineering fields. With the constant development of technology, the demand for
real-time and high-resolution 3D imaging techniques has been increasingly grow-
ing. However, the deployment of advanced technologies is limited by processing
time. GPU-based MR image reconstruction acceleration has received considerable
research attention [10,17,19,20]. In our work, we focus on a recent innovation in
MRI reconstruction technique and design a new program that is applicable to GPU
with CUDA architecture. With this approach, we are able to achieve large acceleration
ratios.

CUDA is a programming model and general purpose parallel computing platform
introduced by NVIDIA Corporation in November 2006. CUDA can utilize the parallel
compute engines in NVIDIA GPUs to solve complex and tremendous computational
tasks. This model allows programmers to easily develop programs on GPU without
much knowledge of the GPU internal structure and parallelization mechanism of com-
puting in threads. In CUDA, the smallest execution unit is called thread. Many threads
are grouped into a block. Numerous blocks together form a grid. The threads in the
same block can access the same shared memory, as well as be controlled to be syn-
chronized. CUDA codes consist of the following two parts: host part is executed on
CPU and device part is executed on GPU. The program should manage data trans-
formation between CPU memory and GPU memory, which has relatively long time
cost when processing small-scale data. The powerful computing capability of CUDA
allows this model to be increasingly used in scientific computing areas. In our work,
CUDA runtime API and CUDA Basic Linear Algebra Subroutines (CUBLAS) library
[11], which is a GPU-accelerated version of the complete standard BLAS library, are
used to develop CUDA programs.

The rest of this paper is organized as follows: Sect. 2 presents the reconstruction
algorithm scheme for the three-dimensional MRI reconstruction. Section 3 introduces
the parallel implementations on CUDA, including OMP, K-SVD, and reconstruction
procedure. Section 4 shows the performance of the original CUDA method and CUDA-
AO method. Section 5 draws the conclusions.

2 The reconstruction algorithm scheme
MRI datasets are divided into small blocks for three-dimensional reconstruction. Then,

data are rearranged for further processing. The formulation of the multi-slice MRI
reconstruction [18] is shown in (1).
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Fig. 1 a Three-dimensional MRI series volume. Multi-slice MR images are concerned. b Multi-slice MR
images are divided into blocks. The lowest top-left point of a block is shown
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where x is the unknown image to be reconstructed, R; ;, is the extraction operator,
indexed by the location of the lowest top-left point, (7, j, ¢), in the image block, as
shown in Fig. 1. «; ;, is the sparse representation of x under dictionary D, [|-[|o is
the /p-norm which counts the number of nonzero elements. F,, is the undersampling
Fourier matrix, y is the undersampled k-space measurements, p is the sparsity level,
and v is defined by v = A/o, where A is a positive constant and o is the standard
deviation of the noise.

The first term in (1) restrains the quality of sparse approximations of the image
blocks with respect to dictionary D. The second term controls the data fidelity of the
reconstruction. The reconstruction scheme consists of the following three steps:

1. Dictionary learning step K-SVD algorithm is used to train dual dictionaries D%
and Dhigh,

2. Sparse coding step The image X is assumed to be fixed and dictionary D' is used
to obtain the sparse representation o.

3. Image updating step D'V is replaced by DMeP. o, Dhigh are used to reconstruct
and update the final images.

At the dictionary learning step, we use OMP algorithm in K-SVD [1] to compute the
representation vectors for each column of signal x. At the sparse coding step, OMP
is also utilized to obtain the sparse representations with respect to the low-resolution
dictionary [18]. In addition, the time used by OMP accounts for the largest proportion
of total time consumed by the reconstruction procedure. K-SVD algorithm is efficient
in training adaptive dictionaries [ 1]. We use this algorithm to train both high-resolution
and low-resolution dictionaries in our reconstruction scheme. However, K-SVD is an
extremely computationally expensive iterative method. Later in this paper (please see
Table 2), we can see that the execution time of K-SVD is typically more than 91 %
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of the total time used for reconstruction in original CPU version codes. OMP and
K-SVD are the most time-consuming parts. Hence, we focus on these parts, as well
as develop parallel version algorithms and codes on CUDA, to accelerate the whole
reconstruction process.

3 Parallel implementations on CUDA
3.1 CUDA implementation of OMP

OMP is an attractive sparse signal recovery algorithm that can achieve good perfor-
mance and is easier to implement. OMP is a kind of greedy algorithm. This algorithm
chooses an atom from the dictionary at every step. The atom chosen should be the
closest to the residual signal and has the largest inner product. Then, the signal is
orthogonally projected to the span of selected atoms for approximation. Numerous
matrix/vector operations are found in OMP algorithm, which are convenient and easy
to implement in a parallel manner on GPU. Signal x is a matrix with columns that
correspond to the blocks shown in Fig. 1. Data in one block are rearranged to form
a column vector and then stored in one column of x. Each column in x needs a loop
cycle.

OMP algorithm uses iterative mechanism. In one circle of iteration, one column of
the signal x is manipulated to obtain the corresponding sparse representation. In the
original CUDA method, we simply parallelize the codes inside the iteration in OMP
algorithm. We then develop parallel implementations of matrix/vector operations to
accelerate the codes. Detailed CUDA version OMP algorithm is shown in Algorithm
1. Notably, “0” represents empty set. For a index set I = (i, i2, ..., i,), oy indicates
the sub-matrix of a, which consists of the columns indexed by I, in the order of
11,02, ...,10p.

One important part of OMP is to calculate the pseudo-inverse of matrices. This
procedure is time consuming when matrices are large. Rubinstein et al. [15] introduce
a method that use Cholesky factorization to avoid computation of pseudo-inverse of
matrices in OMP algorithm. We use this method to first optimize the codes algorith-
mically and then transfer the codes to CUDA. The modified OMP algorithm is more
suitable for parallel implementation on CUDA.
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Algorithm 1 Orthogonal Matching Pursuit (OMP) implemented on CUDA

Initialization and Input:

D: dictionary. p: sparse level. a: sparse representation. x: signal.
r: residual signal. A: selected atoms. d;: the 4t column of D.
I: a set that contains the index of all the columns selected from D.
Set a =0,A=0,I=0.
Main Procedure:
1: procedure OMP_KERNEL
2: int tid = blockDim.x * blockIdx.x + threadldx.x

3: if tid is less than the number of columns of signal x then
4: Compute the increasing factor for each intermediate variable.
5: X, + the tid*"column of x

6: T < X

7 while sparse level p is not reached do

8: j « arg max |dTe |

o: I+ (Ij)

10: A~ (A dy)

11: ag — argngn Ix — Ace ||2

12: r<+ X.— Aag

13: end while

14: end if
15: end procedure

Output: o

Data need to be divided into many small blocks for three-dimensional MRI recon-
struction. For instance, for a 4 x 4 x 4 block, all blocks are rearranged together by
adding one column to x for each block. Thus, the number of columns of x may be
extremely large when the slice number of the MRI data becomes larger. In the original
CPU version OMP algorithm, each column of x requires one circle of iteration for
execution. Moreover, large number of loops are necessary and consume much time. In
CUDA, we can assign one thread to execute the operations inside one loop. Numerous
threads can work concurrently to simultaneously compute the results. The number
of threads allocated for computation is the same with the column number of x. We
arrange tens of thousands of threads to compute the OMP_kernel procedure in Algo-
rithm 1. The iteration can be eliminated. In addition, all operations for each column
of x can run simultaneously. The iteration inside the manipulation of each column of
x for reaching the sparse level still exists, which can ensure the convergence for each
signal component.
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In the CUDA version OMP algorithm, numerous intermediate variables should be
allocated space and initialized on GPU memory at the beginning. Numerous threads run
simultaneously and every thread needs to visit all intermediate variables to avoid data
conflict among threads. Hence, we must enlarge the size of all intermediate variables
according to the thread number running at one time. For instance, if a single thread
requires an intermediate variable with size 1,000 in C++ float type and 2,000 threads
run simultaneously, then this intermediate variable should be allocated a memory space
of 1,000 x 2,000 at the initialization stage. Each thread can visit the corresponding
memory indexed by their tid value by adding the increasing factor of the address
pointer for each intermediate variable, as shown in Algorithm 1, line 2. Furthermore,
intermediate variables that remain unchanged during the execution of OMP can be
stored in the shared memory to further speedup the procedure. All functions called
inside the OMP_kernel procedure should be modified properly and defined by the
__device__ declaration specifier, which, like __global__, is part of the C extensions
of CUDA [12].

3.2 CUDA implementation of K-SVD

K-SVD algorithm is utilized to train both low-resolution dictionary and high-resolution
dictionary. K-SVD updates only one column of the dictionary at each circle of iteration,
as well as involves only the signals that use the current atom. The detail of K-SVD
is described in Reference [1]. K-SVD consists of two steps, namely, sparse coding
stage that uses OMP algorithm to compute the sparse representation vectors of each
column of x with a fixed dictionary D and codebook update stage that analyzes data
in the sparse representation o achieved in the sparse coding stage, then computes
the representation error matrix and applies a singular value decomposition (SVD) to
update the dictionary atom and corresponding row in «.

CUDA implementation of K-SVD is shown in Fig. 2. We adopt the CUDA version
OMP method in Algorithm 1 to parallelize the sparse coding stage. The codebook
update stage requires one circle of loop for each column of D. In each loop, the
current dictionary atom and corresponding sparse representation vector are updated.
The updated D and « are used in the next loop. Hence, one circle of iteration depends
on the results of the previous circle. Therefore, the iteration cannot be eliminated by
simply assigning many CUDA threads to run simultaneously. However, we can still
accelerate K-SVD procedure by parallelizing the codes inside the loops.

First, we analyze the data in & by obtaining the indices of items that use the current
dictionary atom. We denote the kth column of D as dy, and set d, the current dictionary
atom being trained. Then, we should obtain the item indices in the kth row of « that
use dy, i.e., whose values are nonzero. In CUDA, we can deploy as many threads as the
number of items in « to traverse the data and simultaneously obtain the results. This
procedure can be implemented before the iteration if we keep track of the row indices of
a, as shown in Fig. 2. Second, computation of the representation error matrix merely
consists of matrix/vector operations. Moreover, this computation is straightforward
manner of parallelizing this procedure on GPU. In addition, we use CULA [13] to
perform singular value decomposition of the error matrix, which is an implementation
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Fig. 2 K-SVD algorithm implemented on CUDA

of the linear algebra package interface for CUDA-enabled GPUs. We also employ
CUBLAS library to accelerate the execution of several linear algebra operations.

SVD operation in the codebook update stage demands considerable amount of
computation. This operation is regarded as time consuming. Rubinstein et al. [15]
develop an approximate K-SVD implementation that avoids SVD operation. We utilize
their method to optimize K-SVD algorithmically and then develop CUDA version
codes of K-SVD, which is part of CUDA-AO method.
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When implementing K-SVD algorithm on CUDA, numerous intermediate results
can be stored on the GPU memory and then used for other GPU computations. For
instance, we can use the data for error matrix computation after obtaining the item
indices in « that use the current dictionary atom. Both operations executed on GPU
and data are stored on GPU memory. Hence, we need not to transfer data between
GPU memory and CPU memory, which requires a relatively long time and degrades
the performance of our codes.

3.3 Image reconstruction using CUDA

Both low-resolution dictionary and high-resolution dictionary are trained by K-SVD
algorithm implemented on CUDA, as we have mentioned in Sect. 1. To update the final
results, we employ the method proposed in [18] and rewrite the codes using CUDA.
First, we use the low-resolution dictionary D' to obtain the sparse representation o
of MRI datasets to be rebuilt. Then, we reconstruct and update the results using D"igh
and «. The detailed reconstruction procedure is shown in Fig. 3.

The reconstruction process requires a few loops to acquire better results, and the
result of one loop iteration is further updated by the following loops. So again, the
iteration cannot be eliminated using CUDA threads parallelization technique. But
luckily, we only need very few iterations [18], just less than 10.

At the sparse coding step, the CUDA version OMP algorithm described in Sect. 3.1
is utilized. We can divide the datasets into many parts to obtain better parallelization
effect. Every part is processed simultaneously with every CUDA thread running an
OMP_kernel procedure. The results of each thread are integrated together to form the
final results. If the GPU memory is insufficient to meet the requirement, a compromise
solution is to execute the process in a few loops. An example would be if 150 numbers
needed be processed, but the GPU memory is capable of dealing with no more than
100 numbers. Clearly, not all data can be processed at the same time. Thus, we divide
the 150 numbers into two parts, dealing with only 75 numbers once. The task will be
finished within two circles of loops. For implementation, the GPU’s memory consists
of 3,072 megabytes (MB). At the sparse coding step, dictionary size is set to 600. For a
256 x 256 x 28 MR dataset, afteritis rearranged by 4 x 4 x 4 block, a new matrix with
asize of 64 x 1,835,008 is obtained, and the size of the sparse representation coefficient
matrix is 600 x 1,835,008, which requires more than 4,400 MB of memory for float
type data. The memory requirement will be even larger if other intermediate variables
are considered. Obviously, the GPU memory cannot meet this demand. This problem
can be overcome by executing the process in a few loops. If the number of loops is
set to 4, only 1,835,008/4=458,752 columns (requiring approximately 1,100 MB of
memory) need to be processed in each loop, and the memory requirement is reduced
to a quarter of the original. In this case, the GPU memory can handle the requirement.

4 Results

We use CUDA 5.5 to develop our programs on GPU. All computations are performed
on a 64-bit computer with Intel Xeon E5640 2.67 GHz CPU and NVIDIA GeForce
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GTX 780 TI GPU under Windows Server 2008 R2 operating system. The experi-
mental computer has two packaged-together Xeon E5640 2.67 GHz CPUs, thus it
has 8 cores and 16 threads. All codes are written with C++ and CUDA C language
with Microsoft Visual Studio 2010 integrated development environment (IDE). Our
host PC has 48 gigabytes (GB) of memory, whereas the memory size of GPU is
3,072 MB. We test the bandwidth of GPU using the sample utility “bandwidthTest” in
the NVIDIA GPU Computing Toolkit. The result shows host-to-device bandwidth is
4.25 GB/s, the device-to-host bandwidth is 5.59 GB/s, and the device-to-device band-
width is 224.34 GB/s, as shown in Fig. 4. All codes are compiled in 64-bit version
within Microsoft Visual Studio 2010 under release mode. Complier options are set
to maximize speed, enabling intrinsic functions and enabling function-level linking.
We mainly use the NVIDIA Visual Profiler to record the running time of the codes.
Timing operations on the host are also used.

We test the acceleration results with different numbers of slices on MRI datasets.
Table 1 shows the time consumed by OMP algorithm at sparse coding step and its
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Fig. 4 Bandwidth of NVIDIA GeForce GTX 780 TI

Table 1 Execution time and speedup of OMP algorithm at sparse coding step

Number OMP executioin time (s) Speedup

of slices
Original OpenMP Original CUDA-AO Original CUDA CUDV-AO
CPU CUDA

Original CPU OpenMP Original CPU OpenMP

4 3897 3645 35.26 7.63 1.11 1.03 5.11 4.78
8 57.65 50.76 6291  14.99 0.92 0.81 3.85 3.39
12 120.94 134.53 89.66  21.43 1.35 1.50 5.64 6.28
16 565.53 144.07 153.64  32.09 3.68 0.94 17.62 4.49
20 629.65 193.07 160.13  32.67 3.93 1.21 19.28 5.91
24 738.13 27423 17644  38.02 4.18 1.55 19.42 7.21
28 1,299.99 318.51 221.69  47.07 5.86 1.44 27.62 6.77

speedup (Fig. 5a shows a more intuitional view). When implemented on CUDA,
numerous threads work simultaneously and the time consumed is reduced. The amount
of data and the time consumed by CPU codes increase rapidly if the number of MRI
slices become larger. The time consumed by OMP increases from 38.97s to 1,299.99s
when the number of slices changes from 4 to 28. However, Original CUDA method
needs 221.69s and CUDA-AO method needs only 47.07s with 28 MRI slices. This
indicates that CUDA can greatly accelerate the procedure. CUDA-AO method avoids
calculating the pseudo-inverse of matrices and is more suitable for parallelization.
Hence, CUDA-AO method achieves better acceleration effect. However, the speedup
obtained by OMP is not so significant when compared with K-SVD (Table 2), because
the iteration for reaching the sparse level still exists to ensure the convergence for each
signal component and this will increase the time overhead.

Table 2 shows the execution time of K-SVD algorithm in original CUDA method
and CUDA-AO method. The results indicate great acceleration. After algorithmic
optimization, SVD is avoided and the method is more suitable for parallelization
using CUDA. Hence, CUDA-AO method achieves much better acceleration effect
than original CUDA method. We can see that when the slice number is 24, original
CUDA method can obtain approximately 305 times of speedup, while approximately
1,912 times of speedup can be achieved if algorithmic optimization is implemented. As
shown in Fig. 5b, the speedup increases significantly with the increase in the number
of MRI slices. The speedup is mostly obtained in the codebook update stage shown in
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Fig. 5 Speedup with different numbers of MRI slices versus original CPU codes: a OMP algorithm at
sparse coding step; b K-SVD algorithm and ¢ total reconstruction procedure

Fig. 2. We deploy many CUDA threads to traverse the data and simultaneously obtain
the results. Many intermediate variables can be stored in GPU memory for further use
and need not to be transferred to CPU memory. This design dramatically reduces the
time consumed.

Table 3 shows the execution time of original CPU codes, original CUDA method,
and CUDA-AO method. We can see that with the increase in the number of MRI slices,
the speedup becomes larger, as shown in Fig. 5¢. The reconstruction procedure of MRI
can obtain more than 20 times of speedup using original CUDA method. The acceler-
ation effect is even better when using CUDA-AO method, which holds approximately
324 times of speedup when the number of slices is 24. The results indicate that both
original CUDA method and CUDA-AO method can achieve good effect of speedup.
Moreover, CUDA-AO method is better. Hence, optimizing the method algorithmically
makes the technique more suitable for parallelization on GPU.
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Table 2 Execution time and speedup of K-SVD algorithm

Number K-SVD execution time (s) Speedup

of slices
Original OpenMP Original CUDA-AO Original CUDA-AO
CPU CUDA CUDA

Original CPU OpenMP Original CPU OpenMP

4 1,408.11 181.67 19.26 2.45 73.12 9.43 575 74.15

7,160.53 918.166 5747 11.05 124.60 15.98 648 83.09
12 14,180.30 1,134.51 60.27  12.15 235.30 18.82 1,167 93.38
16 25,219.81 2,779.86 7847  14.15 321.38 3543 1,782 196.46
20 26,675.44 3,722.44 89.88  14.70 296.78 41.43 1,815 253.23
24 30,640.20 4,421.37 100.37  16.02 305.28 44.05 1,913 275.99
28 37,329.18 5,768.48 106.67  18.42 349.96 54.08 2,026 313.16

Table 3 Execution time and speedup obtained with original CUDA method and CUDA-AO method

Number Total execution time (s) Speedup

of slices
Original OpenMP Original CUDA- AO Original CUDA-AO
CPU CUDA CUDA

Original CPU OpenMP Original CPU OpenMP

4 1,466.73 232987 73275 19.14 20.02 3.18 76.63 12.17

7,251.59 1,030.96 146.44 45.13 49.52 7.04 237.64 22.84
12 14,361.8 1,320.17 187.35 71.62 76.66 7.05 200.53 18.43
16 25,9529 3,016.09 303.65 92.59 85.47 9.93 280.31 32.57
20 29,2145 4,001.44 310.51 95.19 94.09 12.89 306.91 42.04
24 35,789.8 4,833.13 377.33  110.29 94.85 12.81 324.51 43.82
28 38,833.6 6,049.65 437.37 12538 88.79 13.83 309.73 48.25

CUDA-AO method exhibits superior qualities over OpenMP codes, particularly
when the MR data volume is large, as shown in Fig. 6. Although OpenMP codes
utilize nearly the same parallelization mechanism as CUDA-AOQ, the performance of
the former is limited by the computing capability of CPU and is therefore much less
effective than CUDA-AO method. When the MR slice number is 28, we can see that
more than 300 times of speedup is acquired by CUDA-AO method versus OpenMP
for the K-SVD algorithm. Meanwhile, the total reconstruction time of CUDA-AO is
approximately 1/48 of that of OpenMP codes.

For CUDA-AO method, when the number of MRI slices is small, for instance, 4
or 8, the speedup line is low and the acceleration effect is relatively not obvious, as
shown in Fig. 5. With 4 or 8 MRI slices, the amount of data is not overly large and
CPU has strong computing power. Therefore, the performance gap between CPU and
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Fig. 6 Speedup with different numbers of MRI slices versus OpenMP codes: a OMP algorithm at sparse
coding step; b K-SVD algorithm and ¢ total reconstruction procedure

GPU is not substantial. However, when the amount of data is increased to a certain
degree, for instance, 16 MRI slices, the speed-up line becomes rather high and the
acceleration effect becomes extremely obvious. These findings indicate that CUDA is
more capable of dealing with massive data and huge computation. If the number of
slices is further increased, the acceleration effect would be limited by the performance
of the graphics card and the increase in the speed-up line would be insignificant. The
data transfer overheads between GPU and CPU can be easily recorded using NVIDIA
Visual Profiler. The GPU-CPU time for CUDA-AO method is shown in Table 4,
which indicates that the time consumed by GPU-CPU data transfer is relatively short,
and that time gradually increases as MRI data volumes increase. Note that with less
data, the GPU-CPU data transfer time accounts for a relatively large ratio of the total
reconstruction time. This ratio decreases as the data volume becomes larger.
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Table 4 Data transfer time (seconds) between GPU and CPU for CUDA-AO method

Number of slices 4 8 12 16 20 24 28

Device-to-host 0.303 0.623 0.878 1.181 1.484 1.765 2.052
Host-to-device 1.140 1.397 1.654 1.944 2.187 2.459 2.748
GPU-CPU time 1.443 2.020 2.532 3.125 3.671 4.224 4.800
Total time 19.141 45.131 71.619 92.586 95.191 110.292 125.377
Ratio (%) 7.539 4.476 3.535 3.375 3.856 3.83 3.828

5 Conclusion

In this work, we accelerate the reconstruction of MRI by three-dimensional dual-
dictionary learning using CUDA. The parallel algorithms on GPU and acceleration
performance are investigated. We develop the following two versions of CUDA codes:
(1) original CUDA method that directly transfer original CPU codes to CUDA; (2)
CUDA-AO method that first improves the original CPU codes with algorithmic opti-
mization, then implements the codes on CUDA. Parallel codes on CPU are also devel-
oped using OpenMP. Experiments show that approximately 94 times of speedup is
achieved using original CUDA method when the number of slices is 24, while roughly
324 times of speedup is obtained with CUDA-AO method. When compared with
OpenMP, CUDA-AO method can acquire more than 40 times of speedup.

Our methods have achieved great success for the K-SVD algorithm. This indicates
that for some iterative algorithm, when the iteration can’t be eliminated, we can still
acquire acceleration by parallelizing the operations inside the loops. Plenty of CUDA
threads run simultaneously for the OMP algorithm. Moreover, each thread implements
a single OMP procedure individually. Our CUDA implementations extraordinarily
reduce the time consumed by the total reconstruction procedure.

This work shows that CUDA and algorithmic optimization offer great advantages in
accelerating MRI reconstruction. This is an effective way to put long time-consuming
algorithms to practical and clinical use.
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