J Supercomput (2015) 71:2365-2380 @ CrossMark
DOI 10.1007/s11227-015-1385-0

A comparative study of the parallel wavelet-based
clustering algorithm on three-dimensional dataset

Ahmet Artu Yildirnm - Dan Watson

Published online: 5 February 2015
© Springer Science+Business Media New York 2015

Abstract Cluster analysis—as a technique for grouping a set of objects into similar
clusters—is an integral part of data analysis and has received wide interest among
data mining specialists. The parallel wavelet-based clustering algorithm using dis-
crete wavelet transforms has been shown to extract the approximation component of
the input data on which objects of the clusters are detected based on the object con-
nectivity property. However, this algorithm suffers from inefficient I/O operations and
performance degradation due to redundant data processing. We address these issues
to improve the parallel algorithm’s efficiency and extend the algorithm further by
investigating two merging techniques (both merge-table and priority-queue based
approaches), and apply them on three-dimensional data. In this study, we compare
two parallel WaveCluster algorithms and a parallel K-means algorithm to evaluate the
implemented algorithms’ effectiveness.

Keywords Parallel clustering - Discrete wavelet transform - Improved parallel
WaveCluster algorithm

1 Introduction

Cluster analysis is a widely-used technique that is employed to map a set of objects
into groups (i.e., clusters) based on their similar properties, such as spatial and tem-
poral similarity. Sheikholeslami et al. [7] introduced a novel unsupervised cluster-
ing approach, called WaveCluster, utilizing a discrete wavelet transform (DWT) that

A. A. Yildirim () - D. Watson
Department of Computer Science, Utah State University, Logan, UT 84322, USA
e-mail: ahmetartu@aggiemail.usu.edu

D. Watson
e-mail: dan.watson @usu.edu

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1385-0&domain=pdf

2366 A. A. Yildirim, D. Watson

enables data analysts to perform clustering in a multi-level fashion. This method has
the ability to discover clusters with arbitrary shapes and can deal with outliers effec-
tively.

We previously reported a parallel wavelet-based clustering algorithm to process
large datasets using a message-passing library (MPI) for distributed memory archi-
tectures [12]. While this algorithm achieves linear behavior in terms of algo-
rithm complexity, it suffers from inefficient I/O operations over two-dimensional
datasets and performance degradation due to redundant data processing. In this
study, we introduce two parallel wavelet-based clustering algorithms that address
these issues by benefiting collective MPI I/O capabilities and efficient usage of data
structures. Additionally, we cluster three-dimensional datasets with the new algo-
rithms.

To illustrate the effectiveness of this approach, a comparison is performed
between our two new parallel WaveCluster algorithms and parallel K-means clus-
tering algorithm. Because one of the fundamental reasons of employing paral-
lelism is to overcome space restrictions by exploiting aggregate memory on the dis-
tributed memory systems, and to obtain scalable performance, we take these two
important metrics into consideration to measure the performance of the parallel
algorithms.

The rest of the paper is organized as follows. Section 2 gives a brief expla-
nation of wavelet transforms from the point of mathematical and practical views.
We give the main components of the WaveCluster algorithm and its main phases
in Sect. 3. The algorithmic approaches used in the implementation of the paral-
lel algorithms are explained in detail in Sect. 4. Finally, Sects. 5 and 6 provide
experimental results with the analysis of the algorithms and concluding remarks,
respectively.

2 Wavelet transforms

Wavelet transforms (WTs) are a mathematical technique to analyze non-stationary
data to extract frequency information at different resolution scales from the original
signal. WTs are commonly used in variety of areas such as in image compression
[4], speech recognition [10], and in the analysis of DNA sequences [1]. WTs can be
considered a complementary approach to Fourier transforms (FTs). One disadvantage
of FTs is that they cannot determine which frequency band exists at any specific time
interval in the signal. Short-time Fourier transforms (STFTs) might provide a remedy
for time-frequency analysis by dividing the signal into successive segments and then
performing an FT on each one, but STFTs suffer from the requirement of choosing
the ‘right’” window width, where a narrow window leads to good time resolution but
poor frequency resolution, and vice versa. A more detailed discussion of this effect
can be found in [2,6,8].

The main idea of the Wavelet transform is based on the dilation and translation of
the wavelet W (‘small wave’ function) (i.e., the mother wavelet) continuously over the

signal f(¢) [11];

@ Springer

A comparative study of the parallel 2367

Wi (s, f):/ FOWS (H)de ey

The mother wavelet W is defined as;

1 _
Vo) = (t) T) @)

where s is the dilation or scaling factor determining the window width, and the factor
T manages the translation of the wavelet function W. \/L; is for energy normalization.

There are many mother wavelet functions, such as Haar, Daubechies, Morlet and
Mexican hat. Some mother wavelets are depicted in Fig. 1. In order to be regarded
as a mother wavelet, the function must satisfy the two conditions in Eq. (3a), which
indicates the net area of the corresponding wavelet graph must be zero, but the absolute
area cannot be zero (3a). Thus, it must be an oscillating function and have unit energy

[9].

/ T Wy =0 (3a)
/oo |W())?dr = 1 (3b)

In this paper, the approximation coefficients will be referred to as the ‘low-frequency
component’, and the term ‘high-frequency component’ will be used interchangeably
as the detail coefficients of the signal. By means of the mother wavelet function, detail
coefficients can be detected at different time intervals. However, we need another
function used to retrieve average coefficients of the signal, which is referred to as the
scaling function (i.e., the father wavelet) ®. The father wavelet is orthogonal to the
mother wavelet in that both wavelet functions form the basis for the multi-resolution
analysis. In fact, the father wavelet is not considered as a ‘wavelet function’” because it
does not satisfy the condition (Eq. 3a). However, by the combination of both wavelet
functions, we gain the ability to decompose the signal into low-frequency and high-
frequency components.

Algorithm 1 Discrete Wavelet Transform (DWT) algorithm

Require: Signal X with size N = 2level where level is integer

Ensure: List of low-frequency components A and high-frequency components D
1: Ag < X

2:D «— 0

3:for j = 1 — level do

4: [Aj,Dj] <« DWT(D‘\[/(AJ'_I)

5: end for

Algorithm 1 shows the procedure to compute discrete wavelet transforms (DWTs)
that return the list of low-frequency components and high-frequency components. In
DWTs, the size of the input signal must be power of two in each dimension to perfectly

@ Springer

2368 A. A. Yildirim, D. Watson

Haar Wavelet D4 Wavelet
1 1]
0.54
3 o 054
2 E
3 0 =
5; E o0
<
-0.54
-0.5 4
-1
T T T T T
0 0.2 0.4 0.6 0.8 1 1 2 3 4 5 6
Time Time
C3 Coiflet S8 Symmlet
1.5 4
1 -
14
0.5 4
S 05 3
2 2
= a
S 04 g 01
<< <
~054 -0.5 4
_1 T T T T T T T T _1 T T T T T T T
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16
Time Time

Fig. 1 Some mother wavelet functions: Haar, Daubechies 4, C3 Coiflet, S8 Symlet

decompose the signal, while this is not a requirement in continuous wavelet transforms
(CWTs) due to continuous nature of the signal and the factors of s and 7. A ; denotes
the approximation coefficients and D; denotes detail coefficients at level j. After each
level, the components of A; and D; are extracted using A;_1 in a recursive manner
where Ay refers to the original input signal.

Figure 2 shows the decomposition of a sample non-stationary signal by means of
Daubechies wavelet function. Because the width of the wavelet window is doubled at
each level, the time resolution is halved because of downsampling by two; thus we
obtain coarser representations of the original signal; however, the frequency resolu-
tion is doubled in that the approximation components contain the lowest half of the
frequency and the detail components take the other half.

3 Wavelet-based clustering algorithm

Cluster analysis is a widely-used technique that is employed to map a set of objects
into groups (i.e., clusters) based on their similar properties, such as spatial and tem-
poral similarity. Sheikholeslami et al. [7] introduced a novel unsupervised cluster-
ing approach, called WaveCluster, using DWTs that enable data analysts to perform
clustering in a multi-level fashion. The method can discover clusters with arbitrary

@ Springer

A comparative study of the parallel 2369

1
14
08 12
1
06
08
04 06
04
02
02
o o
02
02
04
04 06
08
06
1
08 12
14
-1 T T T T T T T T t T T T T T
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200
2 3
25 -
15
2
1 154
14
05
05
. o7
05
05]
S
1] 15
2
154
25
-2 T T T T T T T T T T T -3 T T T T T
0 50 100 150 200 250 300 350 400 450 500 550 600 0 50 100 150 200 250 300
3
024]
259 022
2 02
15 0.8
0.16 4
14
014
05 012
o 01
05 008 |
0.6
1
0.04
-5 0.02
-2 0
25 002
004
-3 T T T T T T T T T T T T t T T T T T
10 2 3 4 5 60 70 8 9 100 10 120 130 140 0 200 400 600 800 1000 12

Fig. 2 Wavelet decomposition of a sample non-stationary signal. a Original signal (A(). b Approximated
coefficients at level 1 (A1). ¢ Approximated coefficients at level 2 (A3). d Approximated coefficients at
level 3 (A3). e Approximated coefficients at level 4 (A4). f Detailed coefficients at level 1 (D). g Detailed
coefficients at level 2 (D;). h Detailed coefficients at level 3 (D3). i Detailed coefficients at level 4 (Dy4)

shapes and can deal with outliers (data points that don’t belong to any cluster) effec-
tively.

WaveCluster defines the notion of a cluster as a dense region consisting of neigh-
boring objects (in the 8-connected neighborhood) in the low-frequency component of
the data at level j (A ;). The low-frequency component represents a lower resolution
approximation of the original feature space on which connected component labeling

@ Springer

2370 A. A. Yildirim, D. Watson

02 06

0.15 -
0.1

0.05

-0.05

—0.1 o1

-0.15 0

025

T T T T T T T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500 550 600 0 50 100 150 200 250 El

(& (h)

Fig. 2 continued

algorithm is performed to detect clusters at different scales from fine to coarse. Hence,
the clustering algorithm gains multi-resolution properties by means of the DWT. The
corresponding algorithm with its multi-resolution property is illustrated in Fig. 3. The
algorithm discards detail coefficients and uses approximation values (low-frequency
component) that are extracted by the low-pass filter operation L[n]/ at level j. The
algorithm applies thresholding to the approximation coefficients in the last level to
remove the outlier data (i.e, nodata vertices whose values are less than threshold).
In our implementation, we use the Haar wavelet [3], whose scaling function is
described as:
<
b() = 1 0<t<l, @

0 otherwise.

The Connected Component Labeling algorithm (CCL) is illustrated in Algorithm
2. The algorithm traverses through a list of vertices V in the WaveCluster algorithm
such that the list is substituted by the low-frequency component of the input data. In
the initialization phase between Line 1 and 4 of the algorithm, all vertices are marked
as unvisited and their cluster numbers are set to a special value nocluster indicating
no vertex is associated with any cluster. The algorithm uses stack S to avoid recursive
calls and to keep track of the connected vertices. When there is no element in the stack
(stack is empty) in Line 6, the algorithm finds another vertex that is not visited yet

@ Springer

A comparative study of the parallel 2371

Original Space Level 1 Level 2 Original Space
e i
- | | |
S H[n]' A 2] 1 !

Fig. 3 Multi-resolution property of the WaveCluster algorithm at level 2 on one-dimensional data

and has no nodata value. In Line 12, the algorithm pushes the adjacent vertices vy
to the stack where each vertex has no nodata value. Thus, all connected vertices are
traversed and assigned a unique cluster number to represent distinct clusters over V.
The algorithmic complexity of the CCL algorithm is O (N) where N is the size of the
input list.

Algorithm 2 Connected Component Labeling (CCL) algorithm

Require: V is a list of vertices with size N where the vertices v;, vj, vp € V and vertex vy is adjacent to
vj. 1, j and k are indices that identify the vertices over V.

Ensure: C stores the cluster numbers of the vertices where the value nocluster indicates the vertex v; is
not associated with any cluster.

l: fori = 1— Ndo

2: visited[i] < false

3 Cli] < nocluster

4: end for

5: clusternumber < 1

6: forall v; € V wherevisited[i] # true and v; # nodata do
7 S <« push(S,v;)

8 while S is not empty do

9: vj < pop(S)

10: visited[j] < true

11: C[j] < clusternumber

12: S <« push(S, vx) where vg is neighbor of vj and vy # nodata
13: end while

14: clusternumber < clusternumber + 1

15: end for

In the final phase, mapping the units in the transformed feature space to the original
feature space, a lookup procedure is carried out that one object in the low-frequency
component at level j corresponds to 27*4) objects in the original signal where d is
the dimension of the data. If the object is not represented in the transformed feature
space (outlier), the object in the original space is assigned a nocluster value.

@ Springer

2372 A. A. Yildirim, D. Watson

4 Parallel wavelet-based clustering algorithms

We previously reported parallel wavelet-based clustering algorithm using a message-
passing library (MPI) for the distributed memory architecture. While the algorithm
possesses linear behavior in terms of algorithm complexity, it suffers from the ineffi-
cient I/O operations and performance degradation due to redundant data processing. In
this study, we address those issues by improving two parallel WaveCluster algorithms
that are based on merge-tables and priority-queues, respectively. The two parallel algo-
rithms differ from the way they handle the merging phase, which is fundamental in
the context of parallelism.

In the previous algorithm [12], the master processor reads the whole two-
dimensional input dataset and then distributes each stripe of data to the slave proces-
sors. This approach leads to inefficient I/O operation. In order to minimize I/O times,
both algorithms benefit from collective MPI I/O capabilities in which each processor
reads its local data in parallel collectively via M PI_File_Read function. We also
extend the study by processing larger and three-dimensional datasets.

4.1 Priority-queue based parallel WaveCluster algorithm

We implemented a new parallel WaveCluster algorithm whose merging phase is per-
formed using priority-queue data structure. As algorithmic improvements, in the merg-
ing phase of the previous parallel WaveCluster algorithm [12], the master processor
creates the merging table with respect to the adjacency relations of bordering data for
each slave processor. Then, the algorithm distributes the result that each processor
updates its local clustering numbers using the merging table. This approach leads to
inefficiency due to the idle time of slave processors during the execution of merging
phase at master processor. We employ cooperative merging operation between adja-
cent processors to alleviate this execution inefficiency. In this approach, each processor
maintains its local clustering result. Ultimately, this leads to a globally correct result
as ghost regions are swapped among adjacent processors.

Algorithm 3 Parallel WaveCluster Algorithm using priority-queue structure; where p
is target wavelet level and i denotes MPI process number 7, thatis, A ; is the partition
of low-frequency component in level j, C; is the output of the CCL algorithm at the
first invocation, and then the output of Merge algorithm in loop, CR; is the final
clustering result of partition 7, all processed by MPI processes in parallel

I: Ag,; < loadLocal Domain (Ag, i)

2: Ap,i < DWT(Aq,;, p, threshold)

:C; < CCL(A,)

: repeat

G; < swapGhostRegion()

C; < Merge(C;, Gj)

»until no cluster value is changed globally

: CR; < lookup(Agi, Ci, p)

: writeClustering Result (CR;, i)

@ Springer

A comparative study of the parallel 2373

Fig. 4 Parallel WaveCluster Algorithm with ghost data illustration using two processors

The main algorithm is given in Algorithm 3. All operations in the algorithm figure
are performed in parallel. The partitions of Ag = Agp1 U Ag2 U -+ U Agn
are distributed evenly among the MPI processes in a striped fashion where 7 is the
number of MPI processes. Each process performs discrete wavelet transform using its
own input partition data independently and returns the local low-frequency component
with level p in Line 2. The value of input vertex over Ag has either 1 or O that
indicates whether there is a vertex or not at a particular index at Ag. The algorithm uses
threshold value to remove the outlier vertices. The algorithm considers all vertices
in the domain to be ‘outliers’ when threshold value is 1. When the value is 0, the
algorithm does not discard any vertex from the domain. In Line 3 CC L function finds
the connected vertices using local transformed feature space.

Subsequent calls, between Lines 4 and 7, deal with merging of the connected ver-
tices that might possibly run through the process borders. The parallel merge phase
is performed to merge the clusters globally, and propagates the minimum cluster
number through the connected vertices of the local domain. In this phase, the par-
allel algorithm first calls swapGhost Regions in Line 5, whose goal is to exchange
ghost data among the neighboring processes, as illustrated in Fig. 4. The ghost region
is a low-frequency component with 1-vertex thickness that is adjacent to the local
low-frequency component of the neighboring MPI process. By swapping the ghost
regions, the algorithm propagates the minimum cluster number of the connected ver-
tices through the processes, which possibly can span the whole domain. Then, the
process calls merge function in Line 6 to merge the clusters in the local transformed
domain using the latest ghost data.

@ Springer

2374 A. A. Yildirim, D. Watson

Algorithm 4 Priority-queue based cluster merging algorithm

Require: C is a list of local cluster numbers of the vertices with size N where cluster numbers of
Ciy Cj, Ck, Cg, € C for the vertices v;, v s Vk and vg respectively. G is the ghost region retrieved from
the neighboring MPI processes where the vertex vy € G, PQ is the priority-queue structure whose
function pop (P Q) returns and removes the vertex with minimum cluster number at the priority-queue,
S is stack structure.

Ensure: The algorithm returns the updated list of clustering result C

1: ischanged < false

2:fori = 1 — Ndo

3 visited[i] < false

4: end for

5: PQ < push(PQ, G) wherevg € G andcg # nocluster

6: while P Q is not empty do

7: vg < pop(PQ)

8: S <« push(S, ¢;) where c; is neighbor of vg and ¢; # nocluster
9: while S is not empty do

10: cj < pop(S)

11: visited[j] < true

12: if cx < cj then

13: C[j] < ¢k

14: ischanged < true

15: S <« push(S, cy) where vy is neighbor of v; and c; # nocluster
16: end if

17: end while
18: end while

In the merge function (shown in detail in Algorithm 4), we use priority-queue
structure P Q to retrieve the minimum cluster number on the ghost data (Line 7), and
stack S to propagate the cluster number among the connected vertices. If the cluster
number of the popped ghost vertex is smaller than the neighboring vertex of the
local domain (Line 12), the merge function updates all the connected vertices’ cluster
numbers and then marks those vertices as visited, which insures that those vertices are
never visited for one iteration of the merging phase only. This merging phase runs until
all clusters are detected globally, keeping track with the variable ischanged locally
and by reducing all ischanged variables to the single globalischanged variable via
M P1_Reduce function globally.

Finally, the lookup procedure is called in Algorithm 3 in Line 8 to map the vertices
in the transformed feature space to the original feature space. Those that are considered
‘outliers’ based on threshold value are marked with special nocluster value and the
results are written to the disk in parallel.

4.2 Merge-table based parallel WaveCluster algorithm

The second parallel WaveCluster algorithm is based on merge-table which is similar
to the previous algorithm introduced in [12]. We observe that memory consumption
on the merging phase is too high due to data sparsity because of the nature of lookup
table usage with O(N) space complexity where N is the number of all vertices on
input dataset. We addressed this memory consumption issue using a hash table storing
only the cluster numbers of vertices which do not have nodata values.

@ Springer

A comparative study of the parallel 2375

The main phases of the merge-table based WaveCluster algorithm are shown on
Algorithm 5. The merge-table is the data structure that stores one record for each
vertex and each record associates the initial cluster number with the final cluster
number. Ateach iteration to merge the local clustering results, the algorithm repeatedly
propagates the minimum cluster number through the connected vertices in the local
transformed domain. The algorithm maintains the merge-table using a hash table
rather than the lookup table used in the previous implementation to keep track of the
proposed cluster number that is smaller than the current cluster number. The hash
table key is the initial cluster number and the associated values are the proposed/final
cluster number and the coordinate information of the vertex residing on the ghost data.
This hash table is initialized before the MPI process starts performing the merging
phase. In subsequent iterations, this merge-table is updated based on the ghost data in
updateMergeT able function. The merging phase continues until no changes occur
in the merge-table globally. Finally, using this merge-table, each process changes the
cluster numbers of the connected vertices to reflect the correct cluster numbers in
updateCluster Numbers, an operation performed using a stack data structure.

Algorithm 5 Merge-table based Parallel WaveCluster Algorithm; where M T is the
merge-table

1: Ag,; < loadLocal Domain (Ag, i)

2: Ay < DWT(Ag;, p, threshold)
3:C; < CCL(Ap)

4: MT = initializeMergeT able(C;)

5: repeat

6: G; <« swapGhostRegion()

7 MT <« updateMergeTable(Gi, MT)
8: until any merge table is not updated globally
9: C; < updateCluster Numbers(C;, MT)
10: CR; < lookup(Ag;, Ci, p)

11: writeClustering Result (CR;, i)

5 Performance evaluation

In this section, we present the performance comparisons of the two parallel WaveClus-
ter algorithms by means of the elapsed algorithm time and their speed-up ratios for
synthetically generated three-dimensional datasets. We implemented a synthetic data
generation program that allowed us to minimize application-specific artifacts and
concentrate more on properties and benefits of proposed algorithms. Generated input
datasets have equal length for each three dimension and power of two as a condition of
discrete wavelet transform to fully exploit multi-resolution analysis. The vertex value
of dataset is either 1 with probability 0.3 or 0. Thus, the objects over the dataset are
evenly distributed. The discussion about the effects of data distribution on the parallel
WaveCluster algorithm can be found in [12]. In these experiments, we generated three
datasets named Datasetl, Dataset2 and Dataset3 where number of objects—vertices
with value 1—are nearly 40, 80 and 161 K, respectively. The details of the datasets
are shown in Table 1.

@ Springer

2376 A. A. Yildirim, D. Watson

Table 1 Datasets used in the

experiments Name Size Number of objects
Dataset1 512 MB 40,268,934
Dataset2 1GB 80,536,099
Dataset3 2 GB 161,067,172

We compare the parallel WaveCluster algorithms that have better benchmark results
with the common parallel clustering algorithm—parallel K-means algorithm. The
experiments are conducted on a cluster where each node is equipped with two Quad-
Core AMD Opteron(tm) Processor 2376 (8 total cores/node) and 16 GB memory. The
interconnection among the nodes is achieved over double data rate (DDR) infiniband.
The main performance measures that we consider are then running time of the parallel
algorithms and their speed-up ratio with respect to serial execution of the algorithm.

In both parallel WaveCluster algorithms, the input on the original space is ini-
tially evenly distributed among p processors in a striped fashion. Figure 5 shows the
benchmark results of the two parallel WaveCluster algorithms with different merg-
ing approaches called the priority-queue approach and the merge-table approach. The
experiments are conducted for wavelet levels 1 and 2 for all datasets. Both parallel
WaveCluster algorithms do not scale well for wavelet level 1 because of the high
communication time in exchanging the border data. Furthermore, the run time of the
algorithm starts to increase when more than 16 processors are used for Dataset] and
Dataset2, and 8 processors for Dataset3. The reason is that the communication time
dominates the computation time that is required to obtain a globally correct result.
Although the algorithms do not pose effectiveness in the context of parallelism for
wavelet level 1, we did not observe this behavior when the wavelet level is 2.

Note that the number of objects to be exchanged between the neighboring processes
is decreased by factor of 2¢ at each level where d is the dimension of the input dataset. In
our experiments, the communication time is decreased by a factor of 8 as wavelet level
increases. The communication overhead is reduced with the cost of coarser clustering
analysis of original data. This shows that the wavelet level highly significantly affects
the scaling behavior of the parallel algorithm due to adverse effect of communication
time. While we obtain identical speed-up results on Datasetl and Dataset2, in the
largest one, Dataset3, the merging approach performs better than the priority-queue
approach when the wavelet level is 2.

We performed comparison experiments between the two parallel WaveCluster algo-
rithms and the parallel K-means algorithm [5]. We have chosen the parallel K -means
algorithm as a representative of a classical parallel clustering algorithm. We define
the speedup in comparisons as a fraction of the execution times of the parallel K-
means algorithm relative to the parallel WaveCluster algorithm for a varying number
of processors and wavelet levels. The speed-up equation is shown below:

Sp _ Tpkmeans, p 5)

pruvecluxter,)4

The parallel K-means algorithm must be configured to detect K distinct clus-
ters where K is fixed. However, the number of clusters detected by the WaveCluster

@ Springer

2377

A comparative study of the parallel

(2 = 19ne7) enenp—-Ajoud

$10SS8201d JO JaqUINN

1

$108S8001d O JoquinN

k2

glesereq

-t =

oney dn—-paadg

(spuodoas) awi| wyiiobly

S[OAQ] J9[9ABM PUE S Joselep Indur Surkrea I SWYILIOI[Y JISO[DIABM [O[[eTed S “SL

(1= 10007 ENOND—AIOLd = == (1 =10A07) O[EL~0BIO = =gk == (Z=[0A0T) OIGEL-OBION =i

510859901 0 JoquInN $10S$9901d JO JaqUINN

oney dn-peadg
oney dn—-paadg

5105590014 JO JaquInN $10S59001d JO JaqUINN

+
*
‘

o
v

(spuodas) awi| wyob|y
(spuooas) swi| wyiiobly

cieseieq Lieseleq

pringer

As

2378 A. A. Yildirim, D. Watson

Table 2 Execution times (in seconds) of the parallel WaveCluster (PWC) algorithms using priority-queue
(PQ) and merge-table (MT) approaches for wavelet levels (p) 1 and 2, and the parallel K -means algorithm
with a varying number of processors (np) on Dataset1

Exec. time/np 1 2 4 8 16 32 64

P. K-means 2,387.46 395.15 144.31 98.53 45.67 24.98 20.01
PWC-PQ (p =1) 12.59 8.06 533 4.16 3.86 4.95 8.17

PWC-PQ (p =2) 10.19 5.11 2.56 1.29 0.67 0.37 0.31

PWC-MT (p = 1) 13.10 7.83 4.50 291 2.77 4.54 8.62

PWC-MT (p = 2) 10.18 5.09 2.55 1.28 0.66 0.37 0.29

P.W.C. Merging Techniques with Wavelet Levels
=@~ Merge-Table (Level = 1)
=A: Merge-Table (Level =2)

=l Priority-Queue (Level = 1)

Speed-up Ratio

—|-- Priority-Queue (Level = 2)

1>

P
A
- e

Number of Processors

Fig. 6 Speed-up Comparison between parallel WaveCluster algorithms and parallel K-means algorithm;
where wavelet levels 1, 2 on Datasetl, K = 20

algorithm is determined by the wavelet level and the threshold value which is used
to remove outlier objects that do not belong to any clusters. The performance of both
parallel WaveCluster algorithms can be better seen in Table 2 for varying proces-
sors and wavelet levels. The execution time of parallel K-means algorithm is also
included. Note that both parallel WaveCluster algorithms perform significantly better
than parallel K-means algorithm on finding clusters. Figure 6 shows that both par-
allel WaveCluster algorithms are nearly 70 times faster than the parallel K-means
algorithm on wavelet level 2 and 8 times faster on wavelet level 1 where a maximum
number of processors are utilized. We choose the parameter K = 20 in the experi-

ments for K-means algorithm. Because the speed-up values are measured in terms of
Tk, ;
pkmeans, p

parallel performance of the algorithms (), a slight speed-up drop occurs

Tp wavecluster, p

because parallel K -means algorithm (to which our algorithm is compared) experiences
a comparatively greater increase in performance when four processors are used—even

@ Springer

A comparative study of the parallel 2379

though the wall clock time decreases in both cases. This result shows the effective-
ness of the parallel WaveCluster algorithm when compared to the parallel K-means
algorithm.

6 Conclusion

Parallel WaveCluster algorithms with their detailed description and comparison study
have been presented here. We have improved upon previous work by investigating two
different merging techniques, namely priority-queue and merge-table approaches that
play important role in the parallel algorithm. These parallel algorithms find distinct
clusters using discrete wavelet transformation on distributed memory architectures
using the MPI API. Due to high compute times, we did not obtain scalability when
wavelet level is 1. However, the scaling behavior is acquired for wavelet level 2.

We have chosen parallel K -means algorithm as a classical parallel clustering algo-
rithm to compare the performance of two parallel WaveCluster algorithms. As an
inherent property of the WaveCluster algorithm opposed to the K-means algorithm,
it is capable of removing outlier objects that do not belong to any clusters. The effec-
tiveness of the parallel WaveCluster algorithms as compared to the parallel K -means
algorithm are shown in the study to have achieved up to 70x speed-up ratio where
wavelet level is 2 on Dataset].

Acknowledgments Compute, storage and other resources from the Division of Research Computing in
the Office of Research and Graduate Studies at Utah State University are gratefully acknowledged. We
also would like to thank Dr. Wei-keng Liao for providing us with the source code of the parallel K-means
algorithm.

References

1. Arneodo A, Bacry E, Graves PV, Muzy JF (1995) Characterizing long-range correlations in DNA
sequences from wavelet analysis. Phys Rev Lett 74:3293-3296. doi:10.1103/PhysRevLett.74.3293

2. Cohen L (2000) The uncertainty principles of windowed wave functions. Opt Com-
mun 179(16):221-229. doi:10.1016/S0030-4018(00)00454-5. http://www.sciencedirect.com/science/
article/pii/S0030401800004545

3. Haar A (1910) Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen 69(3):331—
371. doi:10.1007/BF01456326

4. Lewis AS, Knowles G (1992) Image compression using the 2-D wavelet transform. IEEE Trans Image
Process 1(2):244-250. doi:10.1109/83.136601

5. Liu Y, Pisharath J, Liao WK, Memik G, Choudhary A, Dubey P (2004) Performance evaluation and
characterization of scalable data mining algorithms. In: Proceedings of IASTED. http://users.eecs.
northwestern.edu/wkliao/Kmeans/

6. Loughlin P, Cohen L (2004) The uncertainty principle: global, local, or both? IEEE Trans Signal
Process 52(5):1218-1227. doi:10.1109/TSP.2004.826160

7. Sheikholeslami G, Chatterjee S, Zhang A (2000) Wavecluster: a wavelet-based clustering approach
for spatial data in very large databases. VLDB J 8(3—4):289-304

8. Shim I, Soraghan JJ, Siew W (2001) Detection of PD utilizing digital signal processing methods. Part
3: open-loop noise reduction. Electr Insul Mag IEEE 17(1):6-13. doi:10.1109/57.901611

9. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61-78

10. Tufekci Z, Gowdy J (2000) Feature extraction using discrete wavelet transform for speech recognition.
In: Proceedings of the IEEE on Southeastcon 2000, pp 116—123. doi:10.1109/SECON.2000.845444
11. Valens C (1999) A really friendly guide to wavelets. C. Valens @mindless.com 2004

@ Springer

http://dx.doi.org/10.1103/PhysRevLett.74.3293
http://dx.doi.org/10.1016/S0030-4018(00)00454-5
http://www.sciencedirect.com/science/article/pii/S0030401800004545
http://www.sciencedirect.com/science/article/pii/S0030401800004545
http://dx.doi.org/10.1007/BF01456326
http://dx.doi.org/10.1109/83.136601
http://users.eecs.northwestern.edu/wkliao/Kmeans/
http://users.eecs.northwestern.edu/wkliao/Kmeans/
http://dx.doi.org/10.1109/TSP.2004.826160
http://dx.doi.org/10.1109/57.901611
http://dx.doi.org/10.1109/SECON.2000.845444

2380 A. A. Yildirim, D. Watson

12. Yildirim AA, Ozdogan C (2011) Parallel wavecluster: a linear scaling parallel clustering algorithm
implementation with application to very large datasets. J Parallel Distrib Comput 71(7):955-962.
doi:10.1016/j.jpdc.2011.03.007

@ Springer

http://dx.doi.org/10.1016/j.jpdc.2011.03.007

	A comparative study of the parallel wavelet-based clustering algorithm on three-dimensional dataset
	Abstract
	1 Introduction
	2 Wavelet transforms
	3 Wavelet-based clustering algorithm
	4 Parallel wavelet-based clustering algorithms
	4.1 Priority-queue based parallel WaveCluster algorithm
	4.2 Merge-table based parallel WaveCluster algorithm

	5 Performance evaluation
	6 Conclusion
	Acknowledgments
	References

