
J Supercomput (2015) 71:1534–1562
DOI 10.1007/s11227-015-1377-0

Operating system level data tiering using online
workload characterization

Reza Salkhordeh · Hossein Asadi ·
Shahriar Ebrahimi

Published online: 31 January 2015
© Springer Science+Business Media New York 2015

Abstract Over the past decade, storage has been the performance bottleneck in
I/O-intensive programs such as online transaction processing applications. To alleviate
this bottleneck with minimal cost penalty, cost-effective design of a high-performance
disk subsystem is of decisive importance in enterprise applications. Data tiering is an
efficient way to optimize cost, performance, and reliability in storage servers. With
the promising advantages of solid-state drives (SSDs) over hard disk drives (HDDs)
such as lower power consumption and higher performance, traditional data tiering
techniques should be revisited to use SSDs in a more efficient way. Previously pro-
posed tiering solutions have attempted to enhance performance based on different
parameters such as request size or randomness. These solutions, however, are mostly
optimized towards one type of I/O workloads and are not applicable to workloads
with different characteristics. This paper presents an online data tiering technique at
the operating system level with a linear weighted formulation to enhance I/O perfor-
mance with minimal cost overhead. The proposed technique characterizes the work-
load access pattern with respect to metadata versus user data, frequency of accesses,
random versus sequential accesses, and read versus write accesses. To evaluate the
proposed technique, it is implemented on a Linux 3.1.4 equipped with ext2 filesys-
tem. The experimental results over I/O-intensive workloads show that the proposed
technique improves performance up to 30 % as compared to the previous techniques
while imposing negligible memory overhead to the system.

R. Salkhordeh · H. Asadi (B) · S. Ebrahimi
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
e-mail: asadi@sharif.edu

R. Salkhordeh
e-mail: salkhordeh@ce.sharif.edu

S. Ebrahimi
e-mail: shebrahimi@ce.sharif.edu

123

Operating system level data tiering 1535

Keywords Operating system · Solid-state drive · Filesystem · Performance ·
I/O workload characterization

1 Introduction

Storage devices are orders of magnitude slower than main memory and are consid-
ered as a performance bottleneck in I/O-intensive workloads in enterprise applications
such as web serving and online transaction processing (OLTP). The performance gap
between main memory and storage devices has increased over time since mechanical
components in hard disk drives (HDDs) have very slight performance improvement as
opposed to electronical components. Based on Amdahl’s law [2], improving the per-
formance of storage subsystem in I/O-intensive applications can significantly improve
the overall system performance.

To alleviate the performance gap, system designers have recently started to replace
slow running HDDs with solid-state drives (SSDs). SSDs, typically based on NAND
flash technology, do not have any mechanical components. NAND flash cells cannot
be overwritten and need to be erased before any update. An erase operation is orders
of magnitude more time-consuming than a read operation. In addition, it is also at
least two times more time-consuming than a write operation. Moreover, it directly
affects flash lifetime [7,33]. In contrast to HDDs, writing in a NAND flash cell takes
more time than a read operation. Therefore, write operations are more expensive
than read operations in terms of response time and reliability [15]. Another interesting
attribute of NAND flash cells is that they have almost constant performance in random
and sequential read-intensive workloads. Early SSDs were very expensive with low
performance in write-intensive workloads. Hence, many studies have tried to address
this limitation using buffers at the operating system (OS) level [12,29]. In recent years,
with improvements in flash technology and SSD controllers, the performance of SSDs
has significantly improved in a variety of workloads. SSDs are still more expensive in
terms of $/GB. Hence, it is not economically justified to replace all HDDs with SSDs
in storage subsystems.

A commonly used technique to enhance performance in storage subsystems is
redundant array of independent disks (RAID). Replacing a subset of HDDs with
SSDs in a RAID array will not, however, enhance the performance since workload
is distributed among all disks and HDDs still will be the performance bottleneck.
Another approach to utilize SSDs in storage subsystems is to use them as a caching
layer between the main memory and HDDs. Caching techniques are effective when
the workload exhibits either temporal or spatial locality. Additionally, the SSD used
as a caching layer cannot be used as a permanent storage device and will be a cost
overhead to the system.

An alternate technique to improve the performance of disk subsystems is using
data tiering. This technique relies on the fact that not all data blocks have equal perfor-
mance or reliability requirements. Hence, one can create many tiers, each with various
performance or reliability levels and place data blocks on tiers based on application
requirements. Providing different tiers from small to large capacity and from inex-
pensive to costly tiers will ensure to find an optimal tier for each data block. Due to

123

1536 R. Salkhordeh et al.

cost-effective performance advantage of tiering techniques, enterprise storage ven-
dors such as IBM™ and EMC™ offer data tiering in their storage solutions to provide
improved performance with minimal cost increase [10,24].

Due to the emergence of SSDs, data tiering requires revisiting data selection algo-
rithms and adapting them according to the characteristics of NAND flashes. Traditional
data tiering solutions were designed for homogeneous storage devices that only differ
in cost and performance. These solutions, however, are not effective for a heteroge-
neous storage subsystem which uses both SSDs and HDDs. There are few tiering
techniques proposed to enhance performance in heterogeneous storage subsystems
[11,13,16,17,20,21,26]. The tiering technique presented in [20] uses file granularity
which is only efficient for small-size files. There are other tiering techniques with
block granularity that place more frequently and random accessed blocks on the SSD
tier [11,17]. Some other techniques place filesystem metadata on the SSD tier [13,21]
to improve the overall performance. Although previous studies have tried to consider
many parameters, none of them have used both OS-level semantic information and
workload characterization simultaneously. In addition, previous techniques are mainly
suitable for a limited number of workload types since they consider either a few aspects
of workloads or a predefined part of SSD for one access type. For example, [8] dedi-
cates a section of SSD to metadata requests and another section to write-back requests.
In data-intensive and read-dominated workloads, these sections will be underutilized
with almost no performance improvement. To the best of our knowledge, there has
been no comprehensive online tiering technique taking into account the characteristics
of both storage devices and workload patterns. In addition, none of previous studies
have proposed a weighted formulation based on workload, types of storage devices,
and OS semantic information.

In this paper, we propose an efficient OS-level data tiering technique using online
workload characterization. The proposed data tiering technique, called online OS-
level data tiering (OODT), places data blocks on the most suitable tier with respect
to frequency of accesses, data types (metadata vs. user data), access pattern (random
vs. sequential access), and the frequency of read or write operations. In the proposed
technique, address space is split into fixed-size data blocks, unlike studies such as
[4] that use dynamic data blocks size. This is due to the overhead of managing and
migrating data blocks with dynamic size is significantly higher than the overhead of
fixed-size data blocks. Next, the access pattern to each data block is characterized with
respect to target parameters. OODT uses a weighted priority function to characterize
and identify the most effective chunks for each tier. The priority function is a linear
weighted formulation based on randomness, read ratio, and request type (data or
metadata). Data blocks are placed on tiers based on disk characteristics and the priority
of each data block. In the proposed tiering technique, hot and cold data blocks are
dynamically tracked in each tier to identify chunks that need to be migrated to another
tier when workload access pattern changes over time. This data migration occurs online
with minimal impact on performance.

The proposed data tiering technique has been implemented as a block device in
Linux 3.1.4 equipped with ext2 filesystem and encapsulated in a loadable module that
can be easily added to a running operating system. To evaluate the efficiency of OODT,
several synthetic and commercial I/O-intensive workloads have been used to stress

123

Operating system level data tiering 1537

the proposed tiering technique. Experimental results demonstrate that the proposed
technique can improve performance up to 72 % in metadata-intensive workloads,
and up to 43 % in database random workloads as compared to pure HDD-based
disk subsystems while placing less than 4 % of the total data blocks on the high-
performance tier. Additionally, OODT improves performance up to 30 % over the
conventional tiering techniques.

The rest of this paper is organized as follows. Section 2 provides a review or
related work. Section 3 presents the proposed technique, with experimental results
documented in Sect. 4. Section 5 discusses limitations to and possible extensions of
OODT. Section 6 offers final thoughts and conclusions.

2 Related work

Previous work can broadly be classified into two groups: (a) SSDs used as a caching
layer between main memory and storage devices and (b) SSDs employed as a tier in
a data tiering storage subsystem.

2.1 Caching

The caching layer endeavors to decrease response time by temporarily storing user
data in the cache device in the following manner. In the case of write requests, user
data is temporarily written into the cache device and the write acknowledge is sent out
to the upper layer. The user data is written to the permanent storage device later on. In
case of read requests, the requested data is transferred to the cache device for future
references. If a cached user data is never referenced again, performance will not be
improved. Due to high $/GB, designers use SSDs to store only performance critical and
hot data blocks. Early SSDs had low random write performance. To address this issue,
[34] suggested incorporating log-based write cache in a HDD device to decrease the
number of writes issued to SSDs. Recent SSDs demonstrate an improved performance
on random writes and the state-of-the art cache designs consider using SSDs as a faster
device for all workloads and request types [8,18].

To improve storage performance, [27] utilized a SSD cache between the main
memory and HDDs. This technique selects data blocks for caching on the SSD based on
their access pattern. For each data block, the number of random reads, random writes,
sequential reads, and sequential writes will be stored and based on these parameters,
blocks will be chosen to enter into the SSD cache.

The caching technique proposed in [18], called Azor, uses a hash function to allocate
a cache line for each page. A page is placed in the cache if it has higher priority
than the existing page in the cache line. Filesystem metadata pages have the highest
priority. Pages with the highest access frequency receive the next highest priority. In
this technique, cold metadata pages have higher priority than hot data pages. Thus,
the cache will be filled with cold metadata pages after a while and the cache hit ratio
will be decreased significantly.

Another caching technique, called Hystor, has been proposed in [8]. This technique
splits a SSD into three regions. The first region stores filesystem metadata pages similar

123

1538 R. Salkhordeh et al.

to Azor. The second region is a write-back cache to speed up write requests. Lastly,
the third region acts similar to a typical cache memory and it is used to cache read
requests. Hystor maintains a three-level table for recording more frequent accesses to
data pages. In predefined intervals, a data mover function is activated to move pages
with the highest access frequency to SSDs.

Database management systems can also benefit from SSD cache since database
requests mostly exhibit random pattern. Many research efforts attempted to classify
database request types and cache important pages, based on these classifications [23,
25]. However, further discussion of such techniques is beyond the scope of this work.

2.2 Tiering

Data tiering techniques use a tier of SSDs for performance critical blocks and a tier of
HDDs to store cold blocks. As opposed to caching techniques, there is no temporary
device to store user data. Instead, to speed up more frequent accessed data blocks,
a high-performance tier is utilized. Similar to early caching solutions, initial tiering
techniques have used SSDs as a storage device with write performance worse than
HDDs [19,37]. In [11], an extent-based tiering technique has been proposed. In this
technique, workloads are first characterized and then the performance requirement for
each extent is calculated. Lastly, considering allocation of an extent to any arbitrary
tier, the fraction of available throughput of the tier which will be occupied by this
extent will be computed. If an extent does not have high performance requirements, this
technique considers the fraction of tiers space that is occupied by the extent, rather than
considering the fraction of tiers bandwidth occupied. This will prevent cold extents to
consume high-performance tiers. Based on the calculated fractions for extents, each
extent is assigned to a tier which has the minimum fraction. This approach endeavors to
decrease the power consumption and maintain almost the same level of performance. In
contrast, the technique proposed in this research effort aims at improving performance.
In addition, this work does not consider the intrinsic characteristics of SSDs and treats
them just as faster HDDs.

A tiering technique that splits logical block addresses into 1 MB extents has been
proposed in [17]. The proposed tiering technique, called HybridStore, records access
frequency and request size for extents. Based on such information, extents are classified
into one of 32 predefined classes. Based on this classification and based on tiers
characteristics such as I/O per second (IOPS) and capacity, HybridStore solves an
integer linear program (ILP) to find an effective tier for each extent. This technique
is an offline approach which vastly differs from online approaches, including our
proposed technique.

There are also few tiering techniques that place files on tiers based on file granularity,
file access frequency, and the randomness of requests [3,20]. File granularity is not
suitable if large-size files with random access exist in the filesystem, since placing
these files on high-capacity tiers will degrade performance. This is because HDDs do
not provide high performance on random requests. On the other hand, these files are
too big to be completely placed on high-performance tiers, since such tiers have low
capacity. Additionally, in large-size files such as database applications, only a small

123

Operating system level data tiering 1539

portion of files will be accessed and majority of data blocks are cold blocks that will
occupy the valuable space of high-performance tiers without any performance gain.

Filesystem metadata requests comprise between 50 and 70 % of the total requests
in many I/O-intensive workloads [30]. Additionally, the number of files in filesystems
increases over time. This will further increase the number of metadata requests for
storing and retrieving files [1]. Many tiering techniques only split metadata and data
blocks and place metadata pages on the high-performance storage devices [16,21,26].
These tiering techniques are not efficient in all workloads and many workloads with
low metadata requests will not benefit from these tiering techniques [13].

Lastly, a recent study presented in [3] compared the performance of caching and
tiering techniques. This study revealed that caching is more efficient if a workload
consists of requests with high locality (e.g., workloads with Zipf distribution). This
study concludes that data tiering techniques can outperform caching techniques in
workloads with less data locality.

3 Proposed tiering architecture: OODT

The main aim of the proposed architecture is to find the optimal tier for each data block
using an online workload characterization. The proposed architecture tries to migrate
data blocks between high-performance tiers and inexpensive tiers when workload
pattern changes. This technique quantifies workload characterizations into a priority
score for each data block and uses these scores to identify the most effective blocks
for high-performance as well as inexpensive tiers. To this aim, block-level tiering is
used as it is not dependent on a particular filesystem and does not suffer from short-
comings of file-based tiering techniques in large-size files. OODT uses fine-grained
(FG) granularity, e.g., 4 KB data blocks, as allocation and migration units. Using FG
granularity, data blocks that are identified to be moved to high-performance tiers will
compose of less cold data as compared to coarse-grained (CG) granularity migration
scheme. The FG migration scheme, however, suffers from memory overhead. This
limitation will be discussed in Sect. 5.1.

3.1 Components and algorithms used in proposed architecture

The main components of the proposed tiering architecture are shown in Fig. 1 which
demonstrates that the proposed architecture consists of five main components: dis-
patcher, mapping table, access table, migration planner, and storage tiers. In this figure,
boxes with dashed lines are data structures and boxes with solid lines are code com-
ponents. In the proposed architecture, the dispatcher receives requests from either the
filesystem or buffer cache layer. If a request is larger than the size of one data block,
it will be split into several subrequests, since the corresponding data blocks might
exist in different tiers. Each subrequest is intended to read or write one data block.
Upon completion of servicing all subrequests, the service to the original request will
be accomplished. The dispatcher uses a mapping table to find the physical location
of data blocks and redirects subrequests to the corresponding tier. The mapping table
stores the physical location of each extent consisting of tier number and the physical

123

1540 R. Salkhordeh et al.

Fig. 1 OODT architecture

Filesystem / Buffer Cache

Dispatcher

Access TableMapping Table

Migra�on planner

Inexpensive &
High Capacity

Tiers

Requests

High
Performance

Tiers

Priority Calcula�on

Upda�ng Access
Sta�s�cs

Data Blocks
Physical Loca�on

Subrequests Subrequests

Moving Data Blocks
for Migra�on

location of the extent in that tier. Another table, called access table, is used to maintain
all statistics required to determine the priority of extents. This table is updated by the
dispatcher based on the characterization of the request.

Algorithm 1 depicts the overall flow from the request arrival to the kernel module to
dispatching subrequests to the disks. Line 1 through line 5 examines the subrequests
and creates the required bio structures. endio function will be called upon completing
the request for notifying upper layers. Line 6 determines if this block is locked. The
migration planner locks the blocks when it attempts to migrate. In line 9, subrequests
are dispatched to the corresponding tier. The request will be dispatched before updating
the access table and the access queue. Note that processing the subrequest and updating
the access table and access queue can be done concurrently. This can remove the
overhead of updating access table in multi-core systems. In lines 10 through line 23,
the access queue and the access table are updated. In line 24 through line 27, the
number of requests after the last migration will be increased. If this variable reaches
the migration-time threshold (which will be set by the user), the migration function
will be called. An alternate approach is to set a predefined time for migrations. Both
these approaches can be implemented in OODT.

The migration planner is another component of the proposed architecture, which
generates a sorted list of data blocks based on their priorities. The migration planner
finds the candidate block to be migrated to another tier and issues the required requests
to disks to migrate data blocks. Upon completion of these requests, the mapping table
will be updated. The migration planner also tries to place data blocks based on the
corresponding logical addresses in HDD tiers since it will prevent the fragmentation of

123

Operating system level data tiering 1541

ALGORITHM 1: Data Tiering Algorithm
1 Split request into subrequests;
2 foreach subrequest do Allocate a bio for subrequest ;
3 Copy flags from the request into bio;
4 Set the endio function of the bio;
5 Fetch corresponding block for subrequest in lookup table;
6 if block is locked then
7 Wait until unlocked;
8 end
9 Send bio to the corresponding tier;

10 if subrequest can be merged with an item of the access queue then
11 Update the corresponding access queue member;
12 else
13 Remove last request from the access queue;
14 Calculate random priori t y for last request ;
15 Add random priori t y to priori t y of the last request ;
16 if last request is read then
17 Add read priori t y to the priori t y of the last request ;
18 end
19 if last request is metadata then
20 Add metadata priori t y to the priori t y of the last request ;
21 end
22 Add subrequest to the access queue;
23 end
24 requests a f ter migration ++ ;
25 if requests a f ter migration > migration-time threshold then
26 Initiate migration f unction ;
27 end
28 ;

requests and the conversion of a large sequential request into several smaller random
subrequests. In the proposed technique, the migration planner is called after a specified
number of requests. However, another approach is calling the migration planner when
the system is in the idle state. This approach can also be applied to the proposed
architecture if needed.

The migration planner uses Algorithm 2 for data block migration. In line 3, a n×n
matrix is created where n is the number of tiers. This matrix will be filled with data
blocks which should be migrated to the other tiers as shown in line 4 through line 12.
Each matrix cell, i.e., matrix[i][j], consists of a linked list from blocks which should
be moved from tier i to tier j . In line 13 through line 16, the migration planner moves
data blocks between tiers based on lists of data blocks in the matrix. This might need
to temporarily store a few data blocks in the main memory. The memory overhead is
negligible and only occurs in short time period during migrations.

3.2 Priority computation

Priority computation is arguably the most important aspect of a tiering or caching
technique. Since priority computation determines which data blocks can benefit from
placing in SSDs and therefore performance gain depends on the priority computation

123

1542 R. Salkhordeh et al.

ALGORITHM 2: Migration Planner Algorithm
1 Sort the list of blocks based on priority;
2 number of tiers ← number of tiers;
3 migration matri x ← a two-dimensional matrix[number of tiers][number of tiers];
4 foreach tiers do
5 thistier ← current tier;
6 foreach blocks selected for thistier do
7 if block is not in thistier then
8 tiero f block ← current tier of block;
9 Add block to migration matri x [t iero f block][thistier];

10 end
11 end
12 end
13 foreach cell in migration matri x do
14 Issue the required requests for migrating;
15 Update mapping table;
16 end

for choosing the best data blocks. To develop an efficient priority computation algo-
rithm, we have examined SSDs and HDDs characteristics and four parameters have
been selected for priority calculation accordingly. The selected parameters extracted by
workload characterization are access frequency, random access frequency, read access
frequency, and filesystem metadata access frequency. We propose a linear weighted
formulation with the mentioned parameters for calculating the priority of each request,
according to Eq. 1.

Priority = waccess ∗ Paccess + wrandom ∗ Prandom

+wread ∗ Pread + wmetadata ∗ Pmetadata (1)

In this equation, waccess, wrandom, wread, and wmetadata are weights for access, ran-
domness, read, and metadata, respectively. Paccess, Prandom, Pread, and Pmetadata are
priorities for access, randomness, read, and metadata, respectively. Priority calcula-
tions and the corresponding weights are discussed in detail in Sect. 3.2.1 through
Sect. 3.2.3.

3.2.1 Access frequency and randomness

Access frequency is the most important feature for priority computation. Most of
existing blocks in disks are typically cold blocks that will not be accessed in the near
future. Access frequency is an efficient parameter to identify and place cold data blocks
into inexpensive and high-capacity tiers. As mentioned in Sect. 1, SSDs exhibit almost
similar performance on random and sequential access patterns in contrast to HDDs that
have very poor performance on random workloads. Hence, placing randomly accessed
data blocks on SSDs will result in higher performance gain. Additionally, 15K HDDs
provide higher performance in random workloads than 10K or 7K HDDs. Therefore,
randomly accessed data blocks should be moved toward high-performance tiers. We
combine access frequency priority with random priority into a single parameter since

123

Operating system level data tiering 1543

they are closely related to each other. The priority of each request will be the inverse
of the size of the request and the weight of this priority has been set to one. The
intuition behind choosing the inverse of the request size is that HDDs have a setup
time for rotating the disk head. The time overhead is not dependent on the request size.
Therefore, a larger request size will have less average response time per data block.
As such, choosing the inverse of the request size helps to identify requests with high
average response time per block.

Since the read and metadata performance is affected by the request size, the pri-
orities of read and metadata have been set to the priority calculated in this section
and their weights will be chosen based on their impact on the overall system perfor-
mance. The read and metadata priorities are calculated based on the access priority.
Since the total priority is the sum of access, read, and metadata priorities, choosing
any value for access priority will not affect the ranking of the priorities for various
data blocks. Hence, we chose the value of 1 to simplify the equation and remove
unnecessary calculations during runtime. Please note that since these calculations are
performed during system runtime, more complex calculations can degrade the sys-
tem performance. Hence, we keep the formulation simple to have minimal impact on
computation power.

The I/O scheduler in operating systems attempts to merge requests close to each
other to create a more sequential request to enhance performance. Hence, we store
eight past requests addresses in a queue called access queue to find requests that will
probably be merged in I/O scheduler, and consider them as a single request. This
will enable us to more accurately identify random requests. The optimal size of the
access queue depends on the number of data streams from applications. In addition,
the number of active application data streams that try to simultaneously read from
the disk is typically small. Since I/O requests depends on the previous requests, the
number of pending requests will be limited. In the examined workloads in this paper,
the number of data streams is not more than eight. Therefore, we used access queue
size equal to eight, however, the size of the access queue can be customized by the
system users based on the characteristics of the workloads.

To better understand the novelty of the proposed cost function, we have compared it
to techniques used in the previous work. Figure 2 depicts the normalized execution time
of Postmark workload1 with respect to the cost functions employed in the previous
work. All execution times are normalized to a cost function that does not consider
randomness and uses only access frequency to determine the priority of data blocks.
As shown in Fig. 2, OODT improves performance up to 10 % more than previous
techniques. The execution of this experiment on other benchmarks yields almost the
same result. Hence, we do not include such results here for the sake of brevity.

3.2.2 Read vs. write

SSDs exhibit higher performance in read requests because of the characteristics of flash
memories. In addition, sending less write requests to a SSD will reduce the overhead

1 This workload will be detailed in Sect. 4.2.1.

123

1544 R. Salkhordeh et al.

Fig. 2 Normalized execution
time of various techniques

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

1 2 4 8 16
N

or
m

al
iz

ed
 E

xe
cu

tio
n

T
im

e
SSD Size (Percentage of workload size)

OODT
Hystor

HybridStore
Migrating

RAF

of garbage collection and wear leveling and improves its lifetime. To develop a more
efficient tiering technique, read-dominant data blocks should be moved to the high-
performance tier. To move read-dominant requests to the high-performance tier, we
assign a higher weight to the read requests. This means that if a request is read, we will
add a specified percentage of the calculated access priority to the corresponding data
blocks priority. Although SSDs use buffers to cache write requests and log structured
writes to improve write performance, write requests will still affect SSD endurance.
Additionally, the log structure will cause performance degradation due to mapping
modification and garbage collection overheads when writing again to data blocks.
Hence, placing write-dominated extents into SSDs will impose higher cost. Unlike
SSDs, the response time of read and write requests is equal in HDDs. As a result,
assigning higher priority to read requests in the HDD will not gain any performance
improvement. Hence, once SSD tiers get filled, we will recalculate the priority of
the remaining data blocks by removing the read priority. Afterwards, data blocks
will be placed in HDD tiers based on the updated priorities. The optimal weight
for read requests depends on workload and SSDs characteristics. In OODT, the read
weight has been set to 10 % which is semi-optimal case for majority of workloads
such as Postmark, TPCH, and Webserver, based on the experiments presented in
Sect. 5.5.1

3.2.3 Filesystem metadata

Many previous techniques give higher priority to filesystem metadata pages than data
pages [13,18,21] since each metadata block will be accessed when a user tries to
access a data block associated with the corresponding metadata block. Many meta-
data blocks such as inodes are associated to 1,024 data blocks. Thus, metadata blocks
have higher probability of access than data blocks associated with them. To the best
of our knowledge, none of previous studies that give higher priority to the filesystem
metadata have suggested assigning higher priority to hot data blocks as compared
to cold metadata. To address this issue, we integrate the filesystem metadata priority
into the priority of data blocks. Small weight is assigned to metadata requests, since
most metadata blocks are accessed randomly and will have high priority due to their

123

Operating system level data tiering 1545

randomness. Sequential metadata requests which are usually used for logging pur-
pose can exhibit higher performance on HDDs. Assigning aggressive high weight to
metadata blocks will cause cold metadata to replace hot data blocks. The weight of
metadata should be selected such that it is small enough to keep cold metadata blocks
out of high-performance tiers and big enough to give hot metadata blocks higher pri-
ority than hot data blocks. The effect of using different weights will be discussed in
Sect. 5.5.2.

3.3 Filesystem metadata detection technique

The filesystem stores additional data to manage user data, called metadata. The filesys-
tem needs to access many metadata blocks for each user data request. In addition,
metadata accesses might be required after completing user requests, e.g., to update
the last access time of an accessed file. This flow has been illustrated in Fig. 3 where
metadata and user data requests are shown by dark and white arrows, respectively.

The Linux I/O stack does not have a mechanism to pass semantic information
from the filesystem or the buffer layer to the block I/O device layer. All previous
techniques that use semantic information have tried to modify the operating system
kernel. In OODT, BIO_META flag in bio structures which is not used in the current
Linux versions has been exploited for flagging metadata requests. In addition, this
flag has been added to the buffer_head structure since many filesystem requests will
be completed by the buffer layer and the buffer layer will send them to the block I/O
layer.

Modifications in the buffer layer consists of adding flag to the buffer_head structure
and sending flagged requests to the block I/O layer for metadata requests. In the
filesystem, all requests dispatching to the buffer or block I/O layer have been flagged
with BIO_META except requests for user data. Thus, indirect blocks and all other
metadata pages without a fixed place in the address space are also considered as
metadata, as opposed to previous efforts [13]. These modifications enable us to tag
filesystem metadata requests.

Fig. 3 Flow of subrequests to complete an arbitrary user request

123

1546 R. Salkhordeh et al.

3.4 Comparison of OODT with previous work

Table 1 compares the proposed technique with previous caching and tiering tech-
niques. OODT mainly differs from previous work in parameter and the formulations
used for priority calculation. In the techniques proposed in [11,27], and [22], each
request is characterized as either sequential or random. Additionally, there is no dif-
ference between an 8 KB request and a 128 KB request, since both of them will be
characterized as sequential. Hot-random [20] uses the same technique along with a
randomness calculator which is similar to the proposed access queue but with higher
overhead. Another technique to distinguish random requests from sequential requests
is HybridStore [17] which classifies requests as highly random (<16 KB), partially
sequential (32 KB), and highly sequential (>64 KB). While this classification is use-
ful, it will not be accurate when the sizes of all requests are close to each other. In
addition, this technique does not consider the effect of I/O scheduler. Hystor [8] uses
an inverse bitmap for storing access frequency and request size in one variable which is
similar to the random access frequency in the proposed technique. Inverse technique,
however, is less accurate since it uses the logarithm of the request size instead of the
actual request size.

The technique presented in [19] (called Flashing Up) places data blocks on disks
with respect to read/write cost for storage devices without considering other parameters
such as request size while OODT considers such parameters. In addition, this technique
considers the characteristics of traditional SSDs which are not applicable to state-of-the
art SSDs. RAF [22] uses almost the same technique and considers the characteristics
of state-of-the art SSDs. Similar to Flashing Up, Hybrid Store needs information about

Table 1 Comparison of OODT with the previous work

Tiering Caching Memory
overhead
(%)

Random
ness

SSD
character-
istics

OS
semantic

Online Workload
adaptabil-
ity

Azor [18] × � <1 × × � � ×
Hystor [8] × � <1 � × � � ×
Migrating to

SSDs [27]
× � <1 � �(sec.

parame-
ter)

× � �

RAF [22] × � <0.01 � � × � ×
Cost-effective

[11]
� × <0.0001 � × × � N/A

Macss [21] � � <0.0001 × × � � ×
HybridStore

[17]
� × <0.001 � � × × �

Hot-random
[20]

� × <0.0001 � × × � N/A

Flashing-up
[19]

� × <1 × �(out
of date)

× � ×

OODT � × <1 � � � � �

123

Operating system level data tiering 1547

read/write performance of each storage device from data sheets or performance tests
for optimizations which might be difficult to obtain. The technique presented in [27]
uses SSDs characteristics only as a secondary priority which will not have significant
effect on performance since the main priority is based on random access frequency
which has a low probability of two blocks being the same.

Most of the previous work that give filesystem metadata higher priority do not
consider lower priority for cold metadata over hot data [18,21]. Hystor [8] is another
technique that places metadata in a special region of SSD cache. The optimal size of
this section depends on workload access pattern. In contrast, OODT is flexible and can
adapt itself to various workloads. Choosing an optimal size for the metadata section
is vital for gaining high performance improvement.

The techniques employing workload adaptability such as [17,27] do not depend on
one request type or one characteristic towards performance optimizations. Adaptabil-
ity ensures that the technique will provide at least a moderate performance in most
workloads. To reach adaptability, none of the parameters should have absolute priority
over the other parameters. In addition, using a predefined section for a request type (i.e.,
write or metadata) is against adaptability. If the workload lacks that request type, the
allocated section will only waste high-performance tier space without any performance
improvement. In Table 1, workload adaptability entries denoted by “N/A” indicates
that the target technique only uses one parameter and, hence, workload adaptability is
not applicable.

The memory overhead in Table 1 indicates an approximate upper limit of memory
overhead instead of the actual memory overhead, since there is no reported information
in previous work to calculate the exact memory overhead per gigabyte. OODT has
relatively high memory overhead, since it tries to maintain an accurate data tiering
technique. The memory overhead of the OODT will be further discussed in Sect. 5.1.

4 Experimental results

4.1 Experimental system

In the experimental setup, we have used a workstation with a Pentium 4 2.8 GHz
processor equipped with 2 GB main memory and a 250 GB Maxtor 7K HDD for
benchmarking. To decrease the effect of the buffer layer, its contents are synchronized
with disks and cleared every second. Additionally, the operating system is installed on a
separate hard disk to remove possible effects of operating system or other applications
on benchmarks.

The operating system employed in the experimental setup is Ubuntu 12.04 Precise
Pangolin with kernel 3.1.4 and ext3 filesystem. The tiering device is, however, format-
ted with ext2 [6] filesystem. We have selected ext2 filesystem since it is widely used
by Linux users. The modifications applied to this filesystem mainly include tagging
all requests for metadata blocks with a metadata flag. These modifications are also
applicable to other filesystems, too. Table 2 shows the modified Lines of Code (LOC)
for the proposed metadata detection technique. The source code of the proposed tier-
ing technique is publicly available at [31]. To stress the tiering system, the filesystem

123

1548 R. Salkhordeh et al.

Table 2 Modified lines of code
in the filesystem

File Modified LOC

fs/buffer.c 9

fs/ext2/balloc.c 6

fs/ext2/ialloc.c 4

fs/ext2/inode.c 13

fs/ext2/super.c 10

fs/ext2/xattr.c 9

include/linux/buffer_ head.h 8

has been mounted with the sync option. We set the best I/O scheduler for each tier
(noop for the SSD tier and CFQ for the HDD tier). In the experiments, OODT has
been implemented using only two tiers. A high-performance tier is mapped to a SSD
OCZ 40 GB and a high-capacity tier is implemented using a Maxtor 500 GB 7K HDD.

It is notable to mention that the number of tiers can further be extended. However,
extension of the experiments to more than two tiers needs much more hardware and
requires very-large-scale workloads to be able to use the benefits of all tiers.

To create a completely reproducible workload, blktrace [5] is used to capture I/O
requests of workloads and btreplay is employed to rerun these workloads. To evaluate
the performance efficiency of OODT, the execution time of the workloads has been
compared with four architectures (a) a pure HDD disk subsystem, (b) a pure SSD disk
subsystem, (c) three-level table algorithm proposed in [8] (HyStor), and (e) sequence
detection and randomness threshold used in [22] (RAF).

Although the last two architectures originally have been proposed for caching solu-
tions, as shown in Sect. 3.2.1, the randomness priority employed in these architectures
has the best performance in tiering solutions among all previous work. In addition
to having a semi-optimal randomness priority, HyStor assigns higher priority to the
metadata requests (with a technique which differs vastly from OODT) and RAF tries
to place read-intensive requests in the SSD, similar to the read priority explained in
Sect. 3.2. Thus, we have these two architectures for the evaluation of OODT to ensure
that all aspects of the proposed technique will be compared to the previous techniques
with the highest performance.

4.2 Benchmarks

To fully evaluate this tiering system, we have used various benchmarks with different
characteristics. These benchmarks are detailed in the following sections.

4.2.1 Postmark

Postmark is a mail server benchmark that creates many file and folders and runs
transactions on these files [14]. Transactions are read, write, delete, or create files.
This benchmark generates many filesystem metadata requests and many small random
read or writes. Write ratio, requests size, file deletion ratio, transactions count, and
many other parameters can be configured in this benchmark.

123

Operating system level data tiering 1549

4.2.2 HammerDB

HammerDB is a database benchmarking tool that can simulate TPC-C and TPC-
H benchmarks [32]. TPC-C queries are mostly small random similar to Postmark.
However, unlike Postmark, TPC-C does not generate many filesystem metadata. In
addition, all requests are for database file which is quite large-size file unlike Postmark
files which are small in size. TPC-H benchmark is a Decision Support System (DSS)
simulator and consists of 22 ad hoc queries. Similar to TPC-C, TPC-H dispatches
mostly small random requests to the disk subsystem.

4.2.3 IOzone

IOzone is a benchmarking tool for filesystems that is able to run various tests to
measure different aspects of filesystems [28]. This tool consists of 13 types of tests
which can be run separately or in conjunction with each other.

4.2.4 FileBench

Filebench is a benchmarking platform that can run many different workloads using
Workload Model Language (WML) [36]. We have used FileBench to simulate a web
server. The web server workload creates a pool of files with the mean size of 16 KB.
A user access to the web server will be simulated by reading ten files from file pool
and then appending 16 KB data to the log file.

4.3 Experimental results

In this section, experimental results for target benchmarks are presented.

4.3.1 Postmark

We have configured Postmark to create 40,000 files with varying size from 32 to
40 KB and executed 80,000 read, write, create, and delete transactions on them with
4 KB granularity. Postmark has three stages: creating files, running transactions, and
deleting files. Our analysis shows that most requests in the first stage are metadata
writes. The second stage is a mixed workload of metadata and random data accesses
and the third stage has only metadata requests.

Figure 4a shows the execution time of OODT and the previous work, which has
been normalized to the execution time of a pure HDD disk subsystem (a Seagate
7K HDD). As illustrated in this figure, the proposed characterization outperforms
previous techniques. In addition, OODT reduces the execution time by 72 % compared
to pure HDD while only 4 % of data blocks are migrated to the SSD tier. OODT has
up to 16.4 and 7 % on average less execution time when compared to the previous
techniques. The average performance gain depends on the range of SSD sizes used
in the tiering techniques. This is due to when SSD size is large enough, all tiering
techniques will have almost the same performance. Therefore, we excluded large SSD

123

1550 R. Salkhordeh et al.

 0.15

 0.2

 0.25

 0.3

 0.35

2 4 8 16 32

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

SSD Size (Percentage of workload size)

(a) (b)

(c)

OODT
SSD
RAF

HyStor

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

1 2 3 4 5 6 7 8 >8

T
ot

al
 N

um
be

r
of

 R
eq

ue
st

s

Request Size (4KB pages)

Without Queue
With Queue

 0

 10

 20

 30

 40

 50

 60

 70

 80

5,000 10,000 20,000 30,000 40,000

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Number of Files

Metadata Read
Metadata Write

Data Read
Data Write

Fig. 4 Normalized execution time and distribution of request size and types for Postmark workload. a
Normalized execution time, b request size distribution with and without the access queue, c percentage of
data read, data write, metadata read, and metadata write

sizes for calculating the average performance gain. The improved performance over
the conventional tiering technique is due to the fact that OODT considers randomness,
read/write ratio of data blocks, and metadata requests. In addition, each part of the
priority calculation technique outperforms other techniques in that area.

The HyStor technique, however, outperforms the proposed technique when 16 %
of data blocks are in the SSD. Since this technique tries to place data blocks physically
near to the highly accessed data blocks in the SSD tier, it provides higher performance
when there is enough space in the SSD. On the other hand, when high-performance
tier does not have enough space for these data blocks, they will only occupy valuable
space in the SSD. Therefore, the performance will decrease significantly (as can be
seen in Fig. 4a) when only 2 % of data blocks are in the SSD.

Figure 4b depicts the request size distribution of this workload. Maximum request
size and the average request size are 28 and 9.5 KB, respectively. Hence, this work-
load is characterized as a random workload. The proposed access queue for eight past
requests introduced in Sect. 3.2.1 identifies many large requests that will be created
in I/O scheduler by merging smaller requests. Since most of requests in this work-
load are small size, random priority will not have any advantages against access fre-
quency tiering. Hence, metadata and read priority are responsible for the performance
improvements.

123

Operating system level data tiering 1551

Figure 4c shows the percentage of metadata requests in Postmark for various file
counts. In all benchmarks, the number of transactions is double the number of files.
Decreasing the number of transactions makes the creating phase of the benchmark
dominant. Our experiments show that increasing the number of transactions greater
than twice the number of files will not change the behavior of the benchmark and
will only increase the execution time. With growing number of files, this workload
changes from a metadata-intensive to data-intensive workload. Thus, metadata-only
tiering techniques such as [13,16,21,26] will degrade the performance gain with the
increasing number of files or transactions. OODT uses metadata priority along with
other parameters. Thus, it can adapt itself to changes in the workload characterizations.

One of the interesting points in the results is that if the high-performance tier is
large enough to hold most of the data blocks, the difference between various tiering
techniques becomes negligible. This is due to even simple techniques such as access
frequency tiering will move all active data blocks to the high-performance tiers.

4.3.2 TPC-C

In our configuration, HammerDB uses a MySQL database configured with default para-
meters and executes 1,000,000 transactions. This workload has larger requests than
Postmark with the average request size of 22 KB. Thus, requests are more sequential
in this workload.

Figure 5a shows the normalized execution time with various configurations. In this
workload, OODT improves performance up to 43 % as compared to a pure HDD disk
subsystem by placing only 2 % of data blocks in the SSD tier. Additionally, our tech-
nique improves the execution time up to 20 % as compared to the previous techniques.
In this workload, as with Postmark, HyStor exhibits low performance improvement
when the size of the high-performance tiers is small. Although OODT maintains its per-
formance gap with previous techniques in various SSD sizes, if the high-performance
tier is large enough, the conventional and the proposed tiering techniques will have
similar performance.

Figure 5b shows the distribution of request sizes. This distribution is unique and
completely differs from the other workloads, since requests are dispatched from a
DataBase Management System (DBMS), as opposed to Postmark, webserver, and
IOzone workloads which are file-based workloads. Database workload patterns depend
on DBMS, database schema, and query types. Further investigation is required for
characterization of database workloads. Figure 5c shows the percentage of fragmented
requests for various data block sizes. We chose the smallest data block size, since using
larger data blocks will not decrease the number of fragmented requests significantly.
OODT tries to place data blocks with sequential logical addresses close to each other
to decrease the effect of fragmentation while having more accuracy. The effect of
choosing larger data block sizes will be discussed in Sect. 5.2.

This workload has a few metadata requests and our metadata priority will not
have any performance gain in this workload. On the other hand, since there exists
many sequential requests, OODT will have an advantage over less accurate tiering
techniques.

123

1552 R. Salkhordeh et al.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

2 4 8 16 32

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

SSD Size (Percentage of workload size)

OODT
SSD
RAF

HyStor

 1

 10

 100

 1000

 10000

 100000

 1e+006

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 >31

T
o

ta
l N

u
m

b
er

 o
f

R
eq

u
es

ts

Request Size (4KB pages)

Without Queue
With Queue

 1

 10

4 8 16 32 64 128
256

512
1024

2048
4096

P
er

ce
nt

ag
e

of
 F

ra
gm

en
te

d
R

eq
ue

st
s

Data Block Size (KB)

(a) (b)

(c)

Fig. 5 Normalized execution time, request size distribution, and percentage of fragmented requests for
TPC-C workload. a Normalized execution time, b request size distribution with and without the access
queue, c percentage of fragmented requests

4.3.3 TPC-H

In this benchmark, similar to TPC-C, HammerDB uses MySQL database with one
difference: the default engine has been replaced with MyISAM, since the default engine
is not compatible with this workload. The scale factor of this workload has been set
to 10.

Figure 6a shows the normalized execution time for this workload. As shown in
this figure, the proposed technique improves the execution time by 50 % compared
to running on HDDs while only 2 % of data blocks are in the SSD. The proposed
technique improves the performance on average by 3 % and up to 13 % as compared
to the previous work.

This workload is heavily random and read dominant. As Fig. 6b depicts, more
than 85 % of requests are 4 KB and the average request size is 5.3 KB. In addition,
Fig. 6c shows that the percentage of fragmented requests is much lower than TPC-C
workload, which emphasizes that using smaller data block sizes is more efficient in
these workloads. TPC-H queries mostly retrieve data and do not insert any data in the
database. In particular, read requests constitute 99 % of the total requests. Most of the
write requests are for updating metadata of database files.

123

Operating system level data tiering 1553

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2 4 8 16

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

SSD Size (Percentage of workload size)

OODT
SSD
RAF

HyStor

(a) (b)

(c)

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 >31

T
o

ta
l N

u
m

b
er

 o
f

R
eq

u
es

ts

Request Size (4KB pages)

Without Queue
With Queue

 0.01

 0.1

 1

 10

4 8 16 32 64 128
256

512
1024

2048
4096

P
er

ce
nt

ag
e

of
 F

ra
gm

en
te

d
R

eq
ue

st
s

Data Block Size (KB)

Fig. 6 Normalized execution time, request size distribution, and percentage of fragmented requests for
TPC-H workload. a Normalized execution time, b request size distribution, with and without the access
queue, c percentage of fragmented requests

Considering the read ratio and the average request size of this workload, the only
means to improve performance in this workload is considering access frequency and
metadata priority. Since all previous works consider access frequency and all the high-
est accessed blocks are metadata, the proposed technique cannot improve performance
when compared to the previous work as much as in the other workloads.

4.3.4 IOzone

In the experiments, IOzone has been configured to run all 13 types of tests for a
specified time. Many of the tests in this benchmark have large number of sequential
requests. Hence, this workload can be categorized as sequential-dominated work-
load. As Fig. 7a shows, most of the requests in this workload requires more than 32
data pages. This fact will reduce the gained improvement from moving data pages to
SSDs. This is mainly due to these data blocks having relatively good performance in
HDDs.

IOzone and TPC-H are quite opposite workloads since TPC-H is random dominated
and this workload is sequential dominated. In contrast to this difference in character-
istics, modern tiering techniques cannot significantly improve performance compared

123

1554 R. Salkhordeh et al.

to simple tiering techniques in either of these workloads. Figure 7b depicts the normal-
ized execution time of this workload for various techniques. In this workload, HyStor
outperforms the RAF technique because this workload is sequential dominated and
the spatial locality of this workload is greater than previous workloads. Since most
requests in this workload are very large, they will cross boundary of many data blocks.
Increasing the data blocks’ size will not decrease the number of fragmented requests,
as shown in Fig. 7c. Although the percentage of fragmented requests does not decrease,
requests will be broken into less subrequests when using larger data block sizes. Hence,
the overhead of creating subrequests decreases.

OODT has up to 9 and 5 % on average less execution time compared to the previous
work. This improvement is negligible as compared to the other workloads since most
requests are either sequential or read dominated. In addition, most of the metadata
blocks have high access frequency which will have high priority even in techniques
that does not consider metadata priority. When 32 % of data blocks reside on the high-
performance tier, HyStor exhibits higher performance than the proposed technique
due to moving pages near the high frequently accesses pages to the SSD (similar to
the Postmark workload when 16 % of data blocks are in the high-performance tier).

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 >31

T
o

ta
l N

u
m

b
er

 o
f

R
eq

u
es

ts

Request Size (4KB pages)

Without Queue
With Queue

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

2 4 8 16 32

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

SSD Size (Percentage of workload size)

OODT
SSD
RAF

HyStor

 10

 100

4 8 16 32 64 128
256

512
1024

2048
4096

P
er

ce
nt

ag
e

of
 F

ra
gm

en
te

d
R

eq
ue

st
s

Data Block Size (KB)

(a) (b)

(c)

Fig. 7 Normalized execution time, request size distribution, and percentage of fragmented requests of
IOzone workload. a Request size distribution with and without the access queue, b normalized execution
time, c percentage of fragmented requests

123

Operating system level data tiering 1555

4.3.5 FileBench

Filebench web server workload creates 10,000 files with mean directory size of 20
files. Although this workload has large sequential requests (e.g., more than 50 data
blocks), the average request’s size is still 10 KB. This demonstrates that the web server
workload is a random workload with a few large requests that will be easily detected
by OODT and will be placed on the HDD tier. Additionally, since this workload uses a
large pool of files, many metadata accesses are required for accessing files. Figure 8a
shows the percentage of metadata requests for this workload. As shown in this figure,
creating more files will result in more metadata requests in contrast to Postmark, since
there exists more requests per file in Postmark as compared to webserver workload.

We have configured the web server workload with 10,000 files. According to the
results reported in Fig. 8a, this workload has 60 and 40 % read and metadata requests,
respectively. Therefore, this workload can be a fair representative of how well OODT
can improve the performance on a workload without a dominant parameter as apposed
to the other workloads. The distribution of request sizes, with and without eight-request
access queue is presented in Fig. 8b, illustrating that the proposed technique can detect
sequential requests that will be created by I/O scheduler and help randomness priority
to be more accurate in assigning priorities.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1,000 5,000 10,000 20,000

P
er

ce
nt

ag
e

of
 r

eq
ue

st
s

Number of Files

Metadata Read
Metadata Write

Data Read
Data Write

 10

 100

 1000

 10000

 100000

 1e+006

2 4 6 8 10 12 14 16 18 20 >21

T
o

ta
l N

u
m

b
er

 o
f

R
eq

u
es

ts

Request Size (4KB pages)

Without Queue
With Queue

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2 4 8 16 32 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

SSD Size (Percentage of workload size)

OODT
SSD
RAF

HyStor

(a) (b)

(c)

Fig. 8 Normalized execution time and distribution of request size and types for Webserver workload.
a Percentage of data read, data write, metadata read, and metadata write, b request size distribution with
and without the access queue, c normalized execution time

123

1556 R. Salkhordeh et al.

This workload has many random write requests with larger read requests. This
combination is suitable for evaluating read and randomness priorities to examine if
their weights are chosen correctly. If weights are chosen incorrectly, less performance
improvement will be observed when compared to the other workloads. Performance
evaluations show that our technique employing a SDD which contains 16 % of data
blocks can improve performance by 41 % as compared to the pure HDD-based disk
subsystem. OODT has also up to 30 and 16 % on average less execution time as
compared to the previous techniques as shown in Fig. 8c. This improvement over the
previous techniques shows that our technique has chosen parameters more efficiently
and if a workload has many metadata requests, various request sizes, and read/write
combination, this technique can improve performance significantly.

As mentioned earlier in this section, this workload has many metadata requests.
Hence, metadata blocks will be accessed more frequently than the other workloads
and any technique which assigns higher priority to metadata requests will further
improve performance. This will justify HyStor outperforming RAF in this workload
when it has enough high-performance tier space for storing data blocks. The proposed
technique, on the other hand, uses many priority techniques simultaneously which
enables it to achieve the highest performance among all workload types compared to
the previous work.

5 Discussion

5.1 Memory overhead

The tiering technique requires memory to store a mapping table, statistics, and other
required data structures. The memory overhead can be expressed as overhead memory
bytes per data block. Using larger data blocks will reduce memory overhead but may
cause performance degradation. This is due to a data block with high priority possibly
having many cold pages that will occupy valuable space in the high-performance
tier. Our proposed technique requires six bytes for mapping and twelve bytes for
statistics per data block. Memory overhead for 4 KB and 4 MB data blocks is 0.43 and
0.0004 %, respectively. In large storage servers, allocating memory for 4 KB pages
is not affordable. As a result, to prevent performance degradation using 4 MB data
blocks, one can use a fixed memory size for statistics. In this approach, statistics are
organized in a Least Recently Used (LRU) queue. In the case in which the statistics
table reaches the maximum size, the statistics of the last data blocks will be removed
from the table.

5.2 Data block size

As previously discussed, choosing larger data blocks will result in less accurate data
tiering and lead to performance degradation. Larger data blocks, however, will reduce
the memory overhead and the overhead of splitting requests. Figure 9a shows the
effect of data block size on performance in the Postmark workload. With increasing
SSD size, the performance gap between various configurations increases as well since

123

Operating system level data tiering 1557

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

2 4 8 16 32

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

SSD Size (Percentage of workload size)

4 KB
8 KB

16 KB
32 KB

(a) (b)

(c) (d)

(e) (f)

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

2 4 8 16

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

SSD Size (Percentage of workload size)

4 KB
8 KB

16 KB
32 KB

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

2 4 8 16

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

SSD Size (Percentage of workload size)

4 KB
8 KB

16 KB
32 KB

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

2 4 8 16

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

SSD Size (Percentage of workload size)

4 KB
8 KB

16 KB
32 KB

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

2 4 8 16

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

SSD Size (Percentage of workload size)

4 KB
8 KB

16 KB
32 KB

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

2 4 8 16

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

SSD Size (Percentage of workload size)

4 KB
8 KB

16 KB
32 KB

Fig. 9 Normalized execution time with various data block sizes. a Postmark, b TPC-C, c TPC-H, d IOzone,
e webserver, f geometric mean

more cold data pages will be present in the SSD. Figure 9b depicts the normalized
execution time with various data block sizes for TPC-C workload. In this workload,
32 KB data block configuration outperforms 16 KB data block configuration when
the size of the high-performance tier is greater than 4 % of the total workload size.
Since in this workload, as opposed to Postmark, many hot data pages with sequential
logical address will reside on the SSD when using large SSD sizes. In addition, the
percentage of cold data pages decreases in the SSD. Additionally, configurations with
larger data block sizes have less overhead for splitting requests. In even larger SSD

123

1558 R. Salkhordeh et al.

sizes, all configurations have almost the same performance for this workload (not
shown in Fig. 9b).

TPC-H workload is random dominated and choosing smaller data block sizes can
prevent cold data blocks from entering the high-performance tier. Figure 9c depicts
the normalized execution time for various data block sizes. The 4 KB data block size
has up to 38 % less execution time compared to 32 KB data block size. This is mainly
due to this workload being random dominated, as mentioned in Sect. 4.3.3.

IOzone is a sequential-dominated workload. Hence, using tiering with small data
blocks sizes will not have significant performance improvement. Figure 9d depicts the
normalized execution time for different data block sizes. 4 KB data block sizes only
improves the performance by 5 % compared to the 32 KB configuration. We should
note that 4 KB configuration has almost 4x memory overhead and since this configu-
ration cannot improve performance significantly, in sequential-dominated workloads
using larger data block sizes will impose less overhead and almost the same perfor-
mance.

Webserver workload has random and sequential requests simultaneously. Thus,
many data blocks in the SSD will contain hot and cold data pages and the others
will be filled by hot data pages. As can be seen in Fig. 9e, the 8 KB configuration is
outperformed by 16 and 32 KB when 8 % of data blocks are in the SSD. This is mainly
due to the higher overhead of the 8 KB configuration and the fact that many sequential
data blocks have been moved to the SSD tier. In other SSD sizes, however, the number
of cold data pages in the SSD prevents configurations with larger data block sizes
from outperforming 8 KB configurations. As shown in Fig. 9e, the 4 KB configuration
always outperforms the other configurations. This reveals that preventing cold data
pages from entering high-performance tiers is much more important than the overhead
of splitting requests.

The geometric mean of all workloads is depicted in Fig. 9f. This figure shows
that choosing 4 KB data block size is the best configuration in the average case if
the required memory overhead can be provided. We can conclude that in sequential
workloads, larger data block sizes exhibit higher performance, since they have less
overhead while in random workloads, smaller data blocks sizes perform better since
they have less cold data pages in the high-performance tier.

5.3 Reliability

The mapping table is the most critical data on any data tiering system since if the
mapping table gets corrupted or deleted, the physical location of logical data blocks will
be unknown. Therefore, losing the mapping table will result in losing all data blocks.
Hence, any data tiering technique should guarantee the protection of the mapping
table in case of system crash or power outage. In OODT, a copy of the mapping table
is stored on the high-capacity tier. This may impose only a negligible performance
overhead since the mapping table only changes when data migration is activated. If
the system crashes while data blocks are being migrated, there is a possibility of a
data loss event. To prevent such a data loss event, one can use a logging scheme on
a persistent storage device to store the migrated data blocks and the corresponding

123

Operating system level data tiering 1559

status flags. With such a logging scheme, the tiering system can recover from possible
crashes and the possibility of data loss events is significantly decreased.

Many modern filesystems, such as ext3/4, that are extensions of ext2 use journaling
to ensure filesystem remains consistent after an operating system crash or power
failure [35]. Early journaling techniques used barrier requests to properly implement
journaling. All requests arriving before a barrier request should be completed before
this request issues, and all requests arriving after a barrier request will be issued
after its completion [9]. Barrier requests can be easily implemented in the data tiering
kernel module. These requests, however, affect the system performance and as a result,
are removed from the kernel since version 2.6.37. Modern journaling techniques use
REQ_FLUSH/FUA flag in requests. The proposed tiering technique copies all flags
from the bio structures of incoming requests to the structures of all subrequests that
will be sent to the storage devices. Hence, these journaling techniques are compatible
with the proposed tiering technique.

5.4 Portability

Many of the previous works require heavy modifications in the kernel [23,25], ana-
lyzing and benchmarking of used storage devices [17,19], or designed for a specific
configuration or filesystem [13,21]. This makes such techniques less portable, deploy-
able, and maintainable. In OODT, all implementations can be encapsulated in a kernel
module, except modifications applied to the filesystem which require slight modifica-
tions in the filesystem. Hence, the proposed technique is portable without metadata
priority, and, with a few changes in the filesystem, metadata priority can be enabled.

5.5 Parameter sensitivity

Read and metadata priority in the proposed technique are calculated by a weight
of random access priority. The value of these weights have significant impact on
the performance. The nearly optimal values for parameters depend on the running
workload. These values can be extracted by running the workloads with various values
and selecting the best fitted values. Another approach is using analytical methods for
predicting the effect of each parameter on the overall system performance. Analytical
modeling of the performance in multi-tiered systems is part of our future work. In this
section, the results on choosing different values for these weights will be presented.

5.5.1 Read weight

Figure 10a shows the normalized execution time of the proposed technique with dif-
ferent weights for read priority (all values are normalized to the execution time with
value ‘0’ for the weight of the selected parameter). As this figure shows, semi-optimal
values for different workloads are similar to each other except for TPC-H workload
in which 99 % of requests are read. Hence, using a constant value for the weight of
read requests can be practical.

123

1560 R. Salkhordeh et al.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Postmark TPCC TPCH IOzone WebServer

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

5%
10%
15%
20%

(a) (b)

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Postmark TPCC TPCH IOzone WebServer

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

5%
10%
15%
20%

Fig. 10 Normalized execution time with various weights. a Read priority, b metadata priority

5.5.2 Metadata weight

The optimal weight for metadata depends on the workload and the filesystem on which
the workload is running. Analyzing the impact of the filesystem and its configuration
on the SSD performance in the previous work shows that different filesystems and
even configurations of a filesystem can result in significant difference as large as 30 %
in performance [38]. Thus, we attempted to select a small value for the weight of
metadata to reduce the chance of performance degradation because of assigning high
priority to metadata requests.

Figure 10b depicts the normalized execution time for various metadata weights.
The optimal value for ext2 filesystem is close to 15 % which is decreased to 10 % in
this work for more generality of the proposed technique for other filesystems.

5.6 Workload generality

The running workload has a high impact on the performance gain we can expect from
OODT. In the experimental results section, we tried to cover many workloads from
different applications with different characteristics. To show that the workloads are
general, we analyzed them and reported their characteristics in Sect. 4. The workloads
used in this study span random dominant (TPC-H, Postmark), sequential dominant
(IOZone), read dominant (TPC-H), write dominant (Postmark), metadata intensive
(Postmark), data intensive (TPC-C), and workloads with no dominant factor (Web
server) types of applications which cover most of the real workloads.

We have provided samples for several workloads which can have different charac-
teristics when configured with various values for their parameters (e.g., the number of
files), namely for web server and Postmark workloads. The changes in the parameter
values of the web server and Postmark workloads will transform them into a work-
load with other characteristics. These characteristics, however, will be similar to the
workloads, which have already been analyzed in this paper.

123

Operating system level data tiering 1561

6 Conclusion

In this paper, a data tiering technique based on online workload characterization was
presented. OODT endeavors to place data blocks based on their access pattern and
storage devices characteristics on a proper tier. Access frequency, random access
frequency, metadata access frequency, and read access frequency are used to calculate
the priority of data blocks. To evaluate the proposed technique, a Linux kernel module
was developed which runs under an ext2 filesystem. Experimental results showed that
this technique can improve performance up to 72 % compared to a pure HDD system
by placing less than 4 % of data blocks on the high-performance tier. In addition, the
experimental results demonstrated that the proposed technique reduces the execution
time up to 30 % in the commonly used workloads such as database, mail server, and
webserver.

References

1. Agrawal N, Bolosky WJ, Douceur JR, Lorch JR (2007) A five-year study of file-system metadata.
ACM Trans Storage 3(3). doi:10.1145/1288783.1288788

2. Amdahl GM (1967) Validity of the single processor approach to achieving large scale computing
capabilities. In: Proceedings of the spring joint computer conference, AFIPS ’67 (Spring), pp 483–485

3. Appuswamy R, van Moolenbroek D, Tanenbaum A (2012) Integrating flash-based SSDs into the
storage stack. In: 28th IEEE symposium on mass storage systems and technologies (MSST), pp 1–12.
doi:10.1109/MSST.2012.6232365

4. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using
process-and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–192. doi:10.1016/
0743-7315(90)90028-N. http://www.sciencedirect.com/science/article/pii/074373159090028N

5. Brunelle AD (2006) Block I/O layer tracing: blktrace. In: Gelato-Itanium conference and expo (gelato-
ICE)

6. Card R, Ts’o T, Tweedie S (1994) Design and implementation of the second extended filesystem.
In: Proceedings of the 1st Dutch international symposium on Linux, pp 1–6

7. Chen F, Koufaty DA, Zhang X (2009) Understanding intrinsic characteristics and system implications
of flash memory based solid state drives. SIGMETRICS Perform Eval Rev 37(1):181–192. doi:10.
1145/2492101.1555371

8. Chen F, Koufaty DA, Zhang X (2011) Hystor: making the best use of solid state drives in high per-
formance storage systems. In: Proceedings of the 13th international conference on supercomputing
(ICS), pp 22–32. doi:10.1145/1995896.1995902

9. Corbet J, Rubini A, Kroah-Hartman G (2009) Linux device drivers. O’Reilly Media, Sebastopol
10. EMC Corporation (2011) EMC FASTVP for unified storage systems. Technical Report h8058.3, EMC
11. Guerra J, Pucha H, Glider J, Belluomini W, Rangaswami R (2011) Cost effective storage using extent

based dynamic tiering. In: Proceedings of the 9th USENIX conference on file and storage technologies
(FAST), pp 20–20

12. Jin X, Jung S, Song YH (2010) Write-aware buffer management policy for performance and durability
enhancement in NAND flash memory. IEEE Trans Consum Electron 56(4):2393–2399. doi:10.1109/
TCE.2010.5681118

13. Kaiser J, Meister D, Hartung T, Brinkmann A (2012) Esb: Ext2 split block device. In: 18th IEEE
international conference on parallel and distributed systems (ICPADS), pp 181–188

14. Katcher J (1997) Postmark: a new filesystem benchmark. Technical Report TR3022, Network
Appliance

15. Kim J, Seo S, Jung D, Kim JS, Huh J (2012) Parameter-aware I/O management for solid state disks
(SSDs). IEEE Trans Comput 61(5):636–649. doi:10.1109/TC.2011.76

16. Kim JK, Lee HG, Choi S, Bahng KI (2008) A PRAM and NAND flash hybrid architecture for high-
performance embedded storage subsystems. In: Proceedings of the 8th ACM international conference
on embedded software (EMSOFT), pp 31–40. doi:10.1145/1450058.1450064

123

http://dx.doi.org/10.1145/1288783.1288788
http://dx.doi.org/10.1109/MSST.2012.6232365
http://dx.doi.org/10.1016/0743-7315(90)90028-N
http://dx.doi.org/10.1016/0743-7315(90)90028-N
http://www.sciencedirect.com/science/article/pii/074373159090028N
http://dx.doi.org/10.1145/2492101.1555371
http://dx.doi.org/10.1145/2492101.1555371
http://dx.doi.org/10.1145/1995896.1995902
http://dx.doi.org/10.1109/TCE.2010.5681118
http://dx.doi.org/10.1109/TCE.2010.5681118
http://dx.doi.org/10.1109/TC.2011.76
http://dx.doi.org/10.1145/1450058.1450064

1562 R. Salkhordeh et al.

17. Kim Y, Gupta A, Urgaonkar B, Berman P, Sivasubramaniam A (2011) HybridStore: a cost-efficient,
high-performance storage system combining SSDs and HDDs. In: 19th IEEE international symposium
on modeling, analysis and simulation of computer and telecommunication systems (MASCOTS),
pp 227–236

18. Klonatos Y, Makatos T, Marazakis M, Flouris M, Bilas A (2011) Azor: using two-level block selection
to improve SSD-based I/O caches. In: 6th IEEE international conference on networking, architecture
and storage (NAS), pp 309–318. doi:10.1109/NAS.2011.50

19. Koltsidas I, Viglas SD (2008) Flashing up the storage layer. Proc VLDB Endow 1(1):514–525. doi:10.
1145/1453856.1453913

20. Lin L, Zhu Y, Yue J, Cai Z, Segee B (2011) Hot random off-loading: a hybrid storage system with
dynamic data migration. In: Proceedings of the 19th IEEE annual international symposium on mod-
elling, analysis, and simulation of computer and telecommunication systems (MASCOTS), pp 318–
325. doi:10.1109/MASCOTS.2011.41

21. Liu S, Jiang J, Yang G (2012) Macss: a metadata-aware combo storage system. In: International
conference on systems and informatics (ICSAI), pp 919–923. doi:10.1109/ICSAI.2012.6223157

22. Liu Y, Huang J, Xie C, Cao Q (2010) RAF: a random access first cache management to improve
SSD-based disk cache. In: 5th IEEE international conference on networking, architecture and storage
(NAS), pp 492–500. doi:10.1109/NAS.2010.9

23. Luo T, Lee R, Mesnier M, Chen F, Zhang X (2012) hStorage-DB: heterogeneity-aware data manage-
ment to exploit the full capability of hybrid storage systems. Proc VLDB Endow 5(10):1076–1087

24. Martin J, Clayton N, Frese LL, Hossain K, McNutt B, Xu Y (2011) IBM system storage DS8800
and DS8700 performance with easy tier 3rd generation. Technical Report WP102024, International
Business Machines Corporation

25. Mesnier MP, Akers JB (2011) Differentiated storage services. SIGOPS Oper Syst Rev 45(1):45–53.
doi:10.1145/1945023.1945030

26. Miller EL, Brand SA, Long DDE (2001) HeRMES: high-performance reliable MRAM-enabled storage.
In: Proceedings of the 8th workshop on hot topics in operating systems (HotOS), pp 95–99

27. Narayanan D, Thereska E, Donnelly A, Elnikety S, Rowstron A (2009) Migrating server storage to
SSDs: analysis of tradeoffs. In: Proceedings of the 4th ACM European conference on computer systems
(EuroSys), pp 145–158. doi:10.1145/1519065.1519081

28. Norcott W, Capps D (2002) Iozone filesystem benchmark program
29. Ou Y, Härder T (2010) Clean first or dirty first?: a cost-aware self-adaptive buffer replacement policy.

In: Proceedings of the 14th international database engineering and applications symposium (IDEAS),
pp 7–14. doi:10.1145/1866480.1866482

30. Roselli D, Lorch JR, Anderson TE (2000) A comparison of file system workloads. In: Proceedings of
the 11th USENIX conference on annual technical conference (ATC), p 4

31. Salkhordeh R (2014) Data tiering kernel module. http://dsn.ce.sharif.edu/tiering/
tiering-kernel-module.tar.gz. Accessed 2014-08-01

32. Shaw S (2012) HammerDB: the open source oracle load test tool
33. Shi L, Li J, Jason Xue C, Zhou X (2013) Hybrid nonvolatile disk cache for energy-efficient and high-

performance systems. ACM Trans Des Autom Electron Syst 18(1):8:1–8:23. doi:10.1145/2390191.
2390199

34. Soundararajan G, Prabhakaran V, Balakrishnan M, Wobber T (2010) Extending SSD lifetimes with
disk-based write caches. In: Proceedings of the 8th USENIX conference on file and storage technologies
(FAST), p 8

35. Tweedie S (2000) Ext3, journaling filesystem. In: Ottawa Linux symposium, pp 24–29
36. Wilson A (2008) The new and improved filebench. In: Proceedings of the 6th USENIX conference on

file and storage technologies (FAST)
37. Yang P, Jin P, Yue L (2011) Hybrid storage with disk based write cache. In: Xu J, Yu G, Zhou

S, Unland R (eds) Database systems for advanced applications. Lecture notes in computer science,
vol 6637. Springer, Berlin, pp 264–275

38. Zhou K, Huang P, Li C, Wang H (2012) An empirical study on the interplay between filesystems
and SSD. In: 7th IEEE international conference on networking, architecture and storage (NAS),
pp 124–133. doi:10.1109/NAS.2012.21

123

http://dx.doi.org/10.1109/NAS.2011.50
http://dx.doi.org/10.1145/1453856.1453913
http://dx.doi.org/10.1145/1453856.1453913
http://dx.doi.org/10.1109/MASCOTS.2011.41
http://dx.doi.org/10.1109/ICSAI.2012.6223157
http://dx.doi.org/10.1109/NAS.2010.9
http://dx.doi.org/10.1145/1945023.1945030
http://dx.doi.org/10.1145/1519065.1519081
http://dx.doi.org/10.1145/1866480.1866482
http://dsn.ce.sharif.edu/tiering/tiering-kernel-module.tar.gz
http://dsn.ce.sharif.edu/tiering/tiering-kernel-module.tar.gz
http://dx.doi.org/10.1145/2390191.2390199
http://dx.doi.org/10.1145/2390191.2390199
http://dx.doi.org/10.1109/NAS.2012.21

	Operating system level data tiering using online workload characterization
	Abstract
	1 Introduction
	2 Related work
	2.1 Caching
	2.2 Tiering

	3 Proposed tiering architecture: OODT
	3.1 Components and algorithms used in proposed architecture
	3.2 Priority computation
	3.2.1 Access frequency and randomness
	3.2.2 Read vs. write
	3.2.3 Filesystem metadata

	3.3 Filesystem metadata detection technique
	3.4 Comparison of OODT with previous work

	4 Experimental results
	4.1 Experimental system
	4.2 Benchmarks
	4.2.1 Postmark
	4.2.2 HammerDB
	4.2.3 IOzone
	4.2.4 FileBench

	4.3 Experimental results
	4.3.1 Postmark
	4.3.2 TPC-C
	4.3.3 TPC-H
	4.3.4 IOzone
	4.3.5 FileBench

	5 Discussion
	5.1 Memory overhead
	5.2 Data block size
	5.3 Reliability
	5.4 Portability
	5.5 Parameter sensitivity
	5.5.1 Read weight
	5.5.2 Metadata weight

	5.6 Workload generality

	6 Conclusion
	References

