
J Supercomput (2015) 71:1484–1504
DOI 10.1007/s11227-014-1375-7

Gem5v: a modified gem5 for simulating virtualized
systems

Seyed Hossein Nikounia · Siamak Mohammadi

Published online: 5 February 2015
© Springer Science+Business Media New York 2015

Abstract Virtualization is growing in different areas: from powerful servers in data
centers to students’ laptops and even cell phones. It can provide a more efficient use
of hardware resources. Virtualization enables multiple virtual machines to run side-
by-side in an isolated environment on a physical hardware. Modern processors are
enhanced with technologies like Intel-VT and AMD-V that speed up virtual machines.
However, there is still room for improving support of hardware for virtualization
workloads. Gem5 is an open-source full system simulator capable of simulating a Chip-
Multiprocessor with its caches, interconnection network, memory controllers among
others. In its current state, gem5 does not support virtualized workloads. In this paper,
we present a modified version of gem5, named gem5v, that simulates the behavior
of a virtualization layer and can simulate virtual machines. We test this simulator in
different scenarios using Parsec, Splash, MapReduce (Phoenix), SPEC and EEMBC
benchmarks and compare its measured runtime with real systems. Results show 1–9 %
difference between the simulated system and two virtualization softwares on a real
hardware, namely KVM and VMware ESX. The comparison of vCPU overhead in
VMware ESX and gem5v shows between 0.1 and 9 % difference.

Keywords Computer architecture · Virtualization · Consolidation · Simulation ·
Gem5

S. H. Nikounia · S. Mohammadi (B)
School of ECE, University of Tehran, Tehran, Iran
e-mail: smohamadi@ut.ac.ir

S. H. Nikounia
e-mail: nikoonia@ut.ac.ir

S. Mohammadi
School of Computer Science, Institute for Research in Fundamental Science (IPM), Tehran, Iran

123



Gem5v 1485

1 Introduction

Virtualization multiplexes a physical machine among multiple virtual machines. This
enables a data center to run multiple virtual private servers (VPSs) on a single physical
server to better utilize resources and reduce management costs and power consump-
tion. For instance, a student can run Linux on its Windows machine side-by-side to
do his/her OS homework. It can be used by a security researcher to investigate a
new malware inside an isolated environment (virtual machine) without affecting pro-
duction machines/network. In a software team, developers can run multiple virtual
machines with different operating systems and configurations to test their new born
software in different environments. This will reduce their development and test costs
as well as their hardware setup times. One can even run multiple virtual phones on a
physical phone to have different cell phones for work and home [15]. Use of virtual-
ization is growing: Gartner has estimated over 50 % of server workloads worldwide
are virtualized in 2012. That figure was 16 % in 2009 [2].

A special software layer runs virtual machines (VMs). It is called hypervisor or
virtual machine monitor (VMM). VM is usually called guest while the machine that
runs the hypervisor is called host. Figure 1 shows a hypervisor that runs 4 VMs side-
by-side. Each of them runs its own OS and applications.

Virtualization better utilizes processor’s computing power.
Chip-multiprocessors (CMPs) provide multiple processing cores within a single

chip. They have become dominant in processor’s market. For example, recent Intel
Xeon processors provide up to 10 cores and up to 20 threads[6].

Modern processors have new features that enable hypervisors to speed up VMs.
Technologies like Intel-VT [32] and AMD-V [1] add hardware support for an addi-
tional layer of address translation needed by hypervisors. See Sect. 2.1 for more details.
ARM also has a virtualization extension [33].

Future CMPs can take more advantage of the information that hypervisors can
provide about VMs status and needs. They may use it to fairly partition shared
caches [10,22,26], optimize routing or cache coherency protocol in their network

Host

Hypervisor

VM 1

Mail

VM 2

Web

VM 3

DB

VM 4

Radius

Fig. 1 Hypervisor runs Virtual Machines with their own OS and applications side-by-side in the host
system

123



1486 S. H. Nikounia, S. Mohammadi

on chip (NoC) [17,19,23,24] or they can provide quality of service (QoS) in memory
accesses [21,30]. These are just simple ideas but one could go beyond them to design
a virtualization-capable processor.

Every new design needs extensive simulation for its functional and performance
verification. There are many simulation tools from high-level task graph view of the
application to low-level cycle-accurate NoC simulators or even transistor-level simu-
lators, each designed to be used for specific part of the system: researchers could use
transistor-level simulators to simulate a NoC router, a NoC simulator to simulate a
NoC within a CMP or higher-level simulators to see a bigger picture of the system.

Gem5 is an event-driven full-system simulator. It simulates a shared-memory CMP
that can boot from full Linux kernel in detailed micro-architectural level. It can sim-
ulate out-of-order (O3) pipelined CPU along with caches, NoC, bridges and memory
controller among others (see Sect. 2.2 for more details). However, the current gem5
is not capable of simulating virtualized systems.

The main contribution of this paper is as follows:

– We have modified gem5 to simulate the behavior of a hypervisor that can simu-
late multiple virtual machines. We have named it gem5v. It has several features
like vCPU, pipelined O3 CPU and ease of configuration using command line
arguments—the usual style in gem5.

– We have tested the simulator with different scenarios using some MapReduce
(Phoenix)[31], Parsec [12], Splash [34], SPEC CPU2006 [20] and EEMBC (core-
mark) [16] benchmarks and presented some of their results. We have also compared
the simulated runtime with two modern virtualization softwares: KVM [25] and
VMware ESX [9]. Results show 1–9 % difference between the simulated system
and virtualization softwares on a real hardware.

The rest of this paper is organized as follows: We begin with a background on
virtualization and gem5 simulator in Sect. 2. The simulation of a virtualized system is
discussed in Sect. 3. Gem5v is described in Sect. 4. We present the simulation results
and compare them with real systems in Sect. 5. Finally, we conclude in the last section.

2 Preliminaries

We start with a background on virtualization in Sect. 2.1 and we briefly present gem5
simulator in Sect. 2.2.

2.1 Virtualization

The hypervisor provides a portion of the physical machine as a virtual machine to the
guest OS. It contains virtual CPUs, virtual RAM and virtual I/O.

In the processor’s part, the guest OS needs to execute privileged instructions (e.g.
TLB modification) as well as unprivileged instructions (e.g. an add instruction). While
unprivileged instructions can be executed directly on the physical processor, the exe-
cution of privileged instructions should be handled with care to ensure that it does not
affect other VMs or the host system. Some hypervisors handle this with on-the-fly

123



Gem5v 1487

binary translation of privileged instructions [29]. To eliminate the translation over-
head, some hypervisors like Xen require the guest OS to replace privileged instruc-
tions with hypercalls which are understood by hypervisor. This method needs source
code modification of the guest OS. To eliminate the translation overhead without guest
OS modification, modern processors feature hardware-assisted virtualization, where
another protection ring is added and the hypervisor runs in the ring.

An OS running on a physical hardware needs to translate ‘virtual addresses’ to
physical ones. In a virtualized environment, guest OSs have to do the same. They have
their own address space. Since hypervisor runs several guest OSs, it needs to translate
‘physical address’ of the guest OS (i.e. the new ‘virtual address’ from hypervisor’s
point of view) to physical address from hypervisor’s point of view—that is named
‘real address’ in the literature. VMs themselves are like individual applications in
hypervisor’s view. The guest OS translates ‘virtual address’ of its applications to
‘physical address’ and the hypervisor translates ‘physical address’ of guest OS to
‘real address’. Modern processors help hypervisors with another level of TLB [1,32].
Without this feature, hypervisors must use shadow page table which has its own
overhead [29].

Besides processor and memory, VMs need to access I/Os. Hypervisors provide
virtual I/O devices to VMs. Some virtual I/O devices are backed by one physical I/O
device (e.g. a printer), some of them are not connected to a physical device at all (e.g.
a virtual monitor) and some of them share a physical I/O (e.g. network interface).
In all the above cases, hypervisor handles I/O accesses. However, modern processors
facilitate accesses to I/O with direct I/O which enables direct memory access (DMA)
to the address space of the VM.

Modern hypervisors have advanced features like page sharing that reduces the
memory footprint by sharing common pages among multiple VMs in read-only mode.
This is useful when running multiple VMs with the same OS, where some parts of the
code (like kernel) do not change in runtime. Hypervisor can save memory by storing
these parts only once. They also support migration that enables a VM to migrate form
one server to another.

Various parameters of VM are user configurable. Users can define the amount of
RAM, number of CPUs and disk space of each VM. They can define multiple VMs
with the total number of CPUs that could be more than available physical CPUs. In this
case, the hypervisor schedules virtual CPUs (vCPUs) over the physical ones. Physical
CPUs are shared among VMs. This is referred to as vCPU feature.

Gem5v simulates the behavior of a hypervisor inside the simulator itself. We assume
a modern processor with hardware-assisted features like Intel-VT and AMD-V that
provides a dedicated ring for the hypervisor, accelerates address translation and fea-
tures direct I/O.

2.2 The gem5 simulator

“The gem5 simulator is a modular platform for computer system architecture research,
encompassing system-level architecture as well as processor microarchitecture” [3]. It
simulates a shared-memory CMP with various ISAs: Alpha, x86, ARM and SPARC.

123



1488 S. H. Nikounia, S. Mohammadi

Different CPU models are also supported: from simple atomic, one clock per instruc-
tion (CPI) CPUs to pipelined out-of-order (O3) ones. It has two memory models:
the classic memory model simulates multi-level cache hierarchies with snooping
coherency protocol and the Ruby memory model where caches, directory controllers
and memory controllers as well as processors are connected to an interconnection
network. Multiple coherency protocols are supported. Note that not all CPU models
work with all protocols.

Gem5 can work in two modes: syscall emulation (SE) and full system (FS); SE
runs a statically compiled binary, while FS brings up a full kernel and disk image that
can run applications in that environment. Multi-threaded programs are usually run in
FS mode since pthreads1 are not supported in SE mode. However, m5threads
partially implements main functionality of pthreads and works in SE mode.

Gem5 features checkpointing. Users can take a checkpoint from a specific sim-
ulation point and start the simulation from that point several times with different
configurations.

Gem5 is made of M5 and GEMS [13]. Historically, GEMS is used to simulate the
memory parts (Ruby memory model) and M5 is used to simulate other parts (proces-
sors, I/Os, bridges, etc.). Gem5 is object oriented, written in C++ and Python. Python
is used to configure and connect C++ objects to build up the simulation environment.
Objects are connected by means of port; the concept is similar to ports in SystemC.
Gem5’s binary takes a python script that instantiates simulators’ objects like CPUs,
caches, etc. and connects them together to build up simulation. Objects are organized
in a tree-like structure. The root of this tree is an object called root.

Gem5 is distributed under a Berkeley-style open source license.

3 Simulating virtualization workloads

Different methods could be used to simulate a virtualization workload. Based on the
target performance metrics and level of abstraction, one could choose the appropriate
simulation platform. For example, to simulate several machines in a cloud data center
running virtualization workloads one could use CloudSim [14]. However, CloudSim
is not intended to be used as a hardware architecture exploration tool; it does not model
a detailed processor and does not count cache misses or clock per instruction (CPI).
Gem5v is intended to simulate virtualization workloads at detailed micro-architectural
level.

Since full system simulators like gem5 are built to run a full OS, theoretically they
should be capable of running a hypervisor. Although this seems to be the most accu-
rate way of simulating consolidation workloads, it has its own limitations: simulation
time is long since an additional software layer runs on a detailed simulated hardware;
configuration of the system is difficult since we have to configure parameters of bench-
marks inside VMs’ disk images, which reside inside disk image of the host system.
Most importantly, this is difficult or even considered impossible [4].

1 POSIX threads.

123



Gem5v 1489

Because of the aforementioned limitations, researchers tried to modify existing
simulators to simulate the behavior of a hypervisor inside the simulator itself. Virtual-
GEMS presented in [18] is based on Simics [27] and GEMS [28]. It uses multiple
instances of Simics for each VM that are connected to one Ruby memory model using
their added interface.

Although Virtual-GEMS simulates detailed hardware, it lacks some features. Some
of them like lack of out-of-order CPU are inherited from Simics. It does not support
vCPU. Original GEMS no longer exists. It is part of gem5 and updated in gem5’s
source code. Our work is similar to Virtual-GEMS. We will compare gem5v with
Virtual-GEMS in Sect. 4.1.

4 Gem5’s new feature: virtualization support

Our modified version of gem5 simulates a hypervisor which can run multiple virtual
machines. Just like any hypervisor, number of CPUs and the amount of dedicated RAM
could be defined. VMs run in FS mode and any number of them could be defined. We
have chosen FS mode instead of SE mode since it can run multi-threaded applications.

Users have control over assignment of processors to a VM in the interconnection
network (e.g. Mesh). Each VM has its own kernel binary, disk images and I/Os. All
VMs share a memory subsystem, Ruby, where memory requests are served and their
timing is handled. We have chosen Ruby memory model over the classic one since it
is more detailed.

We have modified Ruby to support translation of physical addresses (that is valid
inside system) to real addresses. We assume that the simulated processor has hardware-
assisted virtualization capability that can accelerate real to physical address translation
in hardware. Thereby, the translation overhead is negligible compared to an ordi-
nary processor that uses shadow page table [32]. The aforementioned model and the
assumption are similar to those of Virtual-GEMS.

In the simplest form, physical address spaces of each VM are mapped one after
another into real address spaces. There exist more complex methods. Hypervisor can
map each newly addressed virtual page to the next free physical page. We have imple-
mented both the above methods. Although the implementation of other methods is not
hard, it is shown in [18] that they do not have significant differences.

Gem5v supports vCPU: physical processors can be shared between VMs. VMs
share processing power in a weighted round-robin manner. The fraction of share is
defined by the user. The context-switch overhead can also be configured.

Since gem5’s code base is not multi-threaded, gem5v simulates VMs serially.
Hence, the simulation time in gem5v approximately equals the sum of simulation
time of its VMs (their OS and benchmarks) in gem5.

Like the original gem5, our version supports out-of-order and pipelined CPU, dif-
ferent ISAs, cache coherency protocols and interconnection networks. It coexists with
other features of the simulator like checkpointing. It is open source and can be down-
loaded, used and modified freely.2

2 We would like to submit it to the review board of gem5 so it could be part of the mainline.

123



1490 S. H. Nikounia, S. Mohammadi

Table 1 Comparison of gem5v
and virtual-GEMS

Feature Gem5v Virtual-GEMS

Common features Yes Yes

Ruby memory model Yes (updated) Yes

Physical to real address
translation methods

Two Four

Virtual CPU Yes No

Full system simulation Yes Yes

Pipelined, in-order CPU Yes No

Pipelined O3 CPU Yes No

Virtualized I/O No No

Advanced features No No

Open source Yes Partially

In Sect. 4.1, we compare gem5v with Virtual-GEMS. We describe our architecture
and technical details in Sect. 4.3. Section 4.2 discusses limitations of our current
version.

4.1 Comparison

To the best of our knowledge, Virtual-GEMS [18] is the only comparable simulator for
virtualized workloads: Both Virtual-GEMS and gem5v simulate VMs in full-system
mode and with detailed hardware.

Besides the common features, both use Ruby memory model. However, GEMS
(which provides Ruby) is now updated in gem5’s source code.

Virtual-GEMS benefits from various physical-to-real address translation methods,
while gem5v features vCPU and can simulate pipelined in-order and also pipelined
out-of-order processors. Virtual-GEMS uses Simics which is an under commercial-
license product; GEMS and their patch are open-source. Gem5v is fully open source.
Both use dedicated I/O for VMs and do not implement advanced features (see Sect.
4.2). Table 1 summarizes comparison of gem5v with Virtual-GEMS.

4.2 Limitations

Some limitations of our current version are described here. Users cannot specify dif-
ferent kernel binary and disk images for VMs through command-line arguments. This
could be implemented easily in the configuration script.

We have tested x86 and Alpha; Logically, other ISAs should also work. For
cache coherency protocols and interconnection networks, MOESI_CMP_token,
MOESI_hammer and Mesh are modified, other topologies and coherency protocols
can be modified likewise.

We do not simulate virtualized I/Os. Each VM has its own I/Os. Our current imple-
mentation is similar to direct I/O feature of modern processors. However, implemen-
tation of shared virtualized I/O would be interesting.

123



Gem5v 1491

We do not consider the situation where the VM puts the vCPU in idle state (see Sect.
4.3 for more details). Current version uses two methods for physical-to-real address
translation and does not implement the page sharing. Other advanced features like
migration are not implemented.

We have used FS mode. However, implementing it in SE mode would be easy as
writing a new python configuration script. One can clone se.py and modify it like
our added hypervisor.py.

4.3 Technical details

We simulate each VM by creating a new instance of system in gem5. Each system
contains its own kernel binary, disk images and I/Os. All systems are connected to one
instance of Ruby, which simulates memory parts: caches, DMA controllers, NoC, etc.
Ruby is modified to support translation of physical addresses to real addresses.

Multiple instances of system is created in our provided python configuration script.
Each system represents a VM. They are defined to be children of root. One Ruby is
instantiated to simulate the memory part of the system. Ruby is defined to become the
child of the first system in the tree.

The component that connects ports of each system to Ruby ports is modified, so
that it is able to translate physical addresses within the system to real addresses that
are valid inside Ruby. Figure 2 shows the aforementioned architecture.

Placement of VMs in the interconnection network (NoC) is defined by the way CPU
ports in systems are connected to their routers. This is done in configuration python
scripts.

For each VM, an instance of system is built which contains its own disk image and
kernel with specified number of CPUs. One instance of Ruby is created to function as
the memory system. Its ports are connected to the appropriate CPU ports. All these
connections along with building interconnection topology are made inside configu-
ration python scripts. Source codes are changed to make this configuration (multiple
systems, one ruby) possible.

Each system has its own physical address space. We need to translate physical
addresses to real addresses. It is implemented inside Ruby’s Sequencer.

With the above architecture, a VM will either have 100 or 0 % share of a processor.
In other words, physical CPUs are dedicated to VMs; processors cannot be shared
between VMs and multiple VMs cannot be scheduled on a processor. Current hyper-
visors can allocate one physical CPU for more than one VM. As described in Sect.
2.1, this feature is called virtual CPU (vCPU).

In gem5v, we would like to be able to configure the share of each physical processor
dedicated to a VM. Hypervisors achieve this by scheduling VMs on processors. This is
similar to scheduling processes in a typical OS. To achieve this in gem5v, one solution
could be to periodically move shared processors between systems (VMs) who share
them. In this way, a physical processor is shared between systems in a time sharing
manner. However, current code-base of gem5 does not allow it, thereby we implement
the following solution: CPU component of gem5 is modified so that it can work in a
specified period of cycles in a hyperperiod. This enables us to have multiple CPUs

123



1492 S. H. Nikounia, S. Mohammadi

gem5 simulation environment

Ruby

system system system system

CPUs CPUs CPUs CPUs

Disk Disk Disk Disk

Kernel Kernel Kernel Kernel

trans. trans. trans. trans.

Interconnection Network

Caches Dir. ctrls DMA ctrls

Fig. 2 We create multiple instance of systems for each VM. Processors of the systems are connected to
one Ruby with a module that translates physical addresses within a system to real addresses valid in Ruby

that work in non-overlapping periods of time. Suppose these CPUs are part of different
VMs (gem5’s systems), it looks as if they share one CPU in a round-robin manner.

When a fraction of a physical CPU is assigned to a VM, we create an instance of
a CPU inside its system. This CPU is configured to work in a specific period of times
in a hyperperiod. The duration of the period is assigned based on the share of the
VM from that physical CPU. The duration of the hyperperiod is defined by the user.
Other VMs that share this physical CPU also get a CPU in the same way. However,
we set location of their period in the hyperperiod in the python configuration script
automatically, so that their periods are non-overlapping.

We provide the context switch time by shortening the duration of assigned periods
based on the required context switch overhead. In this way, VMs do not have the
physical CPU during context switches. The context switch time could be defined by
the user.

In a real virtualization system, when a physical CPU is assigned to a vCPU, the
VM will have it in the assigned period. If the VM has nothing to do and puts the vCPU
in idle state, it effectively releases the physical CPU. Our current implementation

123



Gem5v 1493

does not consider this situation. We know that our method does not simulate a 100 %
accurate vCPU. However, our comparison between the overhead of scheduling four
VMs on one CPU instead of four in gem5v and in VMware ESX shows a good match
between simulated and the real system (see Sect. 5.4).

To support vCPU, we add new parameters (specifying the hyperperiod, start and stop
of active period of the vCPU) to ClockedObject class that makes the CPU active
in a portion of a hyperperiod. We do this by changing the way the ClockedObject
schedules the next event. VCPU that represents a physical CPU is connected to one
router.

The default values for our added parameters are set so when virtualization-specific
parameters are not set, modified components can perform their function in non-
virtualized environment as before.

To build up the simulation environment, gem5 uses some python configuration
scripts. A python configuration script is added. It is called hypervisor.py.3 Dif-
ferent options of this script are described in Appendix 7.

5 Testing simulator

To test the simulator, we have simulated several scenarios using some of MapRe-
duce (Phoenix) [31], Parsec 2.1 [12], Splash [8], SPEC CPU2006 [20] and EEMBC
(coremark) [16] benchmarks.

We have simulated several scenarios with multiple VMs where each VM runs
a benchmark. We have also simulated scenarios that represent a host environment
running one benchmark. We compared performance statics of various scenarios in
the following subsections. The simulations are launched on an Intel Core i7 machine
with 10GB of RAM. More detailed description of each scenario is described in each
subsection.

We continue this section by testing the correct run of multiple VMs, presenting
the effect of co-scheduled VMs, comparing with two real hypervisors and testing the
vCPU feature in gem5v.4

5.1 Running multiple virtual machines

If a disk image, kernel and workload(s) can run on original gem5, gem5v can run it as
a VM as well. To confirm this, besides careful code modification, we have run several
tests with different workloads from MapReduce, Parsec, Splash, SPEC CPU2006 and
EEMBC; it successfully runs them. Memory requests (i.e. Every read and write from
CPUs) are directed through one Ruby instance where memory requests’ timings are
handled. This ensures correct timing of memory requests.

3 Located in configs/example.
4 As we do not have a license for Simics, we are unable to do tests for comparison of Virtual-GEMS and
gem5v.

123



1494 S. H. Nikounia, S. Mohammadi

Table 2 System specification when studying the effect of co-scheduled VMs in multi-threaded
benchmarks

rosivrepyHtsoH

x86 Alpha x86 Alpha

Cores 8 16 32 64
618MVreperoC

BM215BM215MVrepMAR

BG2BM215MAR
v5meg5meglanigirOrotalumiS

UPCelpmiSgnimiTepyTUPC
zHG2ycneuqerFUPC

B46eziSeniL
23ehcaCI1L kB 2-way set associative
46ehcaCD1L kB 2-way set associative

L2 Cache Size {32k, 64k, 128k, 256k, 512k, 1M, 2M}B 8-way set associative
ODUESPyciloPtnemecalpeR LRU
hseMtcennocretnI

ISEOMycnerehoC hammer

5.2 The effect of co-scheduled virtual machines

Co-scheduled VMs share common resources of the processor like the shared cache. In
gem5v, memory requests are served by one Ruby instance. This ensures an accurate
timing of memory accesses.

To see the effect of co-scheduled VMs, we present some of our simulation results.
We simulate three hypervisors and three hosts using gem5v and the original gem5,
respectively. For multi-threaded benchmarks (Parsec and MapReduce), gem5v simu-
lated four multi-core VMs and for single-threaded benchmarks (SPEC CPU2006 and
EEMBC coremark) it simulated two single-core VMs. Hypervisors co-schedule VMs
that run their own benchmark while hosts run a single benchmark. Tables 2 and 3
present configurations of single-threaded and multi-threaded environments, respec-
tively. We have used both x86 and Alpha with various L2 cache sizes. Each core has
its own L1I and L1D caches. Most of these configurations are gem5’s defaults. Note
that the results shown here are part of our experiments and only intended to show the
authenticity of our implementation by exploring the effect of co-scheduled VMs on
IPC and cache statistics. Interference study is out of scope of this paper.

In hypervisor’s experiments, we use the notation b1@b2 − b3 − b4 to refer to the
scenario where b1 is running in a VM and b2, b3 and b4 are running in neighboring
VMs.5 Actually, we run bi benchmark in vmi . Similarly, we use b1@b2 for two VM
scenarios.

5 That is why we have used the @ notation.

123



Gem5v 1495

Table 3 System specification
when studying the effect of
co-scheduled VMs in
single-threaded benchmarks

Host Hypervisor

x86 x86

Cores 1 2
1MVreperoC

BM215MVrepMAR

RAM 512MB 1GB
Simulator Original gem5 gem5v

CPU Type TimingSimpleCPU
CPU Frequency 2 GHz

B46eziSeniL
L1I Cache 32kB 2-way set associative
L1D Cache 64kB 2-way set associative

L2 Cache Size 1MB 8-way set associative
Replacement Policy PSEUDO LRU

Interconnect Mesh
Coherency MOESI CMP token

32kB 64kB 128kB 256kB 512kB 1MB 2MB

2.3

2.4

2.5

2.6

L
in

u
x

B
o
o
t

T
im

e
(s

e
c
)

Alpha Hypervisor Alpha Host

Fig. 3 Linux kernel boot time in Alpha host and Alpha hypervisor running 4 VMs for different L2 sizes

5.2.1 Linux kernel boot time

In this part, we compare the Linux kernel boot time in host and 4-VM hypervisor
environment. Figure 3 shows Linux kernel 2.6.27 [7] boot time that boots under Alpha
in about 5.5 s and Fig. 4 shows boot time of about 2.5 s for kernel 2.6.22.9.smp [3] in
x86.

Boot time in x86 and Alpha environments are not comparable since kernel versions,
configuration options of the kernel and processor’s architectures are different. We want
to compare the boot time in the host and hypervisor environments of each configuration.

Linux kernel in our Alpha configuration boots faster with larger L2 caches. With the
same L2 cache size, the kernel boots about 0.7–2.5 % faster in the host environment.
This is due to the cache capacity being shared with other VMs.

This is slightly different in our x86 configuration. The interesting point here is
that for 64 to 512 kB L2 size, the kernel boots around 14 % faster in the hypervisor

123



1496 S. H. Nikounia, S. Mohammadi

32kB 64kB 128kB 256kB 512kB 1MB 2MB

4.5

5

5.5

6

L
in

u
x

B
o
o
t

T
im

e
(s

e
c
)

x86 Hypervisor x86 Host

Fig. 4 Linux kernel boot time in x86 host and x86 hypervisor running 4 VMs for different L2 sizes

environment. This is also due to cache sharing between VMs that results in lower
effective cache capacity for each VM. Note that the kernel in our x86 configuration
boots faster with lower cache sizes (e.g. 32 kB).

5.2.2 The effect of co-scheduled VMs on L2 misses

We have run Parsec 2.1 benchmarks with small input size in simulated Alpha hypervi-
sor configured as shown in Table 2. In a virtualized system, all running VMs are using
the shared cache and their access pattern causes different miss rates. We now discuss
L2 cache misses in some of our experiments.

Figures 5 and 6 show a portion of L2 miss rate in time for different scenarios for
L2 cache size 64 and 128 kB, respectively. Each figure arranges different scenarios in
a grid so that benchmark of vm1 is fixed in each row and benchmarks of vm2, vm3
and vm4 are fixed in each column. We have abbreviated benchmark names in figures.
Table 4 lists them.

Since benchmarks vary in different experiments, we expect different L2 misses
and that is what we see in figures. However, changing only one benchmark (i.e. mov-
ing in one column) does not necessarily mean similar L2 miss rates. For example,
@streamcluster-blackscholes-vips for 64 kB L2 size have almost similar L2 miss rates
while these experiments with 128 kB L2 size do not. This observation shows that in
cache contention studies of virtualized systems, the cache size of the target platform
should be considered.

When a VM with a large working set is running, we expect high L2 miss rate. That
is the case for the middle column in two figures where dedup is running as a neighbor.6

According to [11], dedup has a large working set.

6 According to Table 4, d in ffd means dedup.

123



Gem5v 1497

2.55 2.6 2.65 2.7 2.75
0

0.2

0.4

0.6

0.8

1

blk@ffd

2.55 2.6 2.65 2.7 2.75
0

0.2

0.4

0.6

0.8

1

blk@sbv

2.55 2.6 2.65 2.7 2.75
0

0.2

0.4

0.6

0.8

1

bdt@ffd

2.55 2.6 2.65 2.7 2.75
0

0.2

0.4

0.6

0.8

1

bdt@sbv

Fig. 5 L2 miss rate in time (s) for 64 kB L2 cache. See Table 4 for abbreviation

2.55 2.6 2.65 2.7 2.75
0

0.2

0.4

0.6

0.8

1

blk@ffd

2.55 2.6 2.65 2.7 2.75
0

0.2

0.4

0.6

0.8

1

blk@sbv

2.55 2.6 2.65 2.7 2.75
0

0.2

0.4

0.6

0.8

1

bdt@ffd

2.55 2.6 2.65 2.7 2.75
0

0.2

0.4

0.6

0.8

1

bdt@sbv

Fig. 6 L2 miss rate in time (s) for 128 kB L2 cache. See Table 4 for abbreviation

5.2.3 The effect of co-scheduled VMs on IPC

As VMs share common resources of the processor, they might affect the Instruction
Per Cycle (IPC) of their neighbors. To see this effect, we present the results of two
sets of our experiments.

123



1498 S. H. Nikounia, S. Mohammadi

Table 4 Short form of
benchmark names used in
figures

Abbreviation Name

blk Blackscholes

bdt Bodytrack

cnl Canneal

fld Fluidanimate

ddp Dedup

vps Vips

chl Cholesky

bbr Blackscholes-bodytrack-rtview

bcr Blackscholes-canneal-rtview

frf Ferret-rtview-facesim

ffd Freqmine-fluidanimate-dedup

sbv Streamcluster-blackscholes-vips

bfc Bodytrack-fft-cholesky

bbl Blackscholes-bodytrack-lu_ncb

2.6 2.7 2.8
0

0.1

0.2

0.3

128kB: blk

2.6 2.7 2.8
0

0.1

0.2

0.3

128kB: blk@bbr

2.6 2.7 2.8
0

0.1

0.2

0.3

128kB: blk@frf

2.6 2.7 2.8
0

0.1

0.2

0.3

512kB: blk

2.6 2.7 2.8
0

0.1

0.2

0.3

512kB: blk@bbr

2.6 2.7 2.8
0

0.1

0.2

0.3

512kB: blk@frf

Fig. 7 Average IPC in time (s). See Table 4 for abbreviation

We measure the average IPC of vm1’s processors running on our simulated 64-core
Alpha hypervisor and compare it with the average IPC of the same benchmark running
in our simulated host. Table 2 shows configuration details. Note that the host system
is simulated using the original gem5 while the hypervisor is simulated with gem5v.
Benchmarks shown here are from Parsec 2.1 benchmark suite with small input sizes.

Figure 7 compares the IPC of blackscholes benchmark running in a host with the
situation where it is running inside a VM with three neighboring VMs running other
Parsec benchmarks. It can be seen that in our configuration, neighboring VMs slightly
affect the shape of blackscholes’ IPC: between 0.2 and 32.9 % difference with the host
environment for 128 kB L2 size; that is 10.2 % on average. Although we have only
shown the IPC for two cache sizes, our results with other cache sizes have shown the
same pattern.

123



Gem5v 1499

2.6 2.8 3
0

0.1

0.2

0.3

ipc: bdt

2.6 2.8 3
0

0.1

0.2

0.3

ipc: bdt@bcr

2.6 2.8 3
0

0.1

0.2

0.3

ipc: bdt@ffd

2.6 2.8 3
0

0.1

0.2

0.3

ipc: bdt@sbv

2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

l2miss: bdt

2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

l2miss: bdt@bcr

2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

l2miss: bdt@ffd

2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

l2miss: bdt@sbv

2.6 2.8 3
0

2

4

·10−2

l1Dmiss: bdt

2.6 2.8 3
0

2

4

·10−2

l1Dmiss: bdt@bcr

2.6 2.8 3
0

2

4

·10−2

l1Dmiss: bdt@ffd

2.6 2.8 3
0

2

4

·10−2

l1Dmiss: bdt@sbv

Fig. 8 L2, L1D and L1I miss as well as IPC in time (s) for 256 kB L2 cache. See Table 4 for abbreviation

In contrast, neighboring VMs affect more the IPC of bodytrack: between 15.5 and
41.3 % difference with IPC of running in the host; that is 27.0 % on average. Figure 8
shows this effect for L2 size of 256 kB. This figure also shows L2, L1I and L1D cache
miss rates. It is clear that L1I and L1D cache miss rates are also affected. The L2 miss
rates differ significantly since different VMs are accessing it. Other L2 sizes show
similar trend (not shown here).

Bodytrack is more sensitive to reduction in memory bandwidth than blackscholes
[11]. This explains the above difference in the effects of neighbors on blackscholes
and bodytrack.

We continue this subsection with IPC analysis of four SPEC CPU2006 and EEMBC
Coremark benchmarks. Table 3 shows configuration details of our host and hypervisor
environment for these tests. We have selected four benchmarks from SPEC CPU2006
benchmarks: libquantum and mcf that are memory intensive and bzip2 and gcc that
are compute intensive. We have run every combination of these four benchmarks in
the simulated hypervisor to see the effect of neighboring VM on the L2 cache. We
run our experiments for about 4 × 109 cycles. We have used test inputs in SPEC
benchmarks. Figure 9 shows the percentage of reduced IPC in simulated hypervisor
compared to simulated host for some SPEC benchmarks. The reduced IPC depends
on how benchmarks suffer from reduced shared resources (like shared L2 cache) and
the behaviour of the neighboring VM. For example, bzip2 has large L2 miss ratio,
29 %, in our simulations and caused up to 3.5 % reduction in IPC. We also expect to
see performance degradation when two memory intensive benchmarks are co-located
and that is what we see in mcf@libquantum.

Coremark experiences about 0.02 % less IPC when it is co-running with another
instance of coremark in our hypervisor environment (simulated with gem5v) com-
pared to its alone run in the host environment (simulated with original gem5). That is

123



1500 S. H. Nikounia, S. Mohammadi

401.bzip2 403.gcc 429.mcf 462.libquantum
0

1

2

3
401.bzip2
403.gcc
429.mcf

462.libquantum

Fig. 9 Percentage of reduced IPC of some of SPEC CPU2006 benchmarks when co-located with a VM
running another SPEC CPU2006 benchmark

Table 5 System specification when comparing simulation results with a real system

Gem5 Real

CPU per VM 1 In-order, pipelined x86 1 Core of AMD Opteron 6172

Frequency 2 GHz 2.1 GHz

RAM per VM 512 MB 512 MB

Line size 64B 64B

L1I cache 32 kB 2-way set assoc. 64 kB 2-way set assoc.

L1D cache 64 kB 2-way set assoc. 64 kB 2-way set assoc.

L2 12 MB shared 8-way set assoc. Per core 512 kB 16-way set assoc.

L3 N/A 12 MB shared 96-way set assoc.

Replacement policy Pseudo LRU Pseudo LRU

Coherency protocol MOESI_CMP_token MOESI

Interconnect 2 × 2 Mesh Bus

understandable since coremark is intended to grade processor’s core capabilities and
is not memory intensive.

5.3 Comparing with two real systems

To compare simulation results with real virtualization softwares, we have run 4
VMs on a 4-core x86 CMP on gem5v and compared the results with KVM
[25] and VMware ESX [9] on a real CMP. We have done this experiment with
blackscholes@bodytrack-fft-cholesky and cholesky@blackscholes-bodytrack-lu_ncb
configurations. Fft, cholesky and lu_ncb are from Splash benchmarks.

We have averaged the runtime in the real system over five runs. Machine specifica-
tions are described in Table 5. We have tried to make the specification of the simulated
machine similar to that of the real system. However, in order to make a fair comparison,
benchmarks are run with two input sizes: small and medium and we have compared
tmedium/tsmall as runtime. Figures 10 and 11 report the runtime normalized to sim-
ulated results for blackscholes@bodytrack-fft-cholesky and cholesky@blackscholes-
bodytrack- lu_ncb, respectively. It can be seen that the simulated results match the
results from the real system with little margin: between 1 and 9 % of difference on
average in our tests.

123



Gem5v 1501

VM1 VM2 VM3 VM4 Avg

0

0.5

1

N
o
rm

a
li
z
e
d

ru
n
ti

m
e

KVM ESX Simulated

Fig. 10 Comparing normalized runtime of blackscholes@bodytrack-fft-cholesky benchmarks in KVM,
VMware ESX and simulated system

VM1 VM2 VM3 VM4 Avg

0

0.5

1

N
o
rm

a
li
z
e
d

ru
n
ti

m
e

KVM ESX Simulated

Fig. 11 Comparing normalized runtime of cholesky@blackscholes-bodytrack-lu_ncb benchmarks in
KVM, VMware ESX and simulated system

5.4 Testing vCPU

We want to study the overhead of running four VMs on one CPU instead of four
CPUs in the simulated environment using vCPU feature and compare the results with
VMware ESX. Specifications of real and simulated machines are described in Table
5 for 4-CPU configuration. We assign 25 % of each core to a VM in 1-CPU con-
figuration. We perform this experiment for blackscholes@bodytrack-fft-cholesky and
cholesky@blackscholes-bodytrack- lu_ncb configurations. The overhead is calculated
for the shortest benchmark. Runtimes in the real system are averaged over five runs.
Figure 12 compares the overhead in VMware ESX and the simulated system. It shows
that overheads are similar: There are 0.1 and 9 % differences between overhead of the
simulated system and ESX for two configurations.

We could not run this experiment for KVM: it seems that Debian Linux that runs
KVMs has a bug in setting affinity of processes.

This experiment shows that vCPU’s feature of gem5v simulates the behavior of
vCPU in a real hypervisor with a good match with regard to overheads.

123



1502 S. H. Nikounia, S. Mohammadi

Fig. 12 Comparing overhead of
running 4 VMs in 1 CPU instead
of 4 CPU. See Table 4 for
abbreviation

blk@bfc chl@bbl

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

O
v
re

h
e
a
d

ESX Simulated

6 Conclusion and future work

This paper presented a modified version of the gem5 simulator, named gem5v, that
supports simulation of virtualized systems: It simulates the run of multiple isolated
virtual machines with their own OSs and benchmarks. Gem5v supports multiple ISAs,
out-of-order CPU, various interconnection topologies and coherency protocols. Our
modified gem5 simulates multiple virtual CPUs that allow multiple VMs share a single
physical CPU. It is open source.

Gem5v is able to run the same benchmarks as gem5, in a VM. To confirm this,
besides careful code modification, we tested this simulator with some of MapReduce
(Phoenix), Parsec, Splash, SPEC CPU2006 and EEMBC benchmarks in different
scenarios and gem5v was successful in those tests.

We have also compared gem5v with real hypervisors. Results showed 1–9 % dif-
ferences between benchmark runtime in the simulated system and two virtualization
softwares: KVM and VMware ESX. Comparison of overhead of vCPU in VMware
ESX and gem5v showed 0.1 and 9 % difference in two configurations. We have also
presented a comparison between features of Virtual-GEMS and gem5v.

Our gem5v has some limitations including not supporting virtualized I/O (we simu-
late dedicated I/O per VM), vCPU’s idle state, page sharing and migration. We consider
adding support for advanced methods like page sharing and supporting both SE and
FS mode of gem5 as our future work.

7 Options for users

hypervisor.py adds the following options: --vm-cpu-placements defines
assignment of VMs to CPUs as well as their share from CPUs.
--vm-context-switch-hyperperiod defines the hyper period of the

round-robin. This is used in scheduling of vCPUs. Since the default scheduling quan-
tum in Linux kernel is 100 ms, we set the default value for hyperperiod to 1 s (for 10
VMs that are scheduled on a processor).
--vm-context-switch-overheaddefines the context switch overhead used

in vCPU. Our study shows process context switch overhead of 5,993 ns for an in-order

123



Gem5v 1503

pipelined x86 CPU in gem5 with default configuration. Hence we set the default value
of this parameter to 6 ms. We have used the method described in [5] for this study.

Memory size of VMs is defined by --vm-mem-sizes. The .rcS script of each
VM can be defined using --vm-scripts. If not set, the usual bash prompt will
be given. See hypervisor.py --help for detailed syntax.

Acknowledgments This research was in part supported by a Grant from IPM (No. CS1393-4-17).

References

1. AMD-V. http://www.amd.com/virtualization. Accessed on Nov 2012. Accessed 5 May 2014
2. Gartner: estimate of virtualized workloads. http://gartner.com/it/page.jsp?id=1211813. Accessed 1

May 2014
3. Gem5. http://gem5.org. Accessed 5 May 2014
4. [gem5-users] Running Xen in gem5. http://www.mail-archive.com/gem5-users@gem5.org/msg00367.

html. Accessed 1 Jan 2014
5. How does it take to make context switch. http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-

make-context.html. Accessed 1 May 2014
6. Intel Xeon. http://www.intel.com/content/www/us/en/servers/server-products.html. Accessed on Nov

2012. Accessed 1 May 2014
7. Parsec 2.1 for m5. http://www.cs.utexas.edu/cart/parsec_m5. Accessed 5 May 2014
8. Splash 2. http://www-flash.stanford.edu/apps/SPLASH. Accessed 1 Jan 2014
9. VMware. http://vmware.com. Accessed 5 May 2014

10. Apparao P, Iyer R, Newell D (2008) Implications of cache asymmetry on server consolidation perfor-
mance. In: IEEE international symposium on workload characterization, pp 24–32

11. Bhadauria M, Weaver VM, McKee SA (2009) Understanding PARSEC performance on contemporary
CMPs. In: IEEE international symposium on workload characterization, pp 98–107

12. Bienia C, Li K (2009) Parsec 2.0: a new benchmark suite for chip-multiprocessors. In: Workshop on
modeling, benchmarking and simulation

13. Binkert N, Beckmann BM, Black G, Reinhardt S, Saidi A, Basu A, Hestness J, Hower D, Krishna
T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill M, Wood D (2011) The gem5 simulator.
SIGARCH Comput Archit News 39(2):1–7

14. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2010) CloudSim: a toolkit for
modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Softw Pract Exp 41(1):23–50

15. Dall C, Andrus J, Hof AV, Laadan O, Nieh J (2012) The design, implementation, and evaluation of
cells: a virtual smartphone architecture. ACM Trans Comput Syst 30(3):1–31

16. Gal-On S, Levy M Exploring CoreMark—a benchmark maximizing simplicity and efficacy. EEMBC
Whitepaper. http://www.eembc.org/techlit/coremark-whitepaper.pdf

17. Garcia-Guirado A, Fernandez-Pascual R, Garcia J (2010) Analyzing cache coherence protocols for
server consolidation. In: International symposium on computer architecture and high performance
computing, pp 191–198

18. Garcia-Guirado A, Fernandez-Pascual R, Garcia JM (2009) Virtual-GEMS: an infrastructure to sim-
ulate virtual machines. In: International workshop on modeling, benchmarking and simulation

19. Garcia-Guirado A, Fernandez-Pascual R, Ros A, Garcia J (2011) Energy-efficient cache coherence
protocols in chip-multiprocessors for server consolidation. In: International conference on parallel
processing, pp 51–62

20. Henning JL (2006) SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput Archit News
34(4):1–17

21. Iyer R, Zhao L, Guo F, Illikkal R, Makineni S, Newell D, Solihin Y, Hsu L, Reinhardt S (2007) QoS
policies and architecture for cache/memory in CMP platforms. In: ACM SIGMETRICS international
conference on measurement and modeling of computer systems, pp 1–12. ACM request permissions

22. Jin X, Chen H, Wang X, Wang Z, Wen X, Luo Y, Li X (2009) A simple cache partitioning Approach
in a virtualized environment. In: IEEE international symposium on parallel and distributed processing
with applications, pp 519–524

123

http://www.amd.com/virtualization
http://gartner.com/it/page.jsp?id=1211813
http://gem5.org
http://www.mail-archive.com/gem5-users@gem5.org/msg00367.html
http://www.mail-archive.com/gem5-users@gem5.org/msg00367.html
http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
http://www.intel.com/content/www/us/en/servers/server-products.html
http://www.cs.utexas.edu/cart/parsec_m5
http://www-flash.stanford.edu/apps/SPLASH
http://vmware.com
http://www.eembc.org/techlit/coremark-whitepaper.pdf


1504 S. H. Nikounia, S. Mohammadi

23. Kim D, Ahn J, Kim J, Huh J (2010) Subspace snooping: filtering snoops with operating system support.
In: International conference on parallel architectures and compilation techniques, pp 111–122, ACM

24. Kim D, Kim H, Huh J (2010) Virtual snooping: filtering snoops in virtualized multi-cores. In:
IEEE/ACM international symposium on microarchitecture, pp 459–470

25. Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) kvm: the Linux virtual machine monitor. In:
Linux symposium, pp 225–230

26. Koller R, Verma A, Rangaswami R (2011) Estimating application cache requirement for provisioning
caches in virtualized systems. In: IEEE annual international symposium on modelling, analysis, and
simulation of computer and telecommunication systems, pp 55–62. IEEE Computer Society

27. Magnusson PS, Christensson M, Eskilson J, Forsgren D, Hallberg G, Hogberg J, Larsson F, Moestedt
A, Werner B (2002) Simics: a full system simulation platform. Computer 35(2):50–58

28. Martin MMK, Sorin DJ, Beckmann BM, Marty MR, Xu M, Alameldeen AR, Moore KE, Hill MD,
Wood DA (2005) Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset.
SIGARCH Comput Archit News 33(4):92–99

29. McDougall R, Anderson J (2010) Virtualization performance: perspectives and challenges ahead.
SIGOPS Oper Syst Rev 44(4):40–56

30. Srikantaiah S, Kandemir M, Wang Q (2009) Sharp control: controlled shared cache management in chip
multiprocessors. In: IEEE/ACM international symposium on microarchitecture, pp 517–528, IEEE

31. Talbot J, Yoo RM, Kozyrakis C (2011) Phoenix++: modular MapReduce for shared-memory systems.
In: MapReduce ’11: Proceedings of the 2nd international workshop on MapReduce and its applications,
pp 9–16. ACM request permissions

32. Uhlig R, Neiger G, Rodgers D, Santoni A, Martins F, Anderson A, Bennett S, Kagi A, Leung F, Smith
L (2005) Intel virtualization technology. Computer 38(5):48–56

33. Varanasi P, Heiser G (2011) Hardware-supported virtualization on ARM. In: Second Asia-Pacific
workshop on systems, pp 1–5, ACM

34. Woo S, Ohara M, Torrie E, Singh J, Gupta A (1995) The SPLASH-2 programs: characterization and
methodological considerations. In: International symposium on computer architecture, pp 24–36

123


	Gem5v: a modified gem5 for simulating virtualized systems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Virtualization
	2.2 The gem5 simulator

	3 Simulating virtualization workloads
	4 Gem5's new feature: virtualization support
	4.1 Comparison
	4.2 Limitations
	4.3 Technical details

	5 Testing simulator
	5.1 Running multiple virtual machines
	5.2 The effect of co-scheduled virtual machines
	5.2.1 Linux kernel boot time
	5.2.2 The effect of co-scheduled VMs on L2 misses
	5.2.3 The effect of co-scheduled VMs on IPC

	5.3 Comparing with two real systems
	5.4 Testing vCPU

	6 Conclusion and future work
	7 Options for users
	Acknowledgments
	References


