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Abstract A grid computing environment is a parallel and distributed system that
brings together various computing capacities to solve large computational problems.
Task scheduling is a critical issue for grid computing; in task scheduling, tasks are
mapped onto system processors with the aim of achieving good performance in terms
of minimizing the overall execution time. In previous studies, there have been several
approaches to solving the task-scheduling problem by genetic algorithms, which is a
random search technique that is inspired by natural biological evolution. This study
presents a genetic algorithm for solving the problem of task scheduling with two main
ideas: a new initialization strategy to generate the first population and new genetic
operators based on task–processor assignments to preserve the good characteristics
of the found solutions. Our proposed algorithm is implemented and evaluated using
a set of well-known applications in our specifically defined system environment. The
experimental results show that the proposed algorithm outperforms other popular
algorithms in a variety of scenarios with several parameter settings.
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1 Introduction

In the past few years, grid computing systems and applications have become popular
[8] due to the rapid development of many-core systems. A grid computing environment
is a parallel and distributed system that brings together various computing capacities
to solve large computational problems. In grid environments, task scheduling, which
plays an important role, divides a larger job into smaller tasks and maps tasks onto
a parallel and distributed system [5,11]. The goal of task scheduling is typically to
schedule all of the tasks on a given number of available processors in such a way as
to minimize the overall length of the time required to execute the whole program.

There are deterministic approaches and non-deterministic approaches to solving
the task-scheduling problem. An algorithm is referred to as a deterministic algorithm
if given a specific input it will always produce the same output and the underlying
machine always passes through the same sequence of states. Most of the determin-
istic algorithms are based on a greedy strategy, which merely attempts to minimize
the finishing time of the tasks in such a way that tasks are allocated to the parallel
processors without backtracking [20]. Several popular algorithms in this class have
been proposed, such as a list scheduling algorithm [25], clustering algorithm [16],
and task duplication algorithm [23]. However, these deterministic algorithms can only
solve certain cases efficiently and cannot preserve the consistent performance on a
broad range of problems due to the greedy property.

A non-deterministic algorithm differs from a deterministic algorithm in its capa-
bility to produce various outcomes depending on the choices that it makes during
execution. Currently, non-deterministic algorithms have been used to solve a wide
range of combinatorial problems, which take more time to explore the solution space
for a high-quality solution. To solve the scheduling problem, several research studies
have been performed based on non-deterministic algorithms, such as genetic algo-
rithms [20,21,26], ant colony optimization algorithms [13,19], and particle swarm
optimization algorithms [17,24], which apply randomized search techniques in the
search process.

A parallel and distributed computing system could be a homogeneous [4,20] or
heterogeneous system [6,9]. A homogeneous system means that the processors have
the same performance in terms of processing capabilities. On the other hand, hetero-
geneous systems have different processing capabilities in the target system. In general,
the processors are connected by a network, which is either fully connected [25,26]
or partially connected [7]. For more related topologies and applications, please see
[2,3,15]. In the fully connected network, every processor can communicate with every
other processor, whereas data can be transferred to some specified processors in a par-
tially connected network. To reduce the communication time, the task duplication issue
[20] was discussed by duplicating some tasks on more than one processor. However,
to avoid increasing energy consumption, we consider here the target system that is a
fully connected heterogeneous system without task duplication.

The genetic algorithm (GA), which was first proposed by Holland [10], provides a
popular solution for application problems. GAs have been shown to outperform sev-
eral algorithms in the task-scheduling problem [8,12,14,27], which simply define the
search space to be the solution space in which each point is denoted by a number string,
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called a chromosome. Based on these solutions, three operators, which are selection,
crossover, and mutation, are employed to transform a population of chromosomes
to better solutions iteratively. To retain the good features from the previous gener-
ation, the crossover operator exchanges the information from two randomly chosen
chromosomes, and the mutation operator alters one bit of a chromosome at random.

In this study, we proposed a genetic algorithm for task scheduling on a grid com-
puting system, called TSGA. In general, GA approaches directly initialize the first
population by a uniform random process. TSGA develops a new initialization policy,
which divides the search space into specific patterns to accelerate the convergence
of the solutions. To solve the task-scheduling problem, a chromosome usually con-
tains a mapping part and an order part to indicate the corresponding computer and
the executing order. In the standard GA, when crossover and mutation operators are
applied, the parents’ good characteristics cannot be kept in the next generation. Based
on the task–processor assignments of chromosome encoding, TSGA exploits new
operators for crossover and mutation to preserve good features from the previous
generation.

The remainder of this study is organized as follows. In the next section, we provide
the problem definition. Section 3 introduces previous studies for the task-scheduling
problem. The proposed genetic-scheduling algorithm is presented in Sect. 4. We
describe our experimental results in Sect. 5. Lastly, conclusions are drawn in Sect. 6.

2 Problem definition

Task scheduling is the process of mapping tasks to system processors and arranging
the execution order for each processor. Tasks with data precedence are modeled by a
directed acyclic graph (DAG) [26]. The main idea of DAG scheduling is to minimize
the makespan, which is the overall execution time for all of the tasks.

2.1 DAG modeling

A DAG G = (V, E) is depicted in Fig. 1a, where V is a set of N nodes and E is a
set of M4 directed edges. For the problem of task scheduling, V represents the set of
tasks, and each task contains a sequence of instructions that should be completed in
a specific order. Let wi, j be the computation time to finish a specific task ti ∈ V on a
processor Pj , which is detailed in Fig. 1b. Each edge ei, j ∈ E in the DAG indicates
the precedence constraint that task ti should be completed before task t j starts. Let
ci, j denote the communication cost that is required to transport the data between task
ti and task t j , which is the weight on an edge ei, j . If ti and t j are assigned to the same
processor, the communication cost ci, j is zero.

Consider an edge ei, j that starts from ti and ends at t j . The source node ti is called
a predecessor of t j , and the destination node t j is called a successor of ti . In Fig. 1a,
t1 is the predecessor of t2, t3, t4, and t5; t2, t3, t4, and t5 are the successors of t1. In a
graph, a node with no parent is called an entry node, and a node with no child is called
an exit node. If a node ti is scheduled to a processor Pj , then the start time and the
finishing time of ti are denoted by ST(ti , Pj ) and FT(ti , Pj ), respectively.
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Fig. 1 Illustraion example: a DAG, b the computation cost matrix, and c feasibility of scheduling

2.2 Makespan

After all of the tasks are scheduled onto parallel processors, considering a specific task
ti on a processor Pj , the start time ST(ti , Pj ) can be defined as

ST(ti , Pj ) = max{RT j , DAT(ti , Pj )},

where RT j is the ready time of Pj and DAT(ti , Pj ) is the data arrival time of ti at
Pj . Because DAT(ti , Pj ) is the time for all of the required data to be received, it is
computed by

DAT(ti , Pj ) = max
tk∈pred(ti )

{(FT(tk, Pj )+ ck,i )},

where pred(ti ) denotes the set of immediate predecessors of ti . Because

FT(tk, Pj ) = wk, j + ST(tk, Pj )

and

RT j = max
tk∈exe(Pj )

{FT(tk, Pj )},

where exe(Pj ) is the set that contains the tasks that are assigned to be executed on
Pj , the makespan, i.e., the overall schedule length of the entire program, is the latest
finishing time of all of the tasks and can be obtained by

makespan = max
ti∈V
{FT(ti , Pj )}.
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Figure 1c demonstrates a scheduling for the graph described in Fig. 1a. The makespan
of this scheduling is 23.

3 Related work

Task scheduling has been proven to be an NP-complete problem. There are several
algorithms, including deterministic approaches [25] or non-deterministic approaches
[20,26], which were proposed to solve the problem of dependent tasks scheduling for
real applications.

Topcuoglu [25] classified deterministic algorithms into three main types: list-
scheduling algorithms, clustering algorithms, and task duplication algorithms. Among
these deterministic approaches, list-scheduling algorithms are practical and provide
better performance results with less scheduling time than the others. The heterogeneous
earliest-finish-time (HEFT) algorithm [25] is most efficient in list-based algorithms;
this algorithm takes advantage of an upward-ranking method and an insertion-based
policy to reach the goal of minimizing the makespan. However, HEFT scheduling does
not perform very well for irregular DAGs and for higher heterogeneities [1].

On the other hand, since non-deterministic algorithms are popular for a wide range
of combinatorial problems, this class of algorithms are successfully applied to solve
the task-scheduling problem, such as GAs, ant colony optimization, particle swarm
optimization, and hybrid heuristic techniques [6,26]. This kind of algorithm takes
more time to explore the solution space for a high-quality solution, compared to
deterministic algorithms. For more heuristic task-scheduling algorithms, please see
[6,22,29].

GAs have been shown to outperform several algorithms in task-scheduling prob-
lems [8,27], in which each solution is represented as a chromosome. Three genetic
operators, selection, crossover, and mutation, are employed to transform a popula-
tion of chromosomes to another better population. To retain the good features from
the previous generation, the crossover operator exchanges the information from two
chromosomes, which are chosen randomly. The mutation operator alters one bit of
a chromosome to increase the diversity of the chromosomes and prevent premature
convergence. This genetic process is repeated until the stopping criterion is satisfied,
and the best chromosome from all of the generations is reported as the best solution.

Omara [20] proposed the standard genetic algorithm (SGA), which gives a standard
pattern to demonstrate this process. Additionally, Omara proposed the critical path
genetic algorithm (CPGA), which assigns the tasks in the critical path to the same
processor, to reduce the longest communication time. However, the performance of
CPGA is not very efficient for graphs that are composed of task sets containing more
than one critical path.

The genetic variable neighborhood search (GVNS) algorithm [26] combines a GA
with a variable neighborhood search (VNS) to obtain a better load balance between
the global exploration and the local exploitation of the search space. Two neighbor-
hood structures, the load balancing neighborhood structure and the communication
reduction neighborhood structure, are used by VNS. After the crossover operator and
the mutation operator, the current population and the new population are merged and
sorted by makespan in an increasing order.
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Fig. 2 A representation of a chromosome S

4 Proposed method

In this section, we introduce the TSGA algorithm in detail, including the encoded and
decoded representations and genetic operators.

4.1 The representation of solutions

The representation of a chromosome is given in Fig. 2. A chromosome S is composed
of two parts: an order part (SO ) and a mapping part (SM ). We use integer arrays to
store SO and SM , and the size of the arrays equals the number of tasks. If SO [i] is j
and SM [i] is k, then a task t j is executed on processor Pk .

According to the chromosome represented in Fig. 2, the solution of a DAG in Fig. 1a
can be scheduled in Fig. 1c. We first assign tasks into the mapping processor according
to the index of SM . Tasks t4, t7, and t8 are scheduled on processor P1. Tasks t3, and
t5 are executed on processor P2. Tasks t1, t2, t6, and t9 are assigned to processor P3.
Following the order in SO , we schedule t4, t7, and t8 in the order of t4, t8, t7 in P1. For
P2, t3 is executed before t5. Tasks t1, t2, t6, and t9 are taken in the order of t1, t2, t6, t9
in P3. We lastly compute the makespan by including the commutation time for each
task.

4.2 Outline

The algorithmic outline of TSGA is given in Algorithm 1, and its flowchart in Fig. 3.
In Line 2, a variable g counts the number in the past generation. If g is not less than G,
TSGA will output the best solution. Lines 4 to 7 are the main processes that produce
the next generation. Line 8 sieves out the best C chromosomes from both the old
and the new generation according to the fitness function, where C is the number of
chromosomes.

The crossover operator exchanges the information from two chromosomes to hold
some good features from the previous generation. Because we can obtain better or
worse chromosomes than the parent chromosomes, the crossover operator is applied
with a predestined probability called the crossover rate, which is denoted by pc. On
the other hand, the mutation operator alters one bit of a chromosome, to increase the
diversity of the chromosomes and prevent premature convergence. The mutation rate
is pm .
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Algorithm 1 TSGA
Require: G: number of generation

C : population
DAG: a graph with N tasks and M communication edges
n: the number of processors
pc: the probability of the crossover operator
pm : the probability of the mutation operator

Ensure: Best scheduling length
1: Initialization_operator (C , n, DAG)
2: g← 0
3: while g < G do
4: for each chromosome in C do
5: Crossover_operator(pc)
6: Mutation_operator(pm )
7: end for
8: Select chromosomes according to the fitness function
9: g++
10: end while
11: return the best solution

4.3 Initialization

TSGA initializes the first population that consists of encoded chromosomes, as shown
in Algorithm 2. Instead of using a random strategy to give the processor assignment,
we devise a new method that divides the search space into specific patterns and a
new rank value that is used to build the executed order. Because the best scheduling
solution can occupy a number of processors in different cases, we provide some pat-
terns with a different number of processors to explore the solution space in different
aspects. In Line 1, the search space is divided into log2 n subspaces, where n is the
number of processors. For each group d, the processor assignment SM is given by an
integer random function in the range of {1 . . . 2d}, and the execution order SO follows
Rank_order(DAG), which is depicted in Algorithm 3. Note that the notation ⊕ is the
concatenation of two strings in Line 7.

Because a task should be executed earlier if the task has more successors, we use
the Rank_order(DAG) procedure to help the implementation of this idea. Lines 2 to 8
compute the r value by traversing the task graph upward, starting from the exit task.
If a task is the exit task, the r value of the task is 1. Otherwise, the r value of a task
is the summation of its successors’ r values and 1. In Line 6, the notation succ(ti )
is the set of immediate successors of ti . An example of calculation for r is given in
Table 1.

4.4 Crossover

The crossover operator exchanges the information in two chromosomes to retain the
good features from the parent generation. Each part of a chromosome is applied to a
specific crossover operator: the crossover map operator or the crossover order operator.
These two operators have the same probability to be taken. The pseudo code of the
crossover operator is given in Algorithm 4.
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Fig. 3 TSGA flowchart

Algorithm 2 Initialization_operator(C, n, DAG)
Require: C : population set; n: the number of processors
Ensure: The population C
1: d ← log2 n {Divide chromosomes into d groups}
2: for group = 1 to d do
3: for i = 1 to population_ size/d do
4: SM ← choose a processor for each task from {1, 2, . . . , 2d }
5: SO ← an executed order according to the Rank_order(DAG)
6: S← SO ⊕ SM
7: C ← C

⋃{S}
8: end for
9: end for
10: return C
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Algorithm 3 Rank_order(DAG)
Require: DAG: a graph with N tasks and M communication edges
Ensure: The executed order list L
1: Set the executed order list L as empty
2: for i = N down to 1 do
3: if task ti is the exit node then
4: r(ti ) = 1
5: else
6: r(ti ) =

∑

t j∈succ(ti )
r(t j )+ 1

7: end if
8: end for
9: L ←Sort tasks according to the r value in a non-increasing order
10: return L

Table 1 An example of
calculation for r

Task r Calculation

t1 15 r(t2)+ r(t3)+ r(t4)+ r(t5)+ r(t7)+ 1

t2 3 r(t6)+ 1

t3 5 r(t7)+ r(t8)+ 1

t4 1 1

t5 3 r(t8)+ 1

t6 2 r(t9)+ 1

t7 2 r(t9)+ 1

t8 2 r(t9)+ 1

t9 1 1

The relationship between the tasks and processors is the most important informa-
tion encoded in the chromosomes for the scheduling problem. However, crossover
operators in most previous studies use some simple cut-and-paste processes to pro-
duce offspring. These are just random steps and cannot keep the valuable features of
the task–processor assignments from the parents. Our crossover operator is based on
the task–processor relationship in such a way that parents can pass good features to
their children.

Algorithm 4 Crossover_operator()
1: p← random[0, 1)

2: if p ≤ 0.5 then
3: Crossover_map()
4: else
5: Crossover_order()
6: end if
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Fig. 4 An example of crossover: a the crossover map operator and b the crossover order operator

4.4.1 Crossover map operator

The crossover map operator is used to interchange the mapping assignments of two
chromosomes, as shown in Fig. 4a. The description of the crossover map operator
is given in Algorithm 5. The crossover map operator chooses two chromosomes, S
and T , from the population and picks a random number I from the set {1, 2, . . . , N }.
TSGA keeps the processor assignment, which is located on the left of I (including I ).
For the processors on the right of I , our crossover map swaps the processor numbers of
SM and TM , which are assigned to execute the same task according to the task places
in SO and TO . For example, because t5 is assigned to P2 in SM and to P3 in TM , the
crossover map swaps the processor assignments; in other words, it maps t5 to P3 in
S′M and to P2 in T ′M . Note that the order part of the two chromosomes does not need
to be changed.

The chromosomes S′′M and T ′′M are generated by the crossover map operator in SGA
[20] by a cut-and-paste process, which exchanges SM [5..9] and TM [5..9] directly. Task
t7 is executed on P1 in both parents. After the crossover map, t7 is executed on processor
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P1 and P2 in S′′M and T ′′M , respectively, while our crossover map assigns t7 to P1 in
both S′M and T ′M . The result shows that the operator can inherit good features from
the previous chromosomes successfully.

Algorithm 5 Crossover_map()
1: Select two chromosomes S and T
2: I ← select a number between 1 and N randomly
3: S′O ← SO
4: T ′O ← TO
5: S′M [1..I ] ← SM [1..I ]
6: T ′M [1..I ] ← TM [1..I ]
7: for i = I +1 to N do
8: S′M ← S′M⊕ the processor in which task SO [i] is assigned in TM
9: T ′M ← T ′M⊕ the processor in which task TO [i] is assigned in SM
10: end for
11: S′ ← S′O ⊕ S′M
12: T ′ ← T ′O ⊕ T ′M

Algorithm 6 Crossover_order()
1: Select two chromosomes S and T
2: I ← Select a number between 1 and N randomly
3: S′O ← SO [1..I ]
4: for i = 1 to N do
5: if TO [i] is not in S′O then
6: S′O ← S′O ⊕ TO [i]
7: end if
8: end for
9: Build S′M according to the task–processor assignments in SM
10: S′ ← S′O ⊕ S′M
11: T ′O ← TO [1..I ]
12: for i = 1 to N do
13: if SO [i] is not in T ′O then
14: T ′O ← T ′O ⊕ SO [i]
15: end if
16: end for
17: Build T ′M according to the task–processor assignments in TM
18: T ′ ← T ′O ⊕ T ′M

4.4.2 Crossover order operator

The description of the crossover order operator is listed in Algorithm 6. In Fig. 4b,
after selecting two chromosomes S and T , we choose a crossover point I from the set
{1, 2, . . . , N } and copy the left portion of I (including I ) in SO and TO to the new
order parts S′O and T ′O , respectively. For the right segment of I in S′O , our crossover
order operator follows the task order in TO , except for the tasks in the left segment on
I of S′O . We then use the same process to generate T ′O . Because we only produce new
chromosomes by the order part, the task–processor assignment should be maintained
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Fig. 5 An example of mutation: a the mutation map operator and b the mutation order operator

the same as the parents. Thus, we adjust the map part according to the original processor
assignment.

The crossover order operator in SGA does not adjust the processor assignment after
completing the crossover order operator. As shown in Fig. 4b, the chromosome S′′,
created by the crossover order operator in SGA, lost the task–processor assignments
of its parents, since the order part is changed while the map part is not adjusted
correspondingly.

4.5 Mutation

The mutation operator is typically implemented by altering one element of a chro-
mosome at random. Because we have order and map parts in a chromosome, each
part has a specific mutation operator: the mutation map operator or the mutation order
operator. These two operators have the same probability to be taken, similar to our
crossover operator.

4.5.1 Mutation map operator

The mutation map operator is used for the map part of the chromosome, which is
shown in Fig. 5a. Similar to the crossover operator, we choose a random number I
from the set {1, 2, . . . , N }. Then, the mutation map operator changes the processor in
which the chosen task SO [I ] is executed to another processor that is chosen randomly.
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4.5.2 Mutation order operator

The mutation order operator is applied to the order part of the chromosome, which is
given in Algorithm 7. We select an index I from 1 to N randomly, which decides a
task SO [I ] to be mutated. For the task SO [I ], let I1 and I2 be the indices of its closest
predecessor on the left segment of I and the closest successor on the right segment of
I , respectively. For the index i between I1 + 1 and I , if DAT of SO [i] is larger than
DAT of SO [I ], the task SO [I ] should be executed before the task SO [i], because the
task SO [I ] can be executed early. For the index i between I and I2−1, if DAT of SO [i]
is smaller than DAT of SO [I ], the task SO [i] should be executed before the task SO [I ],
since the task SO [i] can be executed early. We collect the tasks that can be executed
early into a set called A. If A is empty, then we put all of the indices between I1 + 1
and I2 − 1 into A. We select an index I3 from A randomly and insert the task SO [I ]
before the index I3. We lastly adjust the processor assignment to correspond with the
original processor assignment, for the same reason mentioned in the crossover order
operator.

Algorithm 7 Mutation_order()
1: Select two chromosomes S and T
2: S′ ← S
3: I ← Select a number between 1 and N randomly
4: A← an empty set
5: I1 ← the index of the first predecessor of task SO [I0] on the left of I0
6: I2 ← the index of the first successor of task SO [I0] on the right of I0
7: for i from I1 + 1 to I0 do
8: if DAT of SO [i] > DAT of SO [I0] then
9: A← A

⋃{i}
10: end if
11: end for
12: for i from I0 to I2 − 1 do
13: if DAT of SO [i] < DAT of SO [I0] then
14: A← A

⋃{i}
15: end if
16: end for
17: if A is empty then
18: A← a set contains indexes between I1 + 1 and I2 − 1
19: end if
20: I3 ← Select an index from A randomly
21: Move SO [I0] to I3
22: Adjust the processor assignment to correspond to the original assignment

Figure 5b demonstrates the mutation order operator for I = 4. Since SO [4] is t5,
the mutation order operator changes the execution order of t5. According to the graph
shown in Fig. 1a, we have the table with the DAT value and find I1 = 1 and I2 = 8.
We then have that the elements in the set A are the indices 2 and 5, because SO [2] is
t2 and 6 = DAT(t2) > DAT(t5) = 3, and SO [5] is t4 and 2 = DAT(t4) < DAT(t5) =
3. If we choose the index I3 = 2 randomly from A, the task t5 is inserted in the
front of t2 (i.e., SO [2]). Additionally, the processor P1 (i.e., SM [4]) should be moved
correspondingly.
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Fig. 6 The graph structure. a 21-task GJ, b 15-task FFT, c 88-task Robot control, d 96-task Sparse matrix
solver, and e 334-task SPEC fpppp

5 Experimental results

At the beginning of this section, we describe the simulation environment for realistic
problems. We next demonstrate five DAGs of well-known parallel applications and
explain the related parameters. We lastly show the performance of TSGA compared
with SGA, CPGA, GVNS, and HEFT.

5.1 Parameter Setting

This study considers five well-known applications: Gauss–Jordan elimination (GJ)
[28], the fast Fourier transformation (FFT) [25], Robot control, Sparse matrix solver,
and SPEC fpppp. Robot control, sparse matrix solver, and SPEC fpppp are taken from
a Standard Task Graph (STG) archive [30]. Their graph structures are drawn in Fig. 6
and the detailed information is given in Table 2.
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Table 2 Parameter settings
used in the experiment

GJ FFT Robot
control

Sparse matrix
solver

SPEC
fpppp

Number of tasks 300 223 88 96 334

Number of edges 552 382 131 67 1,145

Each application has various features that depend on different settings, as described
below:

1. Number of processors (P): P is the number of processors in the system. The target
heterogeneous system is a fully connected computing network in which various
processors are connected to each other. Note that the number of processors and
the performance speedup are not linearly proportional due to the communication
delay.

2. Heterogeneity factor (β): This value indicates the range percentage of the compu-
tation cost on the processors. The variable β is defined by the ratio of the most
efficient processing capability and the least efficient processing capability in a
system. We set the most efficient processing capability to be 1. Thus, we have
0 < β ≤ 1. For practical computing environments, heterogeneous systems could
contain some processors that have different processing capabilities. Here, we set
four types of processing capability, and there is the same number of processors in
each type.

3. Communication-to-computation ratio (CCR): For a graph, the CCR is defined as
the average communication time of the edges divided by the average computation
time of the nodes in the system. A graph is represented as a computation-intensive
application if its CCR is low. On the other hand, if the CCR value is high, then
it is a communication-intensive application. The communication time of DAGs is
generated by uniform distribution.

The values of the corresponding sets shown below are the settings for the experi-
mental parameters.

• SETP = {4, 8, 16}
• SETβ = {0.1, 0.25, 0.5, 0.75, 1.0}
• SETDAG = {GJ, FFT, Robot control, Sparse matrix solver, SPEC fpppp}
• SETCCR = {0.25, 0.5, 1.0, 2.0, 4.0}

15 distinct system models were created by the combination of SETP and the set
SETβ . The different settings of SETDAG and SETCCR generate 25 different types of
DAGs, and 10 graphs are produced for each type of DAG; thus the total number of
DAGs is 250. The combinations of all of these parameters give 3,750 various scenarios.
Based on these DAGs with different characteristics, the experimental result will not
be biased toward any specific algorithm.

5.2 Performance results

To evaluate our proposed algorithms, we have implemented them using an AMD
FX(tm)-8120 eight-core processor (3.10 GHz) using the C++ language. Usually, an
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Table 3 Parameter settings used in the experiment

Population size Generation size Crossover rate Mutation rate Selection operator

400 1,000 0.8 0.2 Binary tournament

excellent solution to various problems would be generated by a variety of parameters
for a specific algorithm. However, we use the same parameter values that were listed
in Table 3, to show the performance in terms of makespan in this study.

The performance of TSGA is compared with four algorithms, CPGA, SGA, GVNS,
and HEFT. For each data configuration of the five DAGs, we record the average
makespan obtained over ten runs for CPGA, SGA, GVNS, and TSGA. On the other
hand, HEFT, a deterministic algorithm, is run only once. Please note that the time
complexity of HEFT is O(n2 p), where n is the number of tasks and p is the number
of processors, and the time complexity of these GAs are O(n2 p) for fixed population
size and number of generations. Thus, it is evident that HEFT is fastest among these
five algorithm.

The experimental results of the five DAGs with P fixed to 16 and varying the
β value are given in Fig. 7, which presents the histograms for the makespan. Each
application is shown in its row and was tested with a different CCR value and a varying
β value. Each column contains five applications with a fixed CCR value. Note that the
vertical coordinate shows the makespan. To demonstrate that the stability of TSGA is
accepted, we add the standard deviation for each TSGA’s result in Fig. 7.

The experiment reveals that TSGA outperforms other algorithms in terms of
makespan in our test cases with different characteristics. Because CPGA schedules the
nodes of the critical path to the same processor, it has good outcomes in Robot con-
trol. However, CPGA produces unfavorable scheduling results in other applications.
GVNS and SGA show their good scheduling ability only in certain cases. When the
CCR value increases, the performance of SGA decreases. On the other hand, although
HEFT shows efficient scheduling results, TSGA is better than HEFT in terms of
makespan in most cases.

For all of the algorithms, the makespan in the tests with a larger β value is always
smaller than those with a smaller β value. The system with a higher β value has a
larger number of processors with good processing capability. If a task is assigned to
a processor that has high processing capability, then the task will be completed early.
In general, the makespan decreases when β increases.

When we consider a smaller β value (β = 0.1), there are more possible scheduling
solutions. For a small value of CCR, we can produce good scheduling easily because
the application has less communication delay and less idle time. We therefore focus
on a large CCR value (CCR = 8). The results, which are provided by testing five
applications, are given in Fig. 8.

For the concept of parallelism, when the number of processors increases, the
makespan will decrease. However, most of the algorithms will produce an increased
makespan, with an increasing number of processors in certain cases, especially when
the CCR value is large, as shown in Fig. 8. Having a larger CCR value implies that
the communication time is larger than the computation time. In these scenarios, good
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Fig. 7 Makespan comparison with varying parameters for P = 16. Each number represents the standard
deviation of the corresponding TSGA’s result

scheduling should not occupy most of the processors. Most of the genetic algorithms
cannot catch this factor and initialize with random strategies. On the other hand,
TSGA with the initialization operator can reduce the probability of this phenomenon
and produce better scheduling results in all of the cases.

To demonstrate that the proposed processor assignment strategy is efficient at the
initial step, we give the comparison of genetic algorithms that employ the original ini-
tial operator or our proposed processor assignment technique. Figure 9 is the result of
testing with β = 0.1 and CCR = 8, where the three new algorithms CPGA′, GVNS′,
and SGA′ are the three algorithms CPGA, GVNS, and SGA that employ our proposed
initialization operator, respectively. Obviously, the new algorithms always outperform
the original algorithms by using the random assignment technique. Although the qual-
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Fig. 8 Makespan comparison with varying P. a GJ, b FFT, c robot control, d sparse matrix solver, and e
SPEC fpppp for CCR = 8 and β = 0.1. Each number represents the standard deviation of the corresponding
TSGA’s result

ities of those algorithms have been improved, our proposed method TSGA always has
the best scheduling results among all of the test cases.

6 Conclusions

In this study, we presented a genetic algorithm for task scheduling, referred to as
TSGA, to solve the problem of task scheduling on parallel and distributed comput-
ing systems to improve the standard genetic algorithm by increasing the convergence
speed and preserving the good features of the previous generation. To demonstrate the
TSGA performance, we introduce new genetic operators in TSGA. The initialization
operator that was proposed divides the search space into specific patterns to allow
TSGA to explore the search space extensively. The crossover map operator and the
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Fig. 9 Makespan comparison of algorithms with our processor assignment strategy for a GJ, b FFT,
c robot control, d sparse matrix solver, and e SPEC fpppp

mutation map operator help us to search more suitable processor assignments, and
the crossover order operator and the mutation order operator provide us with a more
efficient execution order. Compared with the four related algorithms, SGA, CPGA,
GVNS, and HEFT, the experimental results show that our proposed method TSGA
outperforms other algorithms in a variety of scenarios in terms of makespan. We
also give the experimental results to show the relationship between TSGA and vari-
ous parameters. For cases with high CCR values, TSGA schedules tasks that occupy
fewer processors to reduce the communication time. For cases with small β values,
TSGA assigns tasks that occupy the processors having higher processing capability to
minimize the execution time. Furthermore, we use other genetic algorithms to show
the advantage of our initialization operator and the satisfactory results.
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