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Abstract In this paper, we revisit the Krylov multisplitting algorithm presented in
Huang and O’Leary (Linear Algebra Appl 194:9-29, 1993) which uses a sequential
method to minimize the Krylov iterations computed by a multisplitting algorithm.
Our new algorithm is based on a parallel multisplitting algorithm with few blocks
of large size using a parallel GMRES method inside each block and on a parallel
Krylov minimization to improve the convergence. Some large-scale experiments with
a 3D Poisson problem are presented with up to 8,192 cores. They show the obtained
improvements compared to a classical GMRES both in terms of number of iterations
and in terms of execution times.

Keywords Large sparse linear systems - Multisplitting algorithm -
3D Poisson problem

1 Introduction

Iterative methods are used to solve large sparse linear systems of equations of the form
Ax = b because they are easier to parallelize than direct ones. Many iterative methods
have been proposed and adapted by different researchers. For example, the GMRES
method and the conjugate gradient method are very well known and used [12]. Both
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methods are based on the Krylov subspace which consists in forming a basis of a
sequence of successive matrix powers times the initial residual.

When solving large linear systems with many cores, iterative methods often suffer
from scalability problems. This is due to their need for collective communications
to perform matrix-vector products and reduction operations. Preconditioners can be
used to increase the convergence of iterative solvers. However, most of the good
preconditioners are not scalable when thousands of cores are used.

Traditional parallel iterative solvers are based on fine-grain computations that fre-
quently require data exchanges between computing nodes and have global synchro-
nizations that penalize the scalability [14]. Particularly, they are more penalized on
large-scale architectures or on distributed platforms composed of distant clusters inter-
connected by a high-latency network. It is therefore, imperative to develop coarse-
grain-based algorithms to reduce the communications in the parallel iterative solvers.
Two possible solutions consists either in using asynchronous iterative methods [2] or
in using multisplitting algorithms. In this paper, we will reconsider the use of a mul-
tisplitting method. In opposition to traditional multisplitting method that suffer from
slow convergence, as proposed in [9], the use of a minimization process can drastically
improve the convergence.

1.1 Contributions

In this work, we develop a new parallel two-stage algorithm for large-scale clusters.
Our objective is to create a mix between Krylov-based iterative methods and the
multisplitting method to improve scalability. In fact, Krylov subspace methods are
well-known for their good convergence compared to other iterative methods. So, our
main contribution is to use the multisplitting method which splits the problem to
solve into different blocks to reduce the large amount of communications and, to
implement both inner and outer iterations as Krylov subspace iterations to improve
the convergence of the multisplitting algorithm.

The present paper is organized as follows. First, Sect. 2 presents some related works
and the principle of multisplitting methods. Then, in Sect. 3 the algorithm of our Krylov
multisplitting method, based on inner-outer iterations, is presented. Finally, in Sect. 4,
the parallel experiments on Hector architecture show the performances of the Krylov
multisplitting algorithm compared to the classical GMRES algorithm to solve a 3D
Poisson problem.

2 Related works and presentation of the multisplitting method

A general framework to study parallel multisplitting methods has been presented
in [11] by O’Leary and White. Convergence conditions are given for the most general
cases. Many authors have improved multisplitting algorithms by proposing, for exam-
ple, an asynchronous version [5] or convergence conditions [1,3] or other two-stage
algorithms [5,7].

In [9], the authors have proposed a parallel multisplitting algorithm in which all
the tasks except one are devoted to solve a sub-block of the splitting and to send their
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local solutions to the first task which is in charge of combining the vectors at each
iteration. These vectors form a Krylov basis for which the first task minimizes the
error function over the basis to increase the convergence, then the other tasks receive
the updated solution until the convergence of the global system.

In [6], the authors have developed practical implementations of multisplitting algo-
rithms to solve large-scale linear systems. Inner solvers could be based on sequential
direct method with the LU method or sequential iterative one with GMRES.

In [4], the authors have designed a parallel multisplitting algorithm in which large
blocks are solved using a GMRES solver. The authors have performed large-scale
experiments up-to 32,768 cores and they conclude that an asynchronous multisplitting
algorithm could be more efficient than traditional solvers on an exascale architecture
with hundreds of thousands of cores.

So, compared to these works, we propose in this paper a practical multisplitting
method based on parallel iterative blocks which gives better results than classical
GMRES method for the 3D Poisson problem we considered.

The key idea of a multisplitting method to solve a large system of linear equations
Ax = b is defined as follows. The first step consists in partitioning the matrix A in L
several ways

A = Mg — N, ey

where forall ¢ € {1, ..., L} M, are non-singular matrices. Then the linear system is
solved by an iteration based on the obtained splittings as follows

L
=S EM (Nt ), k=1,2.3,... 2
=1

where E; are non-negative and diagonal weighting matrices and their sum is an identity
matrix /. The convergence of such a method is dependent on the condition

L
p(ZEgM[lNg) <1. (3)

=1

where p is the spectral radius of the square matrix.
The advantage of the multisplitting method is that at each iteration k there are L
different linear sub-systems

vk = M INexE T M e, el L), )

to be solved independently by a direct or an iterative method, where vy is the solution
of the local sub-system. Thus the computations of {v¢}1<¢<; may be performed in
parallel by a set of processors. A multisplitting method using an iterative method as
an inner solver is called an inner-outer iterative method or a two-stage method. The
results vy obtained from the different splittings (4) are combined to compute solution
x of the linear system using the diagonal weighing matrices
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L
x* = Z Epvf, 5)
=1

In the case where the diagonal weighting matrices E, have only zero and one fac-
tors (i.e. vy are disjoint vectors), the multisplitting method is non-overlapping and
corresponds to the block Jacobi method.

3 A two-stage method with a minimization

Let Ax = b be a given large and sparse linear system of n equations where A € R"*"
is a sparse square and non-singular matrix, x € R” is the solution vector and b € R”
is the right-hand side vector. We use a multisplitting method to solve the linear system
on a large computing platform to reduce communications. Let the computing platform
be composed of L blocks of processors physically adjacent or geographically distant.
In this work, we apply the block Jacobi multisplitting method to the linear system as
follows

A=[A1,...,AL]
x =[X1,...,X1] (6)
b=|[By,...,Br]

where for £ € {1,..., L}, Ay is a rectangular block of size ny x n and Xy and By are
sub-vectors of size ny each, such that ZK ng = n.

The splitting is performed row-by-row without overlapping in such a way that
successive rows of sparse matrix A and both vectors x and b are assigned to a block
of processors.

So, the multisplitting format of the linear system is defined as follows

L
Veell,....L}, AuXe+ D, AumXm = By, )

m=1

m#L

where Ay, is a sub-block of size ny x n,, of the rectangular matrix Ag, X, # X¢
is a sub-vector of size n,, of the solution vector x and Zm# ny, + ng = n, for all
me{l,...,L}.

Our multisplitting method proceeds by iteration to solve the linear system in such
a way that each sub-system

Ape Xy = Yy, such that
L

Ye=Be— > AmXn. ®
m=1
m#L

is solved independently by a block of processors and communications are required
to update the right-hand side vectors Yy, such that the vectors X,, represent the data

@ Springer



A scalable multisplitting algorithm 1349

dependencies between the blocks. In this work, we use the parallel restarted GMRES
method [13] as an inner iteration method to solve sub-systems (8).

GMRES is one of the most used Krylov iterative methods to solve sparse linear
systems by minimizing the residuals over an orthonormal basis of a Krylov subspace.

It should be noted that the convergence of the inner iterative solver for the different
sub-systems (8) does not necessarily involve the convergence of the multisplitting
algorithm. It strongly depends on the properties of the global sparse linear system to
be solved [2, 11]. Furthermore, the splitting of the linear system among several blocks
of processors increases the spectral radius of the iteration matrix, thereby slowing
the convergence. In fact, the larger the number of splittings is, the larger the spectral
radius is. In this paper, our work is based on the work presented in [9] to increase the
convergence and improve the scalability of the multisplitting methods.

Krylov subspace methods are well-known for their good convergence compared to
other iterative methods.

To accelerate the convergence, we implemented the outer iteration of our multi-
splitting solver as a Krylov iterative method which minimizes some error function
over a Krylov subspace [12]. The Krylov subspace that we used is spanned by a basis
composed of successive solutions issued from solving the L splittings (8)

S={x'x%...,x%), s<n, 9)

where for j € {1, ..., s}, x/ = (x7,..., Xi] is a solution of the global linear system.

The advantage of such a Krylov subspace is that we neither need an orthonormal
basis nor any synchronization between the different blocks to orthogonalize the gen-
erated basis. This avoids to perform other synchronizations between the blocks of
processors.

The multisplitting method is periodically restarted every s iterations with a new
initial guess X = So which minimizes an error function, in our case it minimizes the
residuals ||b — Ax||2 over the Krylov subspace spanned by vectors of S. So « is defined
as the solution of the large overdetermined linear system.

Ra = b, (10)

where R = AS is a dense rectangular matrix of size n x s and s < n. This leads us
to solve a system of normal equations

RTRa = R"b, (11)

which is associated with the least squares problem
minimize ||b — Ra||2, (12)
where R denotes the transpose of matrix R. Since R (i.e. AS) and b are split among
L blocks, the symmetric positive definite system (11) is solved in parallel. Thus, an

iterative method would be more appropriate than a direct one to solve this system. We
use the parallel conjugate gradient method for the normal equations CGNR [10,12].
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Algorithm 1 A two-stage linear solver with inner iteration GMRES method

Ilnput: Ay (sparse sub-matrix), B, (right-hand side sub-vector)
Output: X, (solution sub-vector)

1: Load Ay, By

2: Set the initial guess x
3: Set the minimizer ¥ = x

4: for k = 1,2,3,...until the global convergence do

0

5 Restart with x0 = gf—1:

6: for j=1,2,...,5do

7. Inner iteration solver: INNERSOLVER(xO, 7

8 Construct basis S: add column vector X é to the matrix Séf
9: Exchange local values of X Z with the neighboring blocks
10: Compute dense matrix R: ng’J = ZiL:I Ag,-Xij

11:  end for

12: Minimization ||b — Ra||2: UPDATEMINIMIZER(S¢, R, b, k)
13: Local solution of linear system Ax = b: X IZ =X ]Z(

14:  Exchange the local minimizer X ]Lf with the neighboring blocks
15: end for

16: function INNERSOLVER(x?, j)
17:  Compute local right-hand side Yy = By — Z,I;lzl Anggn
m#£L

18:  Solving local splitting Agg X é = Y/ using parallel GMRES method, such that X ? is the initial guess

19:  return X é
20: end function

21: function UPDATEMINIMIZER(Sy, R, b, k)

22:  Solving normal equations (RHT Rk gk = (R%)T b in parallel by L blocks using parallel CGNR
method

23:  Compute local minimizer )?Ilf . Séfozk

24:  return X Ilf

25: end function

The main key points of our Krylov multisplitting method to solve a large sparse
linear system are given in Algorithm 1. This algorithm is based on a two-stage method
with a minimization using restarted GMRES iterative method as an inner solver. It
is executed in parallel by each block of processors. Matrices and vectors with the
subscript ¢ represent the local data for block ¢, where ¢ € {1,...,L}. The two-
stage solver uses two different parallel iterative algorithms: the GMRES method to
solve each splitting (8) on a block of processors, and the CGNR method, executed
periodically in parallel by all blocks to minimize the function error (12) over the
Krylov subspace spanned by S. The algorithm requires two global synchronizations
between L blocks. The first one is performed line 12 in Algorithm I to exchange local
values of vector solution x (i.e. the minimizer X) required to restart the multisplitting
solver. The second one is needed to construct the matrix R. We chose to perform this
latter synchronization s times in every outer iteration k (line 7 in Algorithm 1). This
is a straightforward way to compute the sparse matrix-dense matrix multiplication
R = AS. We implemented all synchronizations using message passing collective
communications of MPI library.
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4 Experiments

To illustrate the interest of our Krylov multisplitting algorithm, we have compared its
performances with those of a classical block Jacobi multisplitting method and those
of the GMRES method which is a commonly used method in many situations.

We have chosen to focus on only one problem which is very simple to implement:
a 3-dimensional Poisson problem.

u=~0 onl' =dw 3)

[ Vu=f inw

After discretization, with a finite difference scheme, a seven-point stencil is used.
It is well-known that the spectral radius of matrices representing such problems are
very close to 1. Moreover, the larger the number of discretization points is, the closer
to 1 the spectral radius is. Hence, to solve a matrix obtained for a 3D Poisson problem,
the number of iterations is high. Using a preconditioner, it is possible to reduce the
number of iterations but preconditioners are not scalable when using many cores.

We have performed some experiments on an infiniband cluster of three Intel Xeon
quad-core E5620 CPUs of 2.40 GHz and 12 GB of memory. For the GMRES code
(alone and in both multisplitting versions) the restart parameter is fixed to 16. The
precision of the GMRES version is fixed to 1le—6. For the multisplitting versions,
there are two precisions, one for the external solver which is fixed to 1e—6 and another
one for the inner solver (GMRES) which is fixed to 1e—10. It should be noted that
a high precision is used but we also fixed a maximum number of iterations for each
internal step. In practice, we limit the number of iterations in the internal step to 10. So
an internal iteration is finished when the precision is reached or when the maximum
internal number of iterations is reached. The precision and the maximum number of
iterations of CGNR method used by our Krylov multisplitting algorithm are fixed to
le—25 and 20 respectively. The size of the Krylov subspace basis S is fixed to 10
vectors.

Figures 1 and 2 show the scalability performances of GMRES, classical multi-
splitting and Krylov multisplitting methods: strong and weak scaling are presented,
respectively. We can remark from these figures that the performances of our Krylov
multisplitting method are better than those of GMRES and classical multisplitting
methods. In the experiments conducted in this work, our method is approximately,
twice faster than the GMRES method and about nine times faster than the classi-
cal multisplitting method. Our multisplitting method uses a minimization step over
a Krylov subspace which reduces the number of iterations and accelerates the con-
vergence. We can also remark that the performances of the classical block Jacobi
multisplitting method are the worst compared with those of the other two methods.
This is why in the following experiments we compare the performances of our Krylov
multisplitting method with only those of the GMRES method.

In the following, we present some experiments we could achieve out on the Hector
architecture, a UK high-end computing resource, funded by the UK Research Coun-
cils [8]. This is a Cray XE6 supercomputer, equipped with two 16-core AMD Opteron
2.3 GHz and 32 GB of memory. Machines are interconnected with a 3D torus. The
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Fig.1 Strong scaling with 3 blocks of 4 cores each to solve a 3D Poisson problem of size 1503 components

different parameters used by the GMRES and the Krylov multisplitting codes are as
those previously mentioned.

Table 1 shows the result of the experiments. The first column shows the size of the
3D Poisson problem. The size is chosen to have approximately 50,000 components
per core. The second column represents the number of cores used. Between brackets,
one can find the decomposition used for the Krylov multisplitting. The third column
and the sixth column respectively show the execution time for the GMRES and the
Krylov multisplitting codes. The fourth and the seventh column describe the number of
iterations. For the multisplitting code, the total number of inner iterations is represented
between brackets.

From these experiments, it can be observed that the multisplitting version is always
faster than the GMRES version. The acceleration gain of the multisplitting version
ranges between 4 and 6. It can be noticed that the number of iterations is drastically
reduced with the multisplitting version even it is not negligible. Moreover, with 8,192
cores, we can see that using 4 blocks of cores gives a better performance than simply
using 2 blocks. In fact, we can notice that the precision with two blocks is slightly
better but in both cases the precision is under the specified threshold.

In Fig. 3, the number of iterations per second is reported for both GMRES and
the multisplitting methods. It should be noted that we took only the inner number
of iterations (i.e. the GMRES iterations) for the multisplitting method. Iterations of
CGNR are not taken into account. From this figure, it can be seen that the number
of iterations per second is higher with GMRES but it is not so different with the
multisplitting method. For the case with 8,192 cores, the number of iterations per
second with 4 blocks is approximately, equal to 115. So, it is not different from
GMRES.
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Fig. 2 Weak scaling with 3 blocks of 4 cores each to solve a 3D Poisson problem with approximately
280K components per core

4.1 Final remarks

It should be noted, on the one hand, that the development of a complete new code
usable with any kind of problem is a really long and fastidious task if one is working
from scratch. On the other hand, using an existing tool for the inner solver is also
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Table 1 Results

Pb size Nb. cores GMRES Krylov multisplitting Ratio

Time (s) nblter. A Time (s) nb Iter. A

4683 2,048 (2 x 1,024) 299.7 41,028 5.02e—8 48.4 691 (6,146) 8.24e—08 6.19
590° 4,096 (2 x 2,048) 433.1 55,494 4.92e—7 74.1 1,101 (8,211) 6.62e—08 5.84
7433 8,192 (2 x 4,096) 704.4 87,822 4.80e—07 151.2 3,061 (14,914) 5.87e—08 4.65
7433 8,192 (4 x 2,048) 704.4 87,822 4.80e—07 110.3 1,531 (12,721) 1.47e—07 6.39

140 T T T T T T
135
130
125
120

115

nb. iter. per second

110

105

100

95
2000 3000 4000 5000 6000 7000 8000 9000

nb. of cores

Fig. 3 Number of iterations per second with the same parameters as in Table 1 (weak scaling) with only
blocks of cores

quite difficult because it requires to establish a link between the inner solver and the
outer one. We plan to do that later with engineers working specifically on that point.
Moreover, we think that it is very important to analyze the convergence of this method
compared to other methods. In this work, we have focused on the description of this
method and its performances with a typical application. Many other investigations are
required for this method as explained in the next section.

5 Conclusion and perspectives

We have implemented a Krylov multisplitting method to solve sparse linear systems on
large-scale computing platforms. We have developed a synchronous two-stage method
based on the block Jacobi multisplitting which uses GMRES iterative method as an
inner iteration. Our contribution in this paper is twofold. First, we provide a multi block
decomposition that allows us to choose the appropriate size of the blocks according
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to the architectures of the supercomputer. Second, we have implemented the outer
iteration of the multisplitting method as a Krylov subspace method which minimizes
some error function. This increases the convergence and improves the scalability of
the multisplitting method.

We have tested our multisplitting method to solve the sparse linear system issued
from the discretization of a 3D Poisson problem. We have compared its performances
to the classical GMRES method on a supercomputer composed of 2,048 up-to 8,192
cores. The experimental results showed that the multisplitting method is about 4-6
times faster than the GMRES method for different sizes of the problem split into 2
or 4 blocks when using the multisplitting method. Indeed, the GMRES method has
difficulties to scale with many cores while the Krylov multisplitting method allows to
hide latency and reduce the inter-block communications.

In future works, we plan to conduct experiments on larger numbers of cores and test
the scalability of our Krylov multisplitting method. It would be interesting to validate
its performances to solve other linear/nonlinear and symmetric/nonsymmetric prob-
lems. Moreover, we intend to develop multisplitting methods based on asynchronous
iterations in which communications are overlapped by computations. These methods
would be interesting for platforms composed of distant clusters interconnected by a
high-latency network. In addition, we intend to investigate the convergence improve-
ments of our method using preconditioning techniques for Krylov iterative methods
and multisplitting methods with overlapping blocks.
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