
J Supercomput (2015) 71:1869–1881
DOI 10.1007/s11227-014-1365-9

Enhancing computational efficiency on forest fire
forecasting by time-aware Genetic Algorithms

Tomàs Artés · Andrés Cencerrado · Ana Cortés ·
Tomàs Margalef

Published online: 21 December 2014
© Springer Science+Business Media New York 2014

Abstract A way to overcome data input uncertainty when simulating forest fire
propagation, consists of calibrating inaccurate input data by applying computational-
intensive methods. Genetic Algorithms (GA) are powerful and robust optimization
techniques. However, their main drawback is their overall run time, which can easily
become unacceptable, especially when dealing with natural disasters forecast. The
prediction system has been parallelized using a hybrid MPI-OpenMP approach where
the number of cores allocated to each GA individual is based on a priori time-aware
population classification, which allows to keep bounding the optimization process
bound to a predetermined deadline. In this work, an efficient time-aware GA is intro-
duced that estimates the required number of cores to keep the calibration process under
imposed time limits and also takes into account an efficient use of the computational
resources.

Keywords Multi-core platforms · Forest fire spread prediction · Hybrid
MPI-OpenMP scheme · Core allocation · Efficiency · Time-aware

T. Artés (B) · A. Cencerrado · A. Cortés · T. Margalef
Computer Architecture and Operating Systems Department,
Universitat Autònoma de Barcelona, Barcelona, Spain
e-mail: tomas.artes@e-campus.uab.cat

A. Cencerrado
e-mail: andres.cencerrado@uab.cat

A. Cortés
e-mail: ana.cortes@uab.cat

T. Margalef
e-mail: tomas.margalef@uab.cat

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-014-1365-9&domain=pdf


1870 T. Artés et al.

1 Introduction

When dealing with an ongoing natural disaster such as a forest fire, a critical point
to consider is the response time of the emergency systems and their ability to act in
the most efficient way. Experience in fire fighting and forest fire behavior knowledge
are the basic key points used to decide how to tackle an active fire. In order to help
fire fighting decisions, forest fire spread simulators, such as FARSITE [1], become
a relevant tools in assessing decision support systems. However, to be effective, the
forecasted forest fire behavior must be delivered prior to the real fire evolution. Forest
fire spread prediction system must accomplish the task with real-time constraints in
order to be useful. Furthermore, and not dismissible, there exists an inherent error
related to any natural hazard prediction due to, among other things, the uncertainty
in the data needed to perform the forecast. For the particular case of forest fire, we
can find in the literature different approaches to tackle these problems ranging from
applying ensemble strategies reducing the input parameters uncertainty effects [2] to
applying the Kalman filter to certain input variables to tune their values [3]. However,
most of these approaches are not concerned with response time.

In this work, we focus on strategies to relieve the uncertainty effects, due to the
imprecision of input parameters, by ensuring a time limit. For that purpose, we used
the so-called Two-Stage prediction scheme, which is composed of a Calibration stage
where the input parameters values are tuned to better reproduce the observed past
behavior of the fire, and those calibrated parameters are then used in the Prediction
stage to forecast the forest fire evolution [4]. As a calibration strategy, the Two-Stage
prediction scheme uses a Genetic Algorithm (GA).

The algorithm starts with an initial random population of individuals, each one
representing a scenario to be simulated. An individual is composed of a set of different
genes that represent input variables such as dead fuel moisture, live fuels moisture,
wind speed and direction, among others.

Each individual is simulated and is evaluated by comparing the predicted and real
fire propagation by estimating the symmetric difference between predicted and real
burned areas divided by actual real spread [5]. This difference takes into account the
wrongly predicted burned cells (false alarms) and the real burned cells that were not
predicted (misses). According to this fitness function the whole population is ranked
and the genetic operators selection, elitism, mutation and crossover are performed
over the population, producing an evolved population which will have, at least, the
best individual of the last generation (elitism). The new population is then evaluated
in the same way, and the process is repeated for a certain number of iterations.

Although GAs are powerful and robust optimization techniques, their main draw-
back is their overall execution time which can easily become unacceptable. Moreover,
FARSITE forest fire simulator execution time can vary from minutes to hours for the
same topographic area depending on the particular combination of the input parame-
ters. Consequently, the need arises to find a trade-off between prediction accuracy,
achieved thanks to the calibration strategy, and the time incurred in reaching this pre-
diction improvement. To harmonize quality and time, we propose a multi-threaded
Genetic Algorithm that exploits multi-core platform in order to accelerate the Two-
Stage forest fire spread prediction system. However, the significant variability of exe-

123



Enhancing efficiency on time-aware Genetic Algorithms 1871

cution time of the forest fire simulator usually provokes significant load unbalance
and a inefficient use of available resources. Therefore, an approach to estimate the
amount of resources (cores) required to enhance the efficiency of resource usage has
been introduced.

In the next section, the hybrid MPI-OpenMP prediction framework is described.
Section 3 presents the time-aware core allocation scheme and introduces the efficient
time-aware core allocation based on statistical data. The application of the enhanced
prediction scheme to a real case is analyzed in Sect. 4, and finally, themain conclusions
of this work are cited in Sect. 5.

2 Hybrid MPI-OpenMP master/worker prediction scheme

The calibration process, based on GA, allows us to find a good input parameter set, but
it involves a high computational cost due to the large amount of simulations required.
Therefore, it is essential to speed up the execution while maintaining the accuracy of
the prediction. For this reason, the GA calibrationmethod has been implemented using
a master/worker paradigm and has been parallelized applying a hybrid MPI-OpenMP
approach. So, the Two-Stage methodology has been developed to exploit two different
level of parallelism.

On the one hand, since the GA fits the master/worker paradigm, anMPI implemen-
tation of this prediction framework was deployed (see Fig. 1a). At the first stage, the
master node generates an initial random population which is distributed among the
workers. Then, the workers simulate each individual and evaluate the fitness function.
The errors obtained by the workers are sent to the master, which ranks the corre-
sponding individuals according to their error before applying the genetic operators
and producing a new population. This iterative process is repeated a fixed number
of times. The last iteration (generation) contains a population from which the best
individual is taken as the best solution, and is used in the Prediction stage.

(a) (b)

Fig. 1 MPI parallel calibration stage (a) and the two-levelMPI-OpenMPmaster/worker prediction scheme
(b)

123



1872 T. Artés et al.

Since every simulation can be carried out in a parallel way, the individual whose
simulation takes the longest determines the elapsed time for that particular generation.
So, the execution time of each GA iteration can be expressed as shown in Eq. 1, where
tInd stands out from the execution time of a given individual and PGen is the set of
individuals (population) at that particular generation.

titer = maxGen(tInd) | ∀Ind ∈ PGen (1)

When extrapolating this fact to all GA iterations, one comes out with a total calibration
execution time equal to the sumof the longest simulation time existing at each iteration.
Therefore, the total execution time of the GA (ttotal) could be evaluated using Eq. 2,
where NGen is the number of generations performed of the GA, tInd stands out from
the execution time of a given individual and PGen is the set of individuals (population)
at the genth generation.

ttotal =
NGen∑

Gen=1

maxGen(tInd) | ∀Ind ∈ PGen (2)

In order to shorten simulation times, a second level of parallelismwas proposed. FAR-
SITE was analyzed with profiling tools such as OmpP [6] and gprof [7] to determine
which regions of the code could be parallelized with OpenMP. The result of such
analysis determined the particular loops that could be parallelized using OpenMP
pragmas. The results of such parallelization have been presented in [5].

The parallelized loops represents about 60 % of the FARSITE’s execution time,
which means that 40 % of the execution time is sequential. It implies a non-linear
speedup. Figure 1b sketches the implemented hybrid MPI-OpenMP scheme. Equa-
tion 3 expresses the theoretical minimum execution time we could obtain using this
OpenMPFARSITE parallelization as a function of the number of cores (NCores), where
ts stands for the execution time of the sequential version.

tpar(NCores) = 0.4 × ts + 0.6

NCores
× ts (3)

However, as previously mentioned, the duration of a certain forest fire evolution
simulation in a certain topographic area can take from minutes to hours depending on
the particular set-up of the simulator input parameters. So, in one particular iteration it
is common to have individuals that take a fewminutes, while others take more than 1 h
and determine the iteration execution time. In this situation, themost efficient approach
to reduce iteration execution time is to dedicate more computational resources (cores)
to those individuals that take longer and limit the overall iteration time. This approach
is shown in Fig. 2.

So, one question that arises at that point is, what is the suitable number of cores to
allocate to each given forest fire spread simulation? The next section deals with this
problem by introducing a time-aware classification strategy that allows us to allocate
the proper number of cores to each individual forest fire spread simulation with the
aim of keeping the total prediction time bound.

123



Enhancing efficiency on time-aware Genetic Algorithms 1873

(a) (b)

Fig. 2 Fire simulation individuals unbalance (a) and Core allocation depending on sequential execution
time (b)

3 Efficient TAC-two-stage prediction scheme

The prediction scheme has been parallelized using a hybrid MPI-OpenMP approach,
and a time-aware core allocation scheme has been implemented to ensure a simula-
tion time limit for each executed GA individual. Thus, the proposed solution allows
us to keep the prediction time bound to the predefined time prediction requirements,
enabling the capacity of delivering forest fire behavior information useful to the wild-
fire analysts in charge of the fire management. Furthermore, the proposed time-aware
Genetic Algorithm has also been analyzed in terms of efficiency in order to exploit to
the maximum the available computational resources.

The key point of this approach is allocating more cores to the individuals that
take longer, so that their simulation time can be reduced, improving the individuals
unbalance and, consequently, the iteration execution time. Therefore, it is necessary
to estimate the execution time of each particular individual beforehand, so that the
appropriate number of cores is allocated to each individual. However, this execution
time cannot be estimated from the direct analysis of the underlying input data val-
ues. So, we rely on the characterization methodology described in [8]. For a given
topographic area, this methodology has the ability to assess in advance the execution
time of the forest fire spread simulation associated with certain input parameter set-
tings. This methodology takes advantage of the artificial intelligence field to generate
a decision tree, which is able to classify the individuals of a new generated population
into time classes. This classification is based on the serial version of the FARSITE
simulator. As stated in the previous section, FARSITE has been parallelized using
OpenMP pragmas. The parallelized part of FARSITE represents approximately 60 %
of the total execution time, meanwhile 40 % of the execution time corresponds to a
sequential part, which cannot be reduced by the implemented parallelization.

Dealingwith strict real-time constraints implies settingup a time limit to theCalibra-
tion Stage and, consequently, to each GA iteration. Therefore, applying the FARSITE

123



1874 T. Artés et al.

Table 1 Time limit classes for a
time constraint of tmaxgen

Class Cores Time limits

A 1 0 < ts ≤ tmaxGen

B 2 tmaxgen < ts ≤ 1.42 × tmaxGen

C 4 1.42 × tmaxGen < ts ≤ 1.81 × tmaxGen

D 8 1.81 × tmaxGen < ts ≤ 2.1 × tmaxGen

multi-threaded version and stating that the (tpar(NCores)) determines themaximumGA
iteration time exploiting the parallel FARSITE version, from Eq. 3 one can state the
maximum serial time permitted to accomplish a generation limit time (tpar(NCores))
depending on the number of cores (see Eq. 4).

ts = tpar(NCores) × NCores

0.6 + 0.4 × NCores
(4)

Therefore, assuming a maximum GA generation time of tmaxGen and four core alloca-
tion configurations: 1, 2, 4 and 8 cores per FARSITE simulation, one would be able
to define four time execution classes with their respective time limits as is shown in
Table 1.

Considering that the parallel part of FARSITE is 60% and the speedup is not linear,
because of the significant sequential part, it is not worth increasing the number of cores
to 12 or 16. The actual time reduction obtained compared to the one with 8 cores is
not significant.

The above-mentioned characterization methodology based on decisions tree to
assess in advance the serial execution time of a given FARSITE execution, could
be redefined to classify the individuals of a GA population according to the new time
limit classes, which are associated with the number of cores required to maintain the
execution time of each simulation below tmaxGen . Therefore, the core allocation scheme
becomes time constraint aware. That means, that the number of cores allocated to a
given parallel FARSITE simulation will be sure to fit the predetermined deadlines.
The calibration scheme integrating the time-aware classification (TAC) approach is
called TAC-Two-Stage Prediction Scheme. Under this scheme, any serial FARSITE
simulations whose estimated prediction time goes beyond the time limit 2.1 × tmaxGen ,
will discarded and will not be executed because no core allocation configuration exists
that could guarantee the delivery of the corresponding simulation result on time.

To ensure that the iteration time limit is not exceeded,when this time limit is reached
the executing and pending individuals are killed, and the GA is executed considering
only those individuals that have completed their execution.

This approach keeps the GA generation time under the maximum iteration time.
However, it is necessary to estimate the amount of resources required to execute
the TAC-Two-Stage Prediction Scheme that ensures the generation time, makes an
efficient use of the resources and provides quality calibrations. So, in order to use
the computational resources more efficiently, we propose an efficient TAC-Two-Stage
scheme (E-TAC). This scheme estimates the amount of resources required and applies
an “on-demand” distribution of individuals to the available cores that maintains the
following criteria:

123



Enhancing efficiency on time-aware Genetic Algorithms 1875

Table 2 Number of cores
required

Class Cores per
individual

Number of
individuals

Total number
of core

A 1 49 49

B 2 8 16

C 4 5 20

D 8 2 16

Total 101

– Longer execution time class first Similar to theLongQueueFirst (LQF) scheduling,
all individuals will be sorted depending on their class. So, long class individuals
will be delivered first to the workers.

– Best fit remaining worker iteration time next For each generation, the time-aware
classification uses the current available execution time to determine the classifica-
tion limits (such as Table 1) and it allows us to add the remaining time, if it exists,
to the execution of the individuals of the current generation. So, E-TAC is able to
adapt depending on the remaining time trying to execute as many individuals of
the GA as possible.

The key point is how to determine the amount of resources required. In the worst
case, all individuals in the population could belong to class D. In this case, if the
population has 64 individuals, it would be necessary to use 8 cores for each individual.
This makes a total number of 512 cores. However, the statistical distribution of the
individuals among the classes shows that in a random population of 64 individuals
the distribution of individuals among the 5 classes is 48 class A individuals, 8 class B
individuals, 5 class C individuals, 2 class D individuals and 1 class E individual (that
is discarded and changed to class A). In this situation the amount of cores required to
execute all the individuals in parallel is 101, as shown in Table 2.

However, it must be considered that not all the class A individuals take 1,080 s, but
that most of them take less time. Actually the average execution time is around 450 s.
So, we could allocate more than 2 class A individuals per core. From Table 2 it can
be concluded that the class B, C and D individuals require 52 cores,and the class A
individuals require less than 24 cores. So, the total number of cores could be around 76
cores. But, it must be taken into account that the class B, C and D individuals running
on 2, 4 and 8 cores, respectively, will not take 1,080 s and the remaining time can also
be used to execute class A individuals. So, the number of 76 cores can be reduced by
around 20 % which makes for a number of 61 cores, that can be rounded to 64 cores.

In the next section, the proposed Efficient Time Aware Classification is tested in
a real case to verify the feasibility of this proposal in coping with the real needs
of wildfire analysts during a real hazard, taking into account an efficient use of the
available computational resources.

4 Case study

The Mediterranean area is one of the European regions most affected for forest fires
during the summer seasons. The selected case study corresponds to a region within

123



1876 T. Artés et al.

Fig. 3 La Jonquera forest fire

the Mediterranean coast that is affected by forest fires almost every year. In particular,
we used a fire that occurred in La Jonquera (North-East of Catalonia, Spain) in July
2012. This hazard devastated nearly 13,000 ha and two people died. Figure 3 shows
the burn area associated with this forest fire for two different time instants during the
fire occurrence. The digital elevation map used has a resolution of 30 m.

The computing platform used to test the proposed scheme consists of two Pow-
erEdge C6145 nodes. Each node has 4 AMDOpteron™6376 of 16 cores with 128 GB
of DDR3 1,600 MHz, which means a total number of 128 cores.

In order to evaluate the Two-Stage prediction scheme including TAC, and to inte-
grate it with the EFFIS (European Forest Fire Information System) [9], a maximum
calibration time of 3 h must be accomplished. The MODIS Aqua and Terra satellites
provide two fire perimeters every day (around 10 am and 3 pm, respectively). Once
both perimeters are available, it is possible to start the calibration process. For opera-
tional reasons it is important to provide the forest fire propagation prediction for the
next day around 7pm. This means that the calibration process must take less than 3 h.
So, we have imposed a 3 h time limit for the calibration process.

As previously described, the Calibration stage implements a GA to reduce the
prediction inaccuracy due to the input data uncertainty. The GA population size has
been set up for 64 individuals. The initial population is generated randomly and the
GA has been iterated ten times. Therefore, since the calibration stage has been limited
to 10,800 s, the maximum execution time of one GA iteration is limited to 1,080 s.
Then, assuming the best executing scenario where all GA individuals are executed in
parallel, the maximum serial time that should be executed at each GA iteration should
take 1,080 s. However, the unpredictable nature of GA population members could lead
the system to a GA total execution time that widely exceeds the self-imposed time
constraints.

The proposed Two-Stage prediction scheme with Time Aware Classification (TAC-
Two Stage), described in Sect. 3, exploits the FARSITE OpenMP parallelization, to
accomplish the predefined time constraints. In the case study, the time of each GA
iteration has been set to 1,080 s. Then, assuming that the computational platform has
enough cores to run allGA individuals (64 individuals) in parallel, independently of the

123



Enhancing efficiency on time-aware Genetic Algorithms 1877

Table 3 Time limit classes for a
time constraint of 1,080 s per
GA generation

Class Cores Time limits (s)

A 1 0 < ts ≤ 1,080

B 2 1,080 < ts ≤ 1,547

C 4 1,547 < ts ≤ 1,966

D 8 1,966 < ts ≤ 2,273

Fig. 4 Execution trace of the Calibration stage using the Time Aware Classification (TAC-Two-Stage
prediction scheme)

number of cores allocated to each one, the maximum parallel time of one simulation
is limited to 1,080 s. Then, substituting the values in Eq. 3 the resulting equation
corresponds to Eq. 5 and, consequently, the resulting serial time depending on the
number of cores allocated is the one stated in Eq. 6.

1,080 = 0.4 × ts + 0.6

NCores
× ts (5)

ts = NCores × 1,080

0.6 + 0.4 × NCores
(6)

Therefore, the resulting time limits from the serial execution time allowed to be exe-
cuted depending on the number of cores used, are the ones shown in Table 3.

Any execution of the forest fire simulator, whose estimated serial execution time
takes longer than 2,273 s will be discarded and, consequently, eliminated from the cal-
ibration process. In order to keep the population size constant, those killed individuals
are replaced by new individuals at run time so as not to penalize the GA search.

Considering that the test platform has 128 cores, the prediction system uses a
master/worker scheme with 16 workers, each one with eight assigned cores. So, the
total number of cores used is 128 cores. In Fig. 4, we can see the GA evolution and

123



1878 T. Artés et al.

the execution of the individuals for all generations taking into account the number of
cores allocated to each one. The wider the time line is, the more cores are used for
the corresponding FARSITE simulation. For example, at the first iteration, the worker
labeledW1 has one single FARSITE simulation assigned using 8 cores, while worker
W9 has 4 FARSITE simulations assigned, running on 2 cores each. As can be observed,
the self-imposed limit of 10,800 s for the Calibration stage has been accomplished.

One concern that could arise from this approach is directly related to the error
achieved at the end of the calibration stage. Since individuals that are classified as too
long (more than 2,273 s for this particular case) are discarded and replaced by new
individuals, one can be concerned about the loss of diversity in the GA population
and how it affects the final result. However, previous works [10] stated that discarding
long individuals in the prediction scheme, does not affect the final result in terms of
calibration accuracy. Therefore, being able to assess in advance an interval execution
time (class) for any FARSITE simulation, enables the Two-Stage prediction system
with the capacity of classifying the GA individual according to their estimated elapsed
time.

However, as can be observed in Fig. 4, maximizing the available parallelism to
execute all individuals in parallel, directly affects the system efficiency. Figure 4 has
an efficiency of 27.07 %, which is very poor. This low efficiency is clearly caused
by the workers’ idle times. As can be observed, as the GA evolves, the number of
workers with individuals allocated varies due to the unpredictable nature of the GA
population evolution. We have reserved 128 cores to be used during the calibration
process. However, in this case, the GA drives the solution to individuals classified
as C . The class C individual will be allocated 4 cores each, but also due to the GA
behavior, not all new individuals will match this class as can be observed at the 5th
generation. In this generation, the number of class D individuals is only 1, the number
of individual classified as class C is 2, there are 4 individuals of class B and the rest of
the individuals are class A members. Consequently, workers 11 to 16 are idle workers
because the number of resources has been overestimated. This fact clearly impacts
the system efficiency. Therefore, in order to use the computational resources more
efficiently, the Efficient TAC-Two-Stage scheme is applied. To properly analyze the
efficiency variationwhen dealingwith less computational resources, we have set up the
execution platform to have 64 cores, as stated in the previous section. It corresponds to
using 8 workers with 8 cores assigned to each. Figure 5 shows the results of applying
this strategy to the La Jonquera case.

In order to obtain results comparable to not applying the efficient strategy, the initial
population of the GA has been set to the same as the one used in the experiment shown
in Fig. 4. This population has 5 class D individuals, 6 class C individuals, 5 class B
individuals and 48 class A individuals. This population fits in the statistical distribution
shown in Table 2. There are more D and C individuals and the number of B individuals
is a little bit lower than the average value for that class, but these variations correspond
to the statistical behavior. Actually, the initial population would require more cores
than the estimated ones.

As we can observe, the total calibration time of 10,800 s is achieved and the idle
worker times are considerably reduced. The efficiency of the obtained scheme is in
this case 53.61 %. It implies a significant improvement with respect to running all

123



Enhancing efficiency on time-aware Genetic Algorithms 1879

Fig. 5 Execution trace of the Calibration stage using the Efficient TAC-Two-Stage prediction scheme

Fig. 6 Computational efficiency when applying the Efficient TAC-Two-Stage scheme using 8 (64 cores)
and 16 workers (128 cores)

individuals in parallel. In order to consider the non-deterministic aspect of the GA,
the above described experiments have been repeated 10 times with different initial
populations and the obtained results are shown in Fig. 6. In this figure, the efficiency
values for all experiments when using 64 and 128 cores are depicted. As can be
observed, the mean value when using 8 workers is twice the mean value when 16
workers are applied. Therefore, using the proposed prediction scheme, one can release
computational resources that could be used for different purposes such as running
complementary models to enhance accuracy results [11].

Although we are applying the Efficient TAC-Two-Stage approach, that keeps track
of the remaining iteration time for each core assigned to each worker, one cannot dis-

123



1880 T. Artés et al.

Fig. 7 Final calibration error when applying the Efficient TAC-Two-Stage scheme using 8 (64 cores) and
16 workers (128 cores)

miss the classification error that could be made when applying the TAC classification.
Despite the low classification error provided by TAC, the system must include a safety
feature to be sure that the preset deadline will not be passed. This could happen when
an individual whose real execution time would correspond to class, for example D,
is eventually classified by error to belong to class C . Under these circumstances the
number of cores allocated to that individual will be 4 instead of 8. This could lead
to its execution time taking longer than the available iteration time. For that reason,
those anomalous cases are detected on-line and killed when the auto-imposed iteration
time has been reached. The individuals depicted in red in Fig. 5 correspond to killed
individuals. So, a question that arises is how this individual’s elimination affects the
final error. Figure 7 shows the calibration error achieved for ten different runs of the
Efficient TAC-Two-Stage, as well as the corresponding mean values for 8 and 16 work-
ers, respectively. As one can observe, the error difference is not relevant remaining in
all cases very close to 0.9. As a consequence, one can state that applying the efficient
TAC-Two-Stage prediction approach will have no effect on the final calibration error
comparedwith not using the efficient scheme. There are even three runswith 8workers
and 64 cores which achieve slightly better error than with 16 workers and 128 cores
(7, 8 and 9 in Fig. 7). Nevertheless, in terms of mean, error is still better with 128
cores, although the difference in mean error between 8 workers and 16 workers is not
significant.

5 Conclusions

The TAC-Two-Stage prediction approach exploits the multi-thread FARSITE version
to fit the prediction time within a current time limit. To achieve such a goal, a time-
aware core allocation strategy was included in the basic Two-Stage prediction scheme,
which is able to estimate in advance themaximum execution time of a given simulation
and, consequently, determine at run time, how many cores it allocates to each simula-

123



Enhancing efficiency on time-aware Genetic Algorithms 1881

tion to accomplish the desired time constraints.When strictly using TACwe are able to
provide a forest fire spread prediction on time but it can incur very poor efficiency in the
MPI-OpenMP parallel calibration stage. For that reason, a scheduler module has been
designed and implemented to improve system efficiency. In this work, we describe
an efficient time-aware parallel forest fire spread prediction scheme (Efficient TAC-
Two-Stage). This improvement estimates from statistical data the required number of
cores and integrates a scheduling policy that enables the system to deliver prediction
results under real-time constraints provided by the forest fire management services.
This approach is able to reach the same calibration quality with less computational
resources that releases enough cores that can be used to run complementary models
and enrich the input data quality. The system has been tested with a real forest fire
that took place in Catalonia in July 2012. The results show that, using the estimated
number of cores, the prediction scheme has no penalization in terms of calibration
quality and significantly increases the efficiency. In turn, the available free resources
allows us to run complementary models such as wind field models improving the final
prediction results.

Acknowledgments This work has been supported by MICINN-Spain under contract TIN2011-28689-
C02-01 and by the Catalan government under grant 2014-SGR-576.

References

1. Finney MA (1998) FARSITE, Fire Area Simulator-model development and evaluation. Res. Pap.
RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research
Station

2. Rodriguez-Aseretto D, de Rigo D, Di Leo M, Cortés A, San-Miguel-Ayanz J (2013) A data-driven
model for large wildfire behaviour prediction in Europe. Proc Comput Sci 18:1861–1870

3. Mandel J, Bergou E, Gratton S (2013) 4dvar by ensemble kalman smoother. arXiv preprint
arXiv:1304.5271

4. Abdalhaq B, Cortés A, Margalef T, Luque E (2005) Enhancing wildland fire prediction on cluster
systems applying evolutionary optimization techniques. Future Gener Comput Syst 21(1):61–67

5. Artés T, Cencerrado A, Cortés A, Margalef T (2013) Relieving the effects of uncertainty in forest fire
spread prediction by hybrid mpi-openmp parallel strategies. Proc Comput Sci 18:2278–2287

6. Fürlinger K, Gerndt M (2008) A Profiling Tool for OpenMP. OpenMP Shared Memory Parallel Pro-
gramming, pp 15–23

7. Graham SL, Kessler PB, McKusick MK (2004) gprof: a call graph execution profiler. SIGPLAN Not
39(4):49–57

8. Cencerrado A, Cortés A, Margalef T (2014) Response time assessment in forest fire spread simulation:
an integrated methodology for efficient exploitation of available prediction time. EnvironModel Softw
54:153–164

9. San-Miguel-Ayanz J, Barbosa P, Schmuck G, Libertà G, Meyer-Roux J (2003) The european forest
fire information system. In: AGILE 2003: 6th AGILE Conference on Geographic Information Science,
p 27. PPUR presses polytechniques. http://forest.jrc.ec.europa.eu/effis/about-effis/

10. Cencerrado A, Cortés A, Margalef T (2012) Genetic algorithm characterization for the quality assess-
ment of forest fire spread prediction. In: Proceedings of the International Conference on Computational
Science, ICCS 2012 Procedia Computer Science, vol 9 (0), pp 312–320

11. Brun C, Margalef T, Cortés A, Sikora A (2014) Enhancing multi-model forest fire spread prediction
by exploiting multi-core parallelism. J Supercomput 70(2):721–732

123

http://arxiv.org/abs/1304.5271
http://forest.jrc.ec.europa.eu/effis/about-effis/

	Enhancing computational efficiency on forest fire forecasting by time-aware Genetic Algorithms
	Abstract
	1 Introduction
	2 Hybrid MPI-OpenMP master/worker prediction scheme
	3 Efficient TAC-two-stage prediction scheme
	4 Case study
	5 Conclusions
	Acknowledgments
	References




