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Abstract NNMFPACK is a library for the nonnegative matrix factorization (NNMF)
problem. Nowadays NNMF is an essential tool in many fields spanning machine learn-
ing, data analysis, image analysis or audio source separation, among others. NNMF-
PACK is an efficient numerical library conceived for shared memory heterogeneous
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parallel systems, and it supports, from its conception, both conventional multi-core
processors and many-core coprocessors. In this article, NNMFPACK is extended to
handle different metrics options (S-divergence), and some other parallel algorithms
have been added and tested. The performance of the new functionalities of NNMF-
PACK is tested, and some precision results of the implementations are showed using
an example borrowed from the image processing field.

Keywords NNMF - Parallel library - GPU - Intel MIC - Multi-core - Many-core

1 Introduction

The nonnegative matrix factorization (NNMF) has become a very important tool in
fields such as document clustering, data mining, machine learning, data analysis,
image analysis, audio source separation or bioinformatics [1-6]. NNMF consists on
approximating a matrix A € R”*" by the product of two matrices W and H, with some
conditions: the matrix A has nonnegative elements, and W € R">k and H € Rk*n
with k£ < min(m, n) are two lower rank matrices with nonnegative elements too, such
that A &~ W H. The problem is addressed as the computation of two matrices Wy, Hy
such that

[WoHo — Allr = min [WH — A| . ey

W,H>0

Other norms can be used instead of the Frobenius norm (see, for instance, [7], where
the NNMF is also defined in terms of the Kullback-Leibler divergence). Also, many
algorithms have been proposed for NNMF calculation (see [5,7-11]).

The relevance of this factorization is the accomplished dimensionality reduction
that effectively works as a compression tool for many applications, because the matrix
A is approximated as the product of two lower rank matrices. Though useful, NNMF is
also a computationally demanding task, what encourages to develop efficient routines
capable of reducing its high execution time.

Besides, modern computer architectures have evolved from CPUs with a reason-
able number of cores (multi-core) to heterogeneous systems where CPUs are aided
by hardware accelerators with a huge number of computational cores (many-core).
Therefore, these complex architectures (heterogeneous architectures) are an essential
tool for tackling the NNMF when we cope with large scale matrices.

Previous results on the parallelization of some algorithms for calculating the NNMF
can be found in [12]. In [13] a first approach to a library, called NNMFPACK, for NNMF
calculation was presented. NNMFPACK is an efficient numerical library conceived for
shared memory heterogeneous parallel systems, and it supports, from its conception,
both conventional multi-core processors and (many-core) coprocessors such as Intel
Xeon Phi and CUDA compatible Graphics Processing Units (GPUs). Its routines
are also invocable from MATLAB/Octave through MEX interfaces, what increases
NNMFPACK’s usability. In [13] only some initial aspects of the library were depicted.

Although initially a wide variety of audio signal processing applications (see, for
example, [3,14,15]) has inspired the development of the library, our interest is to
provide a general tool (not constrained to audio problems) which can be used in
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any other field where the NNMF decomposition is required. For example, if digital
image processing (face recognition, optical character recognition, content based image
retrieval, etc.) is considered, each monochrome digital image is a rectangular array
of pixels and each pixel is represented by its light intensity. Since the light intensity
is measured by a nonnegative value, we can represent each image as a nonnegative
matrix, where each element is a pixel. Colour images can be coded in the same way
but with several nonnegative matrices.

Therefore, in this article the library is extended to cope with different metrics options
(B-divergence), and some other parallel algorithms have been added and tested. As a
result, we include the evaluation of the overhead performance of the new routines on
several parallel architectures (GPU, multi-core, etc.).

The remainder of the article is as follows. In Sect. 2 we define the different metrics
used in the library, and the computational cost of the implemented algorithms is shown.
The experimental advantages of the implemented algorithms are analysed on different
architectures in Sect. 3, together with an example related to image reconstruction. The
article ends with a section devoted to conclusions.

2 Approximation and cost functions

To find an approximate factorization A ~ W H, it is necessary to define cost functions
that quantifies the quality of the approximation. The factorization is usually sought
after through the minimization problem

min D(A|WH), 2)
W,H>0

where D(A|W H) is a cost function defined by
m n
D(AIWH) = > > d([Al;;|[WH]j), 3)
i=1 j=1

and d(x|y) is a scalar cost function.
Lee and Seung proposed in [7] the use of the Euclidean distance

1
dxly) = 30 = y)* “)
and the Kullback-Leibler divergence defined by
X
dxly) = xlog T —x +y. ©)

Thus, for example, considering the Euclidean distance and using gradient descent
algorithms to solve the minimization problem, they obtain the next update rules

wTa AHT

H<«H ——\, WW. —|
(WTW)H W(HHT)

(6)
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where the symbol - and the fraction bar denote entrywise matrix product and division,
respectively.

In our previous work (see [12]), the multiplicative algorithms used exclusively the
Frobenius norm as a measure of the goodness of the approximation of the matrices
A and W H. In many applications of the NNMF it is more useful the utilization of
another metrics to measure the closeness between these matrices. It can be empirically
checked that the g-divergence metrics (introduced by Eguchi and Minami, see [16])
provide more accurate results for specific problems, while maintaining, under certain
conditions, its convergence.

The new built-in algorithms are a generalization of that presented in [12], and they
are parameterized and optimized to use different types of metrics based on the value
of the parameter B: the Frobenius norm (8 = 2), the Kullback—Leibler divergence
(B = 1), the Itakura—Saito divergence (8 = 0) or any other for different values of
parameter f.

In the NNMFPACK library we have implemented subroutines that use as cost function
the B-divergence, that can to be defined as (see, e.g. [17])

g O + (B —=DyF = Bxyf™, if g e R\{0, 1},
dp(xly) :=  x(logx —log y) + (y — x), if p=1 @)
’;C—logf;‘—l, if B =0.

The previous cost function is defined for all real number, but usually when is used
in applications, p takes values between 0 and 2. Thus, in our experiments we tested
only values for § varying in this range.

Taking into account [17] and using the gradient criterion, it is possible to obtain the
following rules to update the matrices H and W:

wWI(WH)E2. A) W '(WH)'ﬂ_z-A)HT

H <« H- ,
WT(WH)+,-! (WH)-B-THT

) ®)

where X" denotes the matrix with entries ([X];;)".
In the routines implemented in the library, the parameter 8 can be chosen by the
user, thus allowing the use of different metrics.

2.1 Computational costs

The algorithm described in Sect. 2 is a multiplicative uniform cost algorithm with
approximately
2(6mnk + 3mn + mk + nk) )

flops per iteration if 8 € R\{0, 1}, where n, m and k are the dimensions of the input
matrix A € R”™*" and the two lower rank matrices W € R”"*¥ and H € R¥*" with
k < min(m, n). If the value of the parameter g is 2 (corresponding with the Frobenius
norm) the overall computational cost in flops per iteration will be

2(6mnk + mk + nk). (10)
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1850 N. Diaz-Gracia et al.

The cost of the NNMFPAck’s MLSA algorithm (see [13]), an efficient implemen-
tation of the Lee and Seung algorithm [7], is

dkmn + 2k(m + n)(2k + 1), (11)

flops per iteration, which is lower than (10).

This cost can be obtained by assuming the flop definition given in [18] and con-
sidering that in expression (6) the cost of basic operations such as matrix—matrix
multiplication (2mnk flops for X = Y Z, with X € R"™*" ¥ € R"*k, Z ¢ R**") or
point-wise multiplication/division 2mn flopsfor X = Y-Z/T,with X, Y, Z € R™*")
are known.

Thus, in the updating of (6) the following operations must be done:

(WTW) — 2mk? flops (12)

(WITWYH — 2k*n flops (13)

WTA — 2mnk flops (14)
H-(WI'A)/(WTW)H) — 2kn flops (15)
(HHT) — 2nk® flops (16)

WHHT) — 2k>m flops (17)

AHT = 2mnk flops (18)
W-(AH")/W(HHT)) — 2mk flops (19)

The overall cost per iteration, (11), is obtained by adding all these partial costs.
Although MLSA and g-divergence with § = 2 are mathematically equivalent,
MLSA’s cost is lower due to a rearrangement of its operations. Therefore, when f is
equal to 2, MLSA is used instead of the 8-divergence version.
Finally, if 8 is 1 some matrix operations can be substituted by vector operations
and, therefore, the computational cost can be approximated by

2(4mnk 4+ 2mk + mn + nk) (20)

flops per iteration.

3 Experimental results

In [13] NNMFPACK’s design principles and general outline of its functionality are
given. In addition, [13] shows the installation procedure and gives some examples
of use. A complete description of NNMFPACK can be found in its website [19]. The
algorithms presented in this work are included in NNMFPACK according to the speci-
fications given in [13,19].

Furthermore, for better comparison with previous empirical results, the experiments
carried out in this article were obtained using the same test bed system. That is, an
ASUS server with
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Fig. 1 NNMFPACK performance for SDiv algorithm

— Two Intel Xeon E5-2650 CPUs @ 2.0 GHz with 64 GB of RAM. Their peak
performance in double precision is 256 GFLOPS.
— One NVIDIA Tesla K40m GPU with 2880 cores @ 745 MHz, 12 GB of DDR5

RAM and a peak performance of 1.43 TFLOPS in double precision.

— One Intel Xeon Phi 5110P coprocessor with 60 cores @ 1.053 GHz, 8 GB RAM
and a peak performance of 1.01 TFLOPS in double precision.
— CPU and Xeon Phi codes were compiled with the Intel C compiler, version
14.0.2.144, and Intel MKL, version 11.1.2.
— For the Tesla GPU, a NVIDIA NVCC compiler, version 6.0.37, and MAGMA,
version 1.4.1 have been used.
— The Matlab version used is the 8.1.0.604 (R2013a), 64-bit, and the GNU Octave
version is the 3.4.3 64-bit. Both libraries have been executed on the ASUS server

cited above.

Since the aim of this work is to analyse the behaviour of the new algorithms and
not to compare the efficiency of all NNMFPACK’s kernels, the experiments are focused
on the performance of the general case (8 € R\{0, 1}) of the S-divergence algorithms

(BDiv in onwards).

The analysis performed has been carried out using as the input matrix A € R™*"
a uniformly random generated positive square matrix (m = n). For a more compre-
hensive study, for each m (or n), value k (the inner dimension of the multiplication
approximation) ranges from 10 to 100 % of m (or n) with step 10 %.

Figure 1 shows the performance, in terms of GFlops, of the SDiv algorithm, and
Table 1 presents the theoretical percentage achieved by empirical results over the
different architectures for some values of m, n and k.
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Table 1 Theoretical performance percentage achieved by empirical results

n=m k CPUx1 (%) CPUXx16 (%) Xeon Phi (%) K40m (%)
1,000 500 83.9 61.2 31.4 415
2,500 1,250 89.8 74.6 56.4 76.1
5,000 2,500 93.4 83.8 67.6 82.5
7,500 3,750 93.5 86.7 68.4 85.4
10,000 5,000 95.2 90.0 72.1 85.4

Table 2 MATLAB/Octave and NNMFPACK execution time for SDiv algorithm (seconds)

n=m k CPUx1 CPUx16 Xeon Phi K40m Matlab Octave
5,000 1,500 30.1 2.2 0.7 04 2.5 57.7
7,500 2,250 102.6 7.1 2.3 1.3 7.1 193.9
10,000 3,000 237.5 15.0 5.7 3.0 15.2 458.3

Figure 1 and Table 1 show that when using the 16 cores available in the testing
machine (CPUx16 in Fig. 1), the CPU implementation achieves about the 90 % of its
peak performance (i.e. with m = n = k = 10,000), while the sequential algorithm
(CPUx1 legend in Fig. 1) achieves more than 95 % of it. Xeon Phi’s performance
overcome 70 % of its peak performance, reaching more than 700 GFLOPS. In a
similar vein, Tesla K40m reaches up to 1240 GFLOPS, more than the 85 % of its peak
performance. These percentages are consistent with those presented in [13], slightly
lower due to the greater number of non Level 3 BLAS operations per iteration than in
NNMFPACK’s MLSA algorithm.

It is noteworthy that, when establishing a comparison between MATLAB/Octave
functions and SDiyv, an initial adjustment of the input parameters of MATLAB/Octave
is needed, so equity conditions are guaranteed. In this way, MATLAB/Octave’s MULT
NNMF driver (call nnmf (A, k, ‘alg’, ‘mult’)) is equivalent to NNMF-
PACK’s MLSA kernel. Table 2 shows the results obtained for three test examples when
the number of iterations for all platforms is the same. As can be seen, Octave times
are extremely high. MATLAB is outperformed by NNMFPACK’s CPU implementation
(CPUx16), even using the intrinsic MKL parallelism and being the computational cost
per iteration of MULT (MLSA) lower than the SDiv (see Sect. 2.1).

Next we show some precision results of the implementations. The tests used a
picture in grey scale as the problem matrix A with dimensions 1,536 x 2,304 pixels.
The matrix was NNMF-factored using MATLAB and NNMFPACK and reconstructed
later. Table 3 shows the factorization error computed as

IA-WHIp _ 2Ds(AIWH)
v mn ’ A= A/mn

These two expressions measure the error in terms of Frobenius norm (errp)of A—W H
and in terms of SDiv (errg) of A and W H, respectively.

errp =

. 1)
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Table 3 Error in MATLAB’s NNMF and NNMFPACK by using the Frobenius norm error (errp) and the
BDiv error (errg)

k
errg errﬁ
154 307 768 154 307 768
iter Matlab NNMF 100 20.6 19.2 17.6 20.6 19.2 17.6
NNMFPACK
B=0 50 233 22.1 20.8 0.226 0.214 0.203
100 17.2 154 13.2 0.159 0.144 0.125
150 14.5 12.4 10.1 0.133 0.112 0.093
200 13.1 10.9 8.5 0.118 0.099 0.078
B=1 50 253 24.0 23.2 242 2.30 2.23
100 18.4 16.8 15.0 1.75 1.60 1.44
150 14.9 13.3 11.3 1.41 1.26 1.08
200 13.3 11.3 9.3 1.26 1.07 0.88
B=15 50 26.3 25.6 24.5 8.10 7.88 7.56
100 19.4 17.7 16.2 5.94 5.45 5.01
150 15.8 14.1 12.3 4.84 4.34 3.80
200 14.0 12.1 10.1 4.32 3.73 3.13
B=2 50 28.2 27.2 26.4 28.2 27.2 26.4
100 20.5 19.1 17.6 20.5 19.1 17.6
150 17.0 15.3 13.6 17.0 15.3 13.6
200 14.9 13.2 11.3 14.9 13.2 11.3

For the MATLAB’s MULT NNMF function and for NNMFPACK using the SDiv with
B =0,1,1.5and 2. MATLAB’s MULT NNMF is adjusted in the same way as for the
previuos comparison (Table 2) and always executes 100 iterations. SDiv is executed
with several iteration values (iter = 50, 100, 150 and 200), and several factorization
inner dimension values, k = 154, 307 and 768, where k = round(min(m, n)/d),
withd = 10, 5 and 2.

For the sake of completeness we offer results for the Frobenius norm error (errp)
and for BDiv error (errg). Obviously, measuring the error in terms of SDiv error gives
better results than in terms of Frobenius norm error, since the algorithm used is specific
for minimizing the BDiv of A and WH.

The results show that the error in NNMFPACK is lower than the MATLAB version
when the number of iterations is higher than certain threshold independently of the
inner dimension k. The difference in the error values between the MATLAB’s MULT
NNMF and any NNMFPACK fB-divergence variation is higher when the number of
iterations increases, as expected.

Figure 2 shows the original picture (Fig. 2a) and the reconstructions from the fac-
torization Areconstructed = WH ~ Aoriginal using MATLAB (Fig. 2b) and NNMFPACK
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=

(€) NNMFPACK, with B = 0, k = 154 and  (d) NNMFPACK, with 8 = 1.0, k = 154 and
iter = 100 iter = 100

(e) NNurPAck, with 8 = 1.5, k = 154 and  (f) NNmrPack, with 8 = 2.0, k = 154 and
iter = 100 iter = 100

(9) NxMFPACK, with 8 = 0, k = 154 and  (h) NNMFPACK, with 8 = 2.0, k = 154 and
iter = 200 iter = 200
Fig. 2 Original picture and reconstructions using MATLAB’s MULT NNMF and NNMFPACK
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(Fig. 2c-h), observing a better subjective reconstruction for NNMFPACK when S is
lower.

The results for 8 = 2 using SDiv with 100 iterations and MATLAB’s MULT NNMF
(100 iterations) are subjectively and objectively similar as shown in Fig. 2b, f and
Table 3. This must be so because BDiv with B = 2 is the same algorithm that NNMF-
PACK’s MLSA and that MATLAB’s MULT NNMF with the baseline adjustment made.
Potential perceived differences come from the way of MATLAB and NNMFPACK ini-
tialize the matrices W and H. When the number of iterations doubles (izer = 200), a
higher quality in the reconstruction is noticeable with better results for 8 = 0 (Fig. 2g)
than for the other extreme, 8 = 2 (Fig. 2h).

Note that the optimal value of 8 in a concrete problem, represented by matrix A,
is problem-dependent. For the case of image reconstruction, used in this paper, the
BDiv approach with 8 = 0 provides the best results since, as it can be in Table 3, the
errors corresponding to 8 = 0 are lower than those corresponding to other values of
B. This may be different for other type of problems represented for a different type of
matrices, or even for random matrices.

4 Conclusions

We have presented an improved numerical library, NNMFPACK, that provides efficient
algorithms to compute the NNMF. More specifically, different metrics (8-divergence)
to assess the quality of the approximation of matrices are incorporated to NNMFPACK.

The design of algorithms presented in this work has been made according to the
specifications of the NNMFPACK library, this is, guided by an efficiency target in
current parallel computers. The features available make it an attractive alternative for
the NNMF resolution in current multi-core and many-core architectures, providing
some interesting performance figures from a computational point of view.

Although we have presented a simple case of image reconstruction application as
a precision example, the library must be considered a generic tool which can be used
in any field where the NNMF decomposition is required.

It is also worth noting that this work will lead to future versions extending current
features such as more efficient algorithms and the treatment of sparse or structured
matrices.
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