
J Supercomput (2015) 71:1297–1317
DOI 10.1007/s11227-014-1361-0

Adaptive multiple-workflow scheduling with task
rearrangement

Wei Chen · Young Choon Lee · Alan Fekete ·
Albert Y. Zomaya

Published online: 13 January 2015
© Springer Science+Business Media New York 2015

Abstract Large-scale distributed computing systems like grids and more recently
clouds are a platform of choice for many resource-intensive applications. Workflow
applications account for the majority of these applications, particularly in science and
engineering. A workflow application consists of multiple precedence-constrained tasks
with data dependencies. Since resources in those systems are shared by many users
and applications deployed there are very diverse, scheduling is complicated. Often, the
actual execution of applications differs from the original schedule following delays
such as those caused by resource contention and other issues in performance predic-
tion. These delays have further impact when running multiple workflow applications
due to inter-task dependencies. In this paper, we investigate the problem of scheduling
multiple workflow applications concurrently, explicitly taking into account scheduling
robustness. We present a dynamic task rearrangement and rescheduling algorithm that
exploits the scheduling flexibility from precedence constraints among tasks. The algo-
rithm optimizes resource allocation among multiple workflows, and it often stops the
influence of delayed execution passing to subsequent tasks. The experimental results
demonstrate that our approach can significantly improve performance in multiple-
workflow scheduling.

W. Chen · Y. C. Lee (B) · A. Fekete · A. Y. Zomaya
School of Information Technologies, The University of Sydney, Sydney, NSW 2006, Australia
e-mail: young.lee@sydney.edu.au

W. Chen
e-mail: wche4135@uni.sydney.edu.au

A. Fekete
e-mail: alan.fekete@sydney.edu.au

A. Y. Zomaya
e-mail: albert.zomaya@sydney.edu.au

123



1298 W. Chen et al.

Keywords Scheduling · Workflow applications · Workflow scheduling ·
Rescheduling

1 Introduction

Large-scale distributed computing systems (LDCSs), such as grids and clouds, have
emerged as an essential infrastructure for large-scale and resource-intensive appli-
cations, particularly in scientific and engineering domains. An important class of
applications, referred to as workflow, is characterized by having each job made up of
tasks with temporal constraints among the tasks, arising for example because some
task needs data or control information produced in earlier tasks of the same job. For
example, scientific workflows in bioinformatics [1] and earthquake studies [2], involve
the orchestration of serial short-duration tasks in data collecting, processing and trans-
ferring. Real-time weather prediction modeling [3] is an application with, in addition,
strict deadlines on task completion.

LDCSs allow great amounts of heterogeneous computing resources, which are
pervasive in our environment, be harnessed and managed cooperatively for a common
objective. LDCSs provide a cost-effective way that uses existing distributed resources
to support a range of computing applications. However, the efficiency of these systems
has become ever serious with the poor utilization of 10 % or even lower in many cases
[4].

There have been many studies on workflow scheduling in LDCSs, e.g., [5–11]. The
most popular ones are list scheduling heuristics, which first rank tasks into a priority
list based on the data dependency, and then select resources for each of them one after
another. A typical example is heterogeneous earliest-finish-time (HEFT) [5], which
schedules each task to the resource that can finish it in the earliest time. The approach
was first designed mainly for tightly coupled heterogeneous computing environments
but it was also applied to loosely coupled systems, such as ASKALON [12]. Several
variants of list heuristics were proposed later, such as group (or level based) heuristics
[6], and critical path-based heuristics [7,8]. When future tasks of a job are allocated to
be run on a resource at a particular time, we say that an advance reservation has been
made; this is a crucial resource provisioning mechanism adopted by many scheduling
algorithms [13–16], especially when QoS guarantees are required [17]. Nevertheless,
they mostly deal with a single workflow at a time without paying much attention to
performance uncertainties.

In this paper, we address the problem of scheduling multiple, concurrent workflow
applications, explicitly taking into account resource efficiency and scheduling robust-
ness. More specifically, we study how to efficiently utilize heterogeneous resources
when multiple workflows are to be concurrently scheduled in the system. This schedul-
ing is much more complicated compared to traditional single workflow scheduling due
primarily to the fact that resources are heterogeneous and shared. Also, to our best
knowledge, there is no existent method to get the accurate performance information on
workflows, such as execution times of tasks and data transfer times. These factors have
motivated us to design scheduling algorithms that effectively deal with performance
uncertainties using rescheduling and task rearrangement techniques.

123



Adaptive multiple-workflow scheduling 1299

This paper significantly extends our previous work [18] with the consideration of
performance uncertainty. Performance uncertainty is especially damaging in workflow
scheduling, since a delay in finishing one task can propagate widely, causing delays
among many jobs and on many resources. For example, if a task in a job finishes later
than expected, the delay may propagate not only to its successor tasks, but also to tasks
of other jobs assigned to those resources of the task and its successor tasks. If nothing
is done to reconsider the schedule, the overall execution will be greatly damaged.

We propose a novel approach of reservation adjustment that applies our reschedul-
ing algorithm [18] to deal with delay arising from inaccuracy in performance informa-
tion. Our approach explicitly takes into account temporal constraints of (scheduled)
workflow tasks and it determines whether influenced reservations could be rearranged
with tasks of other workflow applications. This rearrangement will allow all tasks
run on an appropriate resource instance and thus limiting the delays to scheduled
applications.

Extensive experiments have been conducted to study the performance of our
scheduling approach under different degrees of prediction accuracy. Results show
that our reservation rearrangement algorithm effectively reduces the propagation of
postponement among reservations; therefore, scheduling robustness improves.

The rest of this paper is organized as follows. Section 2 describes the problem of
multiple-workflow scheduling. In Sect. 3, we present our rescheduling with a graph
search algorithm. Section 4 shows how our rescheduling solution is extended to deal
with inaccurate performance prediction. Performance evaluation results are presented
in Sect. 5 followed by related work in Sect. 6. We then draw our conclusion in Sect. 7.

2 Problem description

In this section, we describe the problem of multiple-workflow scheduling. We first give
a brief description of system model and application model, respectively, and then illus-
trate two specific issues in our problem: resource efficiency and scheduling robustness.

2.1 System model

The target system in this study is viewed as a set of heterogeneous computing/resource
sites, each of which consists of a set of resources. Resource sites are loosely coupled,
for example through a wide area network with various network bandwidths (as shown
in Fig. 1). More formally,

S = {R1, R2, . . . , Rn}

where Ri is an autonomous resource site that can take computing tasks independently.
Resources vary in computing capacity (the number of processors, the size of memory
and hard disk), computing power (CPU frequency and internal network bandwidth)
and other resource properties (such as hardware platform, operating system or ser-
vices provided). A resource can run several tasks concurrently if the availability and
computing capacity allow.

123



1300 W. Chen et al.

Computing Site

Computing Site

Computing Site

Computing Site

Computing Site

Computing Site

Data Centre

Fig. 1 A large-scale distributed system

Fig. 2 Two simple DAGs. a Job
A with five tasks. b Job B with
four tasks

4

32

1

5

4

32

(a)

1

(b)

2.2 Workflow application

A workflow application/job consists of precedence-constrained tasks with data depen-
dencies. The execution of these tasks is coordinated in the way that precedence con-
straints are respected. A workflow job can be represented by a directed acyclic graph
(DAG), G = (V, E), where V is a set of tasks and E is a set of directed edges represent-
ing precedence constraints between corresponding tasks. Figure 2 gives two simple
examples of DAGs.

For a given edge from task v to task w, v is defined as w’s predecessor, and w is
defined as v’s successor. A task without any predecessors is defined as entry task and
a task without any successors is defined as exit task. A task is regarded as ready to
run (or simply as a ‘ready task’) when all its predecessor tasks have completed and
transmitted the information needed. Thus, the readiness of each task is determined by

123



Adaptive multiple-workflow scheduling 1301

its predecessors, more specifically the one that completes the communication at the
latest time. More formally, the earliest start time (EST) of a task is defined as:

EST(t, r) = max{FT(ti ) + data(ti , t)/bandwidth(ri , r) : ti ∈ predecessor(t),

ri = resource(ti )},

where FT is the function giving the expected finish time for each task, and communi-
cation (data transmission) time is calculated from the data size and network bandwidth
between corresponding resources.

A task with multiple parent tasks requires synchronization. This synchronization
means that each task has a latest finish time (LFT) calculated by the need to provide
information to each successor in time for that successor to run:

LFT(t, r) = min{ST(t j ) − data(t, t j )/bandwidth(r j , r) : t j ∈ successor(t),

r j = resource(t j )}

where ST is the expected start time. We assume that the structure of a given workflow is
known at the time of job submission, and the execution time of a task can be estimated
using performance modeling/prediction techniques, e.g., [20,21].

2.3 Resource efficiency when scheduling multiple workflows

When a new job arrives, the scheduler decides on where (on which resource) and when
(at which time) each of its tasks is to be executed; that is, an advance resource reserva-
tion (or advance reservation for short) is made for each task for the resource of the need
to have capacity available at the appropriate period. Note that when one workflow job
is scheduled, there are often some tasks of previously submitted jobs waiting for their
predecessors to finish. This paper studies cases where previous reservations should be
changed as the execution proceeds.

Now, consider two workflow jobs A and B, as shown in Fig. 2, submitted succes-
sively to a scheduler for execution over resources R1, R2 and R3. Suppose that from
consideration of critical path [7,8] and estimates of duration of each task and inter-task
communication needs, the scheduler allocates tasks as shown in Fig. 3a. The system
makes advance reservations for these tasks. Then, job B arrives. Due to the resources
that have been reserved for job A, task B3 has to be scheduled after task A2. The best
scheduling that can be done without changing the reservations for task A is shown by
the solid rectangles in Fig. 3b.

However, if task A2 could be rescheduled to a later time slot on another resource,
such as the dashed rectangle in Fig. 3b, then task B3 could start earlier and job B
could finish earlier. An optimized resource allocation is shown in Fig. 3c. Clearly,
although the first schedule of task A2 makes it finish at the earliest time, it becomes a
bad choice when job B arrives. A rearrangement of scheduled tasks can optimize the
resource allocation for both jobs.

123



1302 W. Chen et al.

(a)

A
2

A
3

A
4

R1 R2 R3

(b)

A
2

B
3

A
3

A
4

B
1

B
2

B
4

R1 R2 R3

(c)

A
2

A
3

A
4

B
1

B
2

R1 R2 R3

A
2

A
1

A
5

A
1

A
5

A
1

A
5

B
3

B
4

Fig. 3 Task rescheduling to optimize resource allocations. a The initial scheduling of job A. b Scheduling
job B with regard to job A. c Optimized scheduling after rescheduling task A2

2.4 Broken reservations and delay propagation

An advance reservation is made based on predictions of task execution time and data
transmission time. However, such a reservation may not be always kept as the actual
task execution and/or data transfer may differ from the estimation. We describe a
reservation that cannot be kept as a broken reservation. A broken reservation may
propagate to other reservations due to precedence constraints. In other words, for
a particular broken reservation, if we simply prolong it until the resource becomes
available, other reservations may further need changing. Thus, the broken reservations
must be adjusted if we are to minimize performance degradation such as an increase
of makespan. A more effective way to deal with this issue of broken reservation
is reservation rearrangement that considers the other tasks in the system. Figure 4
illustrates our rearrangement scenario.

Suppose there are tasks scheduled on distributed resource sites and the advance
reservations are shown as Fig. 4a. Among them, task X1, X2 and X3 belong to a
workflow job and need to be executed sequentially. At time t1, a delay in the execution
of X1 is detected. This delay is expected to influence its successor task X2, and the
delay may further pass down to more tasks such as Z1 and X3. However, these delays
can be avoided if task X2 is rescheduled to resource R3 as shown in Fig. 4b.

3 Rescheduling algorithm

For both issues described above, resource efficiency for multiple workflows and
scheduling robustness with broken reservations, we adopt an adaptive rescheduling
mechanism to improve performance or reduce the propagation of delays. In this sec-

123



Adaptive multiple-workflow scheduling 1303

t1

(a)

X
2

X
3

Z
1

Y
1

R1 R2 R3

X
1

Y
2

T
1

(b)

X
2

Z
1

R1 R2 R3

X
1

T
1

Y
2

X
3

Y
1

Fig. 4 Task rescheduling to avoid unnecessary postponement

tion, we present our rescheduling algorithm. Then, in the next section, we will extend
our algorithm with the consideration of broken reservations.

3.1 Task-resource matching

If we take tasks and resources as two disjoint sets, then a scheduling problem becomes
a bipartite matching problem.

For example in Fig. 5a, nodes in part T represent tasks (each belongs to a particular
workflow) and nodes in part R represent resources. For a given task, a resource is
defined to be satisfiable if it meets the task’s resource requirements including comput-
ing and storage capacities. We make every task linked with all its satisfiable resources
in the bipartite graph. So, T1 has one satisfiable resource: R1, and T2 has two: R1 and
R2. An arrow on the line pointing to the task represents a case where the resource is
actually allocated to that task (that is, the appropriate amount of CPUs and memory
is reserved for the task for a specific period of time); the arrow points away from the
task otherwise. In the figure, it shows that T1 and T2 are scheduled on R1 and R2,
respectively, and, T3 is not scheduled at the moment.

To schedule T3, we need to check all its satisfiable resources (R2 in our example)
to get an appropriate time slot during which available resources can be reserved to
meet T3’s requirements. However, if R2 is already too committed for the time period
involved, then we cannot schedule T3 without further changes. Thus, the workflow to
which T3 belongs would need to be either rejected for the execution or the deadline
would be relaxed. Instead, we propose to try to rearrange existing reservations so
that we can place T3 on R2. We scrutinize reservations on R2 if any task can be
rescheduled to satisfy T3’s temporal constraint. In Fig. 5a, we assume that T2 can be
removed from R2 for this purpose. Then, the problem becomes whether T2 can be
rescheduled successfully on another resource instance or time slot without violating

123



1304 W. Chen et al.

1

(a)

2

1

3

1

2

2

1

3

1

2

2

3

1

2

(b) (c)

T R T TR R

Fig. 5 An example of resource allocation rearrangement

its temporal constraint. In our simple case, we assume that R1 has enough resource for
both T1 and T2 and then no more tasks need be removed. This path of rescheduling
tasks can be shown as the dash lines in Fig. 5b. By reversing the direction of these
dash lines, we get a new matching in Fig. 5c, where T3 is scheduled on R2 and T2
shares resource R1 with T1.

3.2 Dynamic search tree

A traditional bipartite graph matching algorithm [22] can find the maximal one-to-one
matching in a bipartite graph. However our problem is more complicated. First, task
scheduling involves many-to-one matching. For example, T2 can share resource R1
with T1. Second, we cannot simply determine whether a task can be matched with (or
scheduled on) a resource in advance: temporal constraints and resource availability
must be considered while these depend on the scheduling of other tasks. Any task
rescheduling will leave different resource availability to others and different temporal
constraints to its predecessors and successors.

We develop a new match searching algorithm based on a dynamic search tree.
Our algorithm adopts the basic ideas from the standard bipartite matching algorithm:
rearranging the matches along an augmenting path, which alternates edges that are
used in the matching and that are not used (as the dash lines shown in Fig. 5b). In
searching for the augmenting path, each step along an edge means that a task is assigned
to a resource by removing another task from it. The removed task then triggers the
next step of replacement. Theoretically, we can remove several tasks from a resource
to make enough room for others. To simplify the computation, we restrict that only
one task is replaced by another in each step of rearrangement that we consider. We
define a tuple:

〈t1, r, t2〉

to represent where a task t1 can be scheduled on one of its satisfiable resources r
by replacing another task t2 that is currently scheduled to r . We call t1 the removed
task (it is removed from scheduling in the last replacement), t2 the replaceable task
(it will be the removed task in the next step), and r the satisfiable resource. For
any removed task, there may be many possibilities of such replacement through dif-
ferent satisfiable resources and alternative tasks on a resource. The algorithm goes

123



Adaptive multiple-workflow scheduling 1305

Fig. 6 A search tree for
augmenting path (a serial of
rearrangements)

……

T0

T1

T2

through each of them until any task can be rescheduled without replacing any other
tasks.

Our search begins from the task that needs to be scheduled. It can be regarded
as a search tree (as shown in Fig. 6) that grows down from removed tasks to their
children: replaceable tasks. The replaceable tasks then become removed tasks and the
search tree extends to one lower level of replaceable tasks. A search path along the
tree represents a sequence of rearrangements in matching. For example, the bold lines
in the figure represent that T0 can be scheduled by replacing T1 on the resource where
T1 is currently matched, and T1 can be rescheduled by replacing T2 on the resource
where T2 is currently matched. If T2 is rescheduled without replacing any other task,
this path will be an augmenting path that we are searching for.

The search tree is built up dynamically during the search process. When the search
reaches a task node along a path, we calculate the current status of resource availability
(after a sequence of rearrangements among the concerned resources on the path) and
the task’s time slot boundary according to the current scheduling of its predecessors and
successors. Then, we determine whether the task can be rescheduled on an available
resource, if not, we determine which tasks can be replaced in the next step to make
room. The search tree is growing level by level as the search goes deep. When it
reaches the deepest task along a branch, the search tracks back to the upper level. At
the moment, the rearrangement along the retreated path must also be rolled back, and
then search continues after a new level of task nodes is calculated out along another
branch.

3.3 Search algorithm

Our rescheduling algorithm (Fig. 7) adopts a depth-first-search in the process to build
the search tree and to look for an augmenting path. In each step of search, the algorithm
first checks whether it is going deeper along a path or backtracking to an upper level
(line 7). If it is backtracking, the rearrangements along the retreated path are also rolled
back (lines 9 and 10) to restore the former scheduling status. Search path goes forward
by task replacing in line 12, and new scheduling is calculated according to the current
status of task-resource matching.

In our algorithm, we restrict the reschedulings we offer for a task to those that are
within its time slot boundary (between EST and LFT), so that we avoid rescheduling
the entire workflow (more precisely, predecessors and successors of the task). For

123



1306 W. Chen et al.

NOTES:
rearrangement: tuple<t1, r, t2>, refer to section 3.2
top(S): the top element in stack S
task(r): all tasks scheduled on resource r
resource(t): all satisfiable resources of task t
schedulable(t, r):

check whether task t can be scheduled on resource r
within time slot boundary EST(t, r) and LFT(t, r), refer to section 2.2

schedulable(t, r, t’):
check whether task t can be scheduled on resource r
by removing task t’

Input a task t needs to be scheduled
Output augmenting path (new scheduling of tasks)

1. T = an empty stack of rearrangement   // dynamic search tree
2. P = an empty stack of rearrangement   // augmenting path
3. push(T, <null, null, t>)   // initialize search tree with inputted task
4.  while (T is not empty) {
5. x = pop(T)
6. if (x.t1 != null) { // if x is not root node
7. while (x.t1 != top(P).t2) { // backtracking?
8. // if backtracking, roll back rearrangement along retreated path
9. y = pop(P)
10. y.t2 replace y.t1 on y.r
11. }
12. x.t1 replace x.t2 on x.r // make rearrangement
13. }
14. push(P, x)               // extend augmenting path
15. for (each r in resource(x.t2)) {
16. if (schedulable(x.t2, r)) {
17. push(P, <x.t2, r, null>)
18. return P
19. }
20. else {
21. for (each t’ in task(r)) {
22. if (schedulable(x.t2, r, t’) push(T, <x.t2, r, t’>)
23. }
24. }
25. }
26. }
27. return scheduling failed

Fig. 7 Task rescheduling algorithm

example, the rescheduling of task A2 in Fig. 3 does not require task A1 or A5 to also
be rescheduled for the temporal constraints.

We adopt a heuristic to trim the search tree so that the time complexity is affordable.
We restrict that each task appears at most once in the search tree. Thus, in the worst
case, our search goes through n nodes, where n is the number of tasks scheduled in
the system. In each step of search, all the satisfiable resources of a task are checked
for rescheduling; hence, the time complexity is O(sn), where s is the average number
of satisfiable resources for each task.

4 Saving broken reservations

Advance reservation is an important resource provisioning mechanism widely adopted
in many scheduling algorithms [13–17]. Our algorithm makes resource reservations

123



Adaptive multiple-workflow scheduling 1307

resource capacity

T1

T2

Time

R
es

ou
rc

es
resource capacity

T1
T2

Time

R
es

ou
rc

es

resource capacity

T1
T2

T3

Time

R
es

ou
rc

es

(a) (b) (c)

Fig. 8 An example of task assignment in a resource site. a Resource reservations for task T1 and T2.
b Reservation for task T2 is postponed. c Resource allocation if task T3 is rescheduled on the resource

for scheduled tasks that may belong to multiple workflows and improves resource
efficiency by rearranging reservations (or in other words, rescheduling) when new
tasks arrive. However, the choice of advance reservation is based on the prediction of
task execution time and data transmission time, which are often not accurate. Broken
reservations are rather common and should be explicitly dealt with to keep scheduling
consistency in the system.

4.1 Reservation compatibility in rescheduling

Inaccurate performance prediction, specifically underestimated running time, will pro-
duce delays in task execution. These unexpected delays may use resources that have
been reserved for other tasks and, therefore, break those reservations. One possible
approach to resolve the problem could be by postponing the start time of all broken
reservations (including those broken by broken reservations) by a fixed time, for exam-
ple, introducing one hour postponement if delay is one hour. Rather, we advocate the
rescheduling of the task, as described in Sect. 2.4, to stop postponement propagating
to more and more reservations.

There is one issue that must be considered when rescheduling to save broken reser-
vations: the rescheduled task must not induce any extra postponement to other reser-
vations, because that may offset the benefit we obtain from rescheduling. We illustrate
the issue with an example in Fig. 8.

Consider a resource instance which is reserved for two tasks as shown in Fig. 8a.
The reservations are compatible as the total required computation capacity, such as
the size of memory and the number of processors, meets the overall capacity of the
resource instance. Now suppose that a delay in execution breaks a list of reservations
among these being the reservation for task T2. To save these reservations, we try to
reschedule corresponding tasks. However, suppose that rescheduling of T2 failed and
the reservation has to be postponed for a certain time, as shown in Fig. 8b. Then, we
continue to reschedule other tasks in the list and our algorithm may find that task T3
could be rescheduled on the resource as shown in Fig. 8c. Although the reservations
stay fit within the capacity, it could become a problem if reservation for task T1
would be postponed after this rescheduling: that would force T2’s reservation to be
postponed again. This is because the rescheduled task T3 used the resource capacity
that originally can run tasks T1 and T2 concurrently. Delays are quite possible from

123



1308 W. Chen et al.

inaccurate performance prediction. We must avoid excessive postponement occurring
to one reservation because it compromises the benefit we obtain from rescheduling.

To avoid such situations, we revise our algorithm in checking whether a resched-
uled task is compatible with all others on the resource instance. We first hypothetically
postpone all un-postponed reservations in the concerned time period and calculate
whether the resource allocation is still compatible. In the above example of Fig. 8, we
first hypothetically postpone task T1 by one unit of time, and then we will find that
the resource allocation would exceed the capacity if task T3 would be rescheduled on
it. So, we consider that rescheduling T3 as illustrated would not be compatible, and
we must search for another resource instance or time slot for task T3 in the reschedul-
ing. If the resource allocation is compatible when all un-postponed reservations are
hypothetically postponed, it must be compatible when arbitrary reservations are really
postponed after the rescheduling.

4.2 Algorithm description

Our rescheduling algorithm is extended to deal with broken reservations. We adopt
periodic polling to monitor the actual progress in task execution and data transmission.
While earlier completion of task execution and data transmission can be easily dealt
with existing techniques, such as back-fill algorithms [23,24], our focus is the counter
case when such completion is (being) delayed, particularly affecting other reservations.

At a polling point, if a delay in task execution is detected we need to extend the
length of reservation; if a delay in data transmission is detected we have to postpone the
start time of the task. We set the time length (in extending or postponing reservation)
equal to the interval of two polling points. If the delay is not over within that time,
it will be detected and adjusted again at the next polling point. A higher polling rate
would make these adjustments in task finish/start time more accurate, but with the
expense of higher overhead on rescheduling.

After detecting all delays in task start and finish time, we calculate which reserva-
tions are influenced by these delays. The influenced reservations are collected into two
lists: one (PList) is for those that can only be postponed, such as the ones that have
received data at the resource site (we do not consider to re-transfer data in reschedul-
ing), and the other (RList) is for those that could be rescheduled to a different resource.
We use these two lists in our algorithm, shown in Fig. 9.

Reservation adjustment begins from the first list (PList). The new allocation of
each postponed reservation may further influence others, on the same resource site or
among the postponed task’s successors. These influenced reservations are appended
to the lists based on whether they can be rescheduled or not. When all the reservations
that have to be postponed have been adjusted, the algorithm begins to reschedule the
reservations in the other list.

We use the algorithm described in Sect. 3, with stricter checking on reservation
compatibility as discussed in Sect. 4.1. If rescheduling of a task fails, its original
reservation will be postponed. The process continues until all reservations in both lists
are adjusted appropriately.

123



Adaptive multiple-workflow scheduling 1309

Input PList = reservations have to be postponed
RList = reservations could be rescheduled

while (PList or RList is not empty) {
for (each reservation in PList) {

postpone reservation by one unit of time
if (postponement breaks other reservations)

add them to PList or RList
}
for (each reservation in RList) {

Reschedule reservation
if (rescheduling fails) {

add reservation to PList
break

}
}

}

Fig. 9 Reservation adjustment

Table 1 Experimental setup

Resource Workflow

Setting Normalized value range Parameter Range of values

Computing capacity 1–10 |V | 20–100

Computing speed 1–8 CCR 0.1–10

Network bandwidth 1–8 α 0.5–2.0

5 Performance evaluation

We have conducted extensive simulation experiments to evaluate the efficacy of our
algorithm. This section details experimental settings and scheduling scenarios, and
presents results.

5.1 Experimental settings

In this section, we describe characteristics of computing resources and workflow jobs
followed by the model we use for the inaccuracy of performance prediction.

5.1.1 Computing resources

We have simulated a virtual system consisting of 1,000 heterogeneous resource sites.
Each resource is configured with different settings to simulate necessary computation
features that are concerned in task scheduling. In particular, we virtualize each resource
site as a tuple (computing capacity, computing power, network bandwidth); these
elements are assigned with normalized values (Table 1).

123



1310 W. Chen et al.

Computing capacity is a parameter that describes the volume of a resource site.
It is usually represented by the number of processors (CPUs or Cores) and the size
of memory. We assume that at any time a certain number of processors and memory
blocks are exclusively allocated to a task. Therefore, computing capacity determines
how many tasks (each has a specific requirement on the number of processors and the
size of memory etc.) can concurrently run on a resource site.

Computing speed represents the comprehensive performance of a resource site. It
is often reflected by the frequency of CPU, bandwidth of data bus and I /O throughput
of memory and disk. This parameter is used to determine the execution time of a task
on a given resource site.

Network bandwidth defines the performance of external network that connects
resource sites. Our target system simulates resource sites that are linked through Inter-
net and, therefore, they are fully connected but the bandwidths vary among the links. In
simulations, each resource site is assigned with a bandwidth value but the bandwidth
of a link is the minimal value of the two resource sites. Network bandwidth determines
transmission time when data are transferred from one resource site to another.

There are other resource properties that may be considered in scheduling. For
example, tasks may require specific operating system, software or hardware devices be
installed on the target resource. As defined in Sect. 3.1, these properties determine the
satisfiable resources of a task. In our experiments, we configure properties of resource
sites and task requirements in the way that the number of satisfiable resources for each
task is in a Poisson distribution, and on average each task has 50 % of total resource
sites in the system as its satisfiable resources.

5.1.2 Workflow jobs

Each workflow (DAG) is produced with varying parameters including the total number
of tasks |V |, the communication to computation ratio CCR and shape factor α (that
reflects the parallelism degree of a job). The value range of these parameters in our
experiment is summarized in Table 1.

We randomly select each parameter value from the appropriate range when pro-
ducing workflow jobs. Therefore, the jobs are various in size and parallelism degree.
Some workflows are compute intensive and others are communication intensive.

We measure the performance of our algorithm when workflow jobs arrive sequen-
tially; however, one may arrive before the previous ones have completed, and thus
workflow jobs run concurrently in the system. The number of jobs arriving in a unit of
time is Poisson distribution. By giving different arriving intervals (the mean value of
the distribution), we compare the performance of scheduling algorithm under different
pressure of resource contention. We use an abstract time unit in calculating workflow
makespan and job arriving interval. In practice, this unit could be hour or minute, but
this does not affect the experimental results.

Each task in a workflow job has a specific requirement on the number of processors
and the size of memory. We normalize this as a number between one and eight to
simulate various requirements on computing capacity. In practice, this requirement
can be determined in advance according to the internal structure of task (parallel
processes/threads, data buffer usage, etc.). We assign a number workload to each task

123



Adaptive multiple-workflow scheduling 1311

that determines its execution time on a given resource site (as workload divided by
computing speed). The length of task execution time distributes from 10 to 800 (units
of time) in our experiments. A task may also require input data from its predecessors.
We assume that the data size is known when scheduling and the transmission time is
calculated from the network bandwidth between the two resource sites. There are also
local jobs arriving randomly in each resource site. They are scheduled on the earliest
time slots available on the resource site, but they cannot preempt scheduled workflow
tasks. In our experiments, we set local jobs to take 30 % of resource capacity.

5.1.3 Inaccuracy in prediction

To model the inaccuracy in performance predictions, we introduce an inaccuracy ratio
as: (predicted − actual)/actual. We let the value of this inaccuracy ratio be a normal
distribution (with μ = 0), both for predicting task execution time and data transmission
time. In the meantime, we consider experiments with different standard deviations of
the distribution, to simulate different degrees of prediction inaccuracy; the standard
deviations we use are 0.1, 0.15 and 0.2.

Given the heterogeneous characteristics of the system, the predictions of the same
task on different resource sites would have independently chosen inaccuracy ratios.
Based on all these potentially inaccurate predictions, we make an advance reservation
for each scheduled task that forms part of a newly submitted job.

5.2 Scheduling scenarios

We consider two different scenarios of multiple-workflow scheduling in our evaluation
study. The distinction is based on whether workflow jobs have deadlines. The main
objective when scheduling workflows with deadline is to accommodate more jobs (high
throughput), whereas the objective of scheduling workflow jobs without deadline is
to minimize the completion time (low makespan). Our rescheduling approach helps
improve the scheduling performance for multiple workflow jobs in both scenarios.

5.2.1 Scenario 1: rescheduling for high throughput meeting deadlines

In this scheduling scenario, each workflow job comes with a deadline. That may be a
requirement from users or an agreement between users and resource providers. In the
experiments, we set a deadline for each workflow job according to task execution time
on the average computing speed. By adjusting workflow deadlines, we intentionally
make some jobs more urgent than others.

We guarantee a workflow job’s deadline by scheduling each of its tasks within a
task deadline. The task deadline is calculated according to the workload proportions
of tasks and edges. During the scheduling, each task is assigned to a resource instance
in which it can be finished before the deadline. This assignment may need to rearrange
previously scheduled tasks to leave enough computing capacity for the newly arrived
ones. But if this deadline-based scheduling fails, our approach will turn to the tradi-
tional greedy algorithm that schedules each task to achieve the earliest finish time.

123



1312 W. Chen et al.

The calculated earliest finish time (EFT) may lie beyond the deadline of the job. In
that case, the job has to be rejected. We have discussed the details of the scheduling
approach in [18].

5.2.2 Scenario 2: rescheduling for low makespan

In this scenario, we schedule each task in the EFT to minimize makespan. We employ
our task rearrangement approach for a new task to finish earlier without influencing
the makespan of other scheduled jobs.

When a task is to be scheduled, our approach first calculates the EFT it could have,
based on the current resource reservations (or the current schedule). Our approach
further calculates whether it could be finished even earlier than the initial EFT if any
other task would be removed from the schedule. We collect a list of such tasks: by
removing any of them, the task under scheduling can be finished earlier than its ‘earliest
finish time’. Then, our rescheduling algorithm is employed to check whether any of
these removed tasks can be rescheduled successfully. For exit tasks, the rescheduling
must not extend the makespan of the job. If the rescheduling fails on all candidate tasks,
the task under scheduling will be scheduled on the EFT calculated in the first step.

5.3 Experimental results

Our experiments start by evaluation of four existing workflow scheduling algorithms:
HEFT [5], DCP-G [7], DAGMap [8] and meta-heuristic GRASP [9]. In particular,
we compared the latter three against HEFT. We chose HEFT as a reference algorithm
due to its simplicity and performance. We apply advance reservation to these algo-
rithms for scheduling multiple workflows. For each algorithm, the average makespan
is measured when a certain number of jobs are concurrently scheduled in the system.
Our experiment covers situations from high resource availability to intense resource
contention.

We calculate the makespan speedup ratio of each algorithm (DCP-G, DAGMap and
GRASP) to HEFT. Figure 10 shows that although these efforts can shorten makespan
of workflows (compared against HEFT), the performance advantage degrades quickly
in multiple-workflow scheduling. Their performance is quite similar as that of HEFT
under high resource contention among workflows. Therefore, we will compare the
performance of our solution (DGR) against that of HEFT in different scenarios.

5.3.1 Performance in guaranteeing workflow deadline

In this series of experiments, each workflow job comes with a deadline, and the sched-
uler needs to ensure that accepted jobs are finished before their deadlines. For the
purpose of experiment, we make some jobs be more urgent in execution than others.
We introduce a parameter: urgency in producing workflow jobs. It is a ratio: (dead-
line − makespan)/makespan, where predicted makespan is calculated on the average
computation/communication speed of the target system. The value of this parameter
is chosen from a standard normal distribution among all submitted workflow jobs.

123



Adaptive multiple-workflow scheduling 1313

Makespan Speedup (against HEFT)

0%

2%

4%

6%

8%

0 50 100 150 200 250 300

Number of Concurrent Workflow Jobs

GRASP
DCP-G
DAGMap

Fig. 10 Performance under multiple-workflow scheduling

As each submitted workflow job is constrained by its deadline, resources are shared
and their capacity is limited; the admission of the job is determined based on the
“schedulability” of that job. In an ideal situation, the predictions on task execution time
and data transmission time are accurate and all accepted workflow jobs will be finished
before their deadlines as expected. However, in practice, the inaccuracy in predictions
breaks this premise. One way to deal with this QoS degradation is overestimation
(or pessimistic estimation with some padded value). Here, the predicted time is more
likely to be longer than the actual one for the probability of delay to be reduced. This
method has a side effect on the scheduling performance: it reduces acceptance rate
and resource utilization, because a larger time slot for each task is reserved.

In the experiment, we apply overestimation according to the degrees of prediction
inaccuracy (that were chosen with standard deviation 0.1, 0.15 or 0.2) to keep the dead-
line satisfiability (percentage of accepted jobs that really finish before their deadlines)
at more than 95 %. Under such a situation (achieving the same deadline satisfiability),
the performance of our algorithm DGR is compared against HEFT in acceptance rate
and resource utilization. We also measure the running time of different algorithms for
scheduling and rescheduling (handling broken reservation).

As can be seen in Fig. 11, the performance of DGR is more robust in terms both of
acceptance rate and resource utilization than HEFT. In particular, DGR obtains 10–
20 % higher acceptance rate and resource utilization than HEFT. With the consideration
of workflow job running time, milliseconds’ increasing in scheduling and rescheduling
running time is ignorable. It takes less time when prediction inaccuracy is high, because
more overestimation is required in that case to obtain the same deadline satisfiability.
The overestimation relaxes the resource contention in scheduling.

5.4 Performance in minimizing workflow makespan

In this set of experiments, all the submitted jobs are accepted and scheduled in the
minimal makespan. We measure the average makespan of workflow jobs scheduled
by our algorithm and HEFT when the resource contention scales up.

Figure 12a shows the average makespan of jobs scheduled by our algorithm
under different predication inaccuracy levels. Although the inaccuracy in predictions

123



1314 W. Chen et al.

Acceptance Rate
inaccuracy 0.1

20%

40%

60%

80%

100%

0.6 0.8 1.0 1.2 1.4
Average Arriving Interval of Workflow Jobs

DGR HEFT

Acceptance Rate
inaccuracy 0.15

20%

40%

60%

80%

100%

0.6 0.8 1.0 1.2 1.4

Average Arriving Interval of Workflow Jobs

DGR HEFT

Acceptance Rate
inaccuracy 0.2

20%

40%

60%

80%

100%

0.6 0.8 1.0 1.2 1.4

Average Arriving Interval of Workflow Jobs

DGR HEFT

Resource Utilization
inaccuracy 0.1

20%

40%

60%

80%

100%

0.6 0.8 1.0 1.2 1.4

Average Arriving Interval of Workflow Jobs

DGR HEFT

Resource Utilization
inaccuracy 0.15

20%

40%

60%

80%

100%

0.6 0.8 1.0 1.2 1.4
Average Arriving Interval of Workflow Jobs

DGR HEFT

Resource Utilization
inaccuracy 0.2

20%

40%

60%

80%

100%

0.6 0.8 1.0 1.2 1.4
Average Arriving Interval of Workflow Jobs

DGR HEFT

Algorithm Running Time
inaccuracy 0.1

0

5

10

15

20

25

0.6 0.8 1.0 1.2 1.4

Average Arriving Interval of Workflow Jobs

pe
r j

ob
 (m

s)

DGR HEFT

Algorithm Running Time
inaccuracy 0.15

0

4

8

12

16

0.6 0.8 1.0 1.2 1.4

Average Arriving Interval of Workflow Jobs

pe
r j

ob
 (m

s)

DGR HEFT

Algorithm Running Time
inaccuracy 0.2

0

4

8

12

16

0.6 0.8 1.0 1.2 1.4

Average Arriving Interval of Workflow Jobs
pe

r j
ob

 (m
s)

DGR HEFT

Fig. 11 Performance comparison between DGR and HEFT under different degrees of prediction inaccuracy

(a) (b) (c)

Average Makespan

50

100

150

200

250

300

1.0 1.2 1.4 1.6 1.8

Average Arriving Interval of Workflow Jobs

U
ni

t o
f T

im
e

inaccuracy 0.20
inaccuracy 0.15
inaccuracy 0.10
accurate prediction

Makespan Speedup (against HEFT)

0%

10%

20%

30%

40%

1.0 1.2 1.4 1.6 1.8

Average Arriving Interval of Workflow Jobs

inaccuracy 0.20
inaccuracy 0.15
inaccuracy 0.10
accurate prediction

Algorithm Running Time

0
100
200
300
400
500
600
700
800

1.0 1.2 1.4 1.6 1.8

Average Arriving Interval of Workflow Jobs

pe
r j

ob
 (m

s)

inaccuracy 0.20
inaccuracy 0.15
inaccuracy 0.10
accurate prediction

Fig. 12 Performance of our algorithm in minimizing workflow makespan

increases makespan, the impact of such inaccuracy on our algorithm is relatively less
than HEFT, since our algorithm delivers a higher degree of speedup as prediction
inaccuracy increases (as shown in Fig. 12b). Figure 12c gives the average running
time of our algorithm. As no overestimation is applied in this scenario, much time is
spent on saving broken reservations, especially when prediction inaccuracy is high.
This scheduling overhead can be easily justified by performance benefits (makespan)
and the fact that workflow jobs may run hours or days.

6 Related work

Although there have been extensive studies on workflow scheduling, only a small
number of them explicitly deal with scheduling of multiple, concurrent workflows
(e.g., [13,25–28]). Zhao and Sakellariou [25] convert the problem of multi-workflow
scheduling into a single workflow scheduling problem by merging several workflows.
However, this approach becomes less effective when workflows constantly arrive due

123



Adaptive multiple-workflow scheduling 1315

to its application to static scheduling. Yu and Shi [26] proposed an approach that
dynamically prioritizes all ready tasks of different workflows. In particular, the work
in [26] schedules workflows in a best effort manner without considering QoS require-
ments, such as workflow deadline. As the approach in [26] prioritizes small jobs, it
is subject to starvation if there are many small jobs arriving constantly. Decker and
Schneider [13] apply HEFT to multiple-workflow scheduling with advance reserva-
tions; this is the reference algorithm in this paper. Mao and Humphrey [27] deal with
multiple workflows constantly arriving in some pattern, stable, cyclic/bursting, grow-
ing and on-and-off. The work uses a load vector to consolidate tasks to minimize
#resources, or instances in Amazon EC2. The instance acquisition and release are
dynamically done to minimize cost without breaching application deadlines. Malawski
et al. [28] study the efficiency of executing multiple scientific workflows (termed
“workflow ensembles”) on public clouds under cost and deadline constraints. The
authors developed a set of algorithms to increase the cost to performance ratio and
evaluated the effectiveness of these algorithms with a broad range of budget and dead-
line constraints. These algorithms, however, are not explicitly designed to deal with
inaccuracy in performance prediction.

The prediction accuracy of task execution time and data transmission time is vital
for scheduling performance and QoS support. Extensive efforts have been made on
this matter including [29,30]. Ali et al. [29] mathematically described a general pro-
cedure that first identifies performance features and perturbation parameters, and then
analyses the impact of perturbation parameters on the performance features. In a later
study in [30], they further developed a mathematical model to compute whether a
resource allocation can probabilistically guarantee a given level of QoS. Despite these
results, accurate prediction is still very rare in practice.

Shi et al. [31] investigated a bi-objective scheduling problem aiming to minimize
the makespan and maximize the robustness for workflow schedules. Their study is
based on an intuition that the expected makespan of a workflow job is stable if tasks
are scheduled with some slacks as cushion to prediction errors. As achieving schedule
robustness with slacks and minimizing makespan are two conflicting objectives, they
developed a genetic algorithm, by which users can search for a better balance between
the two performance metrics.

There are also studies that considered rescheduling in responding to the uncer-
tainty of Grid environment. The work in [11,32] adopts a policy that recalculates
the schedules of all unexecuted tasks whenever the execution delay will affect the
makespan of the whole job. The studies in [33,34] proposed a rescheduling strategy
for workflow jobs when a new resource is discovered or the performance of resource
changes. Unlike our DGR algorithm, these approaches reschedule all unexecuted tasks
whenever a change in the system occurs. This is less appealing for multiple-workflow
scheduling, especially when resource contention is high.

7 Conclusion

In this paper, we have addressed multiple-workflow scheduling incorporating an effi-
cient rescheduling heuristic with the support of task rearrangement. The schedul-

123



1316 W. Chen et al.

ing of workflow applications is complicated by precedence constraints of tasks and
the dynamic and heterogeneous nature of distributed resources across multiple sites.
Resource contention among concurrent workflows makes this scheduling problem
even more difficult hindering the effective utilization of resources. Our reschedul-
ing mechanism exploits scheduling flexibility of workflow applications to optimize
resource allocation. Our study has explicitly considered the uncertainty in resource
performance prediction that significantly impacts scheduling robustness. Evaluation
showed scheduling performance is greatly improved by our rescheduling approach
even under a range of degrees of prediction inaccuracy.

Acknowledgments The work of A. Zomaya is supported by the Australian Research Council Discovery
Grant DP1097111. This paper revises and incorporates material from [18,19].

References

1. Oinn T et al (2004) Taverna: a tool for the composition and enactment of bioinformatics workflows.
Bioinformatics 20(17):3045–3054

2. Maechling P et al (2005) Simplifying construction of complex workflows for non-expert users of
the Southern California Earthquake Center community modeling environment. ACM SIGMOD Rec
34(3):24–30

3. Plale B et al (2005) Towards dynamically adaptive weather analysis and forecasting in LEAD. In:
Proceedings of int’l conf. on computational science, workshop on dynamic data driven applications,
pp 624–631

4. Greenberg A, Hamilton J, Maltz DA, Patel P (2008) The cost of a cloud: research problems in data
center networks. ACM SIGCOMM Comput Commun Rev 39(1):68–73

5. Topcuoglu H, Hariri S, Wu M (2002) Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans Parallel Distrib Syst 13(3):260–274

6. Mandal A et al (2005) Scheduling strategies for mapping application workflows onto the grid. In:
Proceedings of IEEE int’l symp. on high performance distributed computing, pp 125–134

7. Rahman M, Venugopal S, Buyya R (2007) A dynamic critical path algorithm for scheduling scientific
workflow applications on global grids. In: Proceedings of IEEE int’l conf. on e-science and grid
computing, pp 35–42

8. Cao H, Jin H, Wu X, Wu S, Shi X (2008) DAGMap: efficient scheduling for DAG grid workflow job.
In: Proceedings of ACM/IEEE int’l conf. on grid computing, pp 17–24

9. Blythe J et al (2005) Task scheduling strategies for workflow-based applications in grids. In: Proceed-
ings of IEEE int’l symp. on cluster computing and the grid, pp 759–767

10. Yu J, Kirley M, Buyya R (2007) Multi-objective planning for workflow execution on grids. In: Pro-
ceedings of IEEE/ACM int’l conf. on grid computing, pp 10–17

11. Lee YC, Subrata R, Zomaya AY (2009) On the performance of a dual-objective optimization model
for workflow applications on grid platforms. IEEE Trans Parallel Distrib Syst 20(9):1273–1284

12. Fahringer T et al (2005) ASKALON: a tool set for cluster and grid computing. Concurr Comput Pract
Exp 17(2–4):143–169

13. Decker J, Schneider J (2007) Heuristic scheduling of grid workflows supporting co-allocation and
advance reservation. In: Proceedings of IEEE int’l symp. on cluster computing and the grid, pp 335–
342

14. Wieczorek M et al (2006) Applying Advance reservation to increase predictability of workflow exe-
cution on the grid. In: Proceedings of IEEE international conference on e-science and grid computing,
pp 82–90

15. Smith W, Foster I, Taylor V (2000) Scheduling with advanced reservations. In: Proceedings of IEEE
international symposium on parallel and distributed processing, pp 127–132

16. Curino C et al (2014) Reservation-based scheduling: if you’re late don’t blame us!. In: Proceedings of
ACM symp. on cloud, computing, pp 1–14

123



Adaptive multiple-workflow scheduling 1317

17. Majumdar S (2009) The any-schedulability criterion for providing QoS guarantees through advance
reservation requests. In: Proceedings of IEEE/ACM international symposium on cluster computing
and the grid, pp 490–495

18. Chen W, Fekete A, Lee YC (2010) Exploiting Deadline Flexibility in Grid Workflow Rescheduling”
deadline flexibility in grid workflow rescheduling. In: Proceedings of ACM/IEEE int’l conf. on grid
computing, pp 105–112

19. Chen W (2012) High performance multiple-workflow scheduling using task rearrangement. PhD thesis,
University of Sydney

20. Smith W, Foster I, Taylor V (2004) Predicting application run times with historical information. J
Parallel Distrib Comput 64(9):1007–1016

21. Duan R, Nadeem F, Wang J, Zhang Y, Prodan R, Fahringer T (2009) A hybrid intelligent method for
performance modeling and prediction of workflow activities in grids. In: Proceedings of IEEE int’l
symp. on cluster computing and the grid, pp 339–347

22. Kleinberg J, Tardos E (2006) Algorithm design. Pearson/Addison-Wesley, USA
23. Mu’alem AW, Feitelson DG (2001) Utilization, predictability, workloads, and user runtime estimates

in scheduling the IBM SP2 with backfilling. IEEE Trans Parallel Distrib Syst 12(6):529–543
24. Netto MAS, Buyya R (2008) Rescheduling co-allocation requests based on flexible advance reserva-

tions and processor remapping. In: Proceedings of IEEE/ACM int’l conf. on grid computing,break pp
144–151

25. Zhao H, Sakellariou R (2006) Scheduling multiple DAGs onto heterogeneous systems. In: Proceedings
of the 15th heterogeneous computing workshop

26. Yu Z, Shi W (2008) A planner-guided scheduling strategy for multiple workflow applications. In:
Proceedings of int’l conf. on parallel processing-workshops, pp 1–8

27. Mao M, Humphrey M (2011) Auto-scaling to minimize cost and meet application deadlines in cloud
workflows. In: Proceedings of 2011 int’l conf. for high performance computing, networking, storage
and analysis (SC), pp 49:1–49:12

28. Malawski M, Juve G, Deelman E, Nabrzyski J (2012) Cost-and deadline-constrained provisioning for
scientific workflow ensembles in iaas clouds. In: Proc. of int’l conf. on high performance computing,
networking, storage and analysis, p 22

29. Ali S, Maciejewski AA, Siegel HJ, Kim J-K (2004) Measuring the robustness of a resource allocation.
IEEE Trans Parallel Distrib Syst 15(7):630–641

30. Shestak V, Smith J, Maciejewski AA, Siegel HJ (2008) Stochastic robustness metric and its use for
static resource allocations. J Parallel Distrib Comput 68(8):1157–1173

31. Shi Z, Jeannot E, Dongarra JJ (2006) Robust task scheduling in non-deterministic heterogeneous
computing systems. In: Proceedings of IEEE int’l conf. on cluster computing, pp 1–10

32. Sakellariou R, Zhao H (2004) A low-cost rescheduling policy for efficient mapping of workflows on
grid systems. Sci Program 12(4):253–262

33. Yu Z, Shi W (2007) An adaptive rescheduling strategy for grid workflow applications. In: Proc. of
IEEE int’l symp. on parallel and distributed processing

34. Zhang Y, Koelbel C, Cooper K (2009) Hybrid re-scheduling mechanisms for workflow applications
on multi-cluster. In: Proc. of IEEE int’l symp. on cluster computing and the grid, pp 116–123

123


	Adaptive multiple-workflow scheduling with task rearrangement
	Abstract
	1 Introduction
	2 Problem description
	2.1 System model
	2.2 Workflow application
	2.3 Resource efficiency when scheduling multiple workflows
	2.4 Broken reservations and delay propagation

	3 Rescheduling algorithm
	3.1 Task-resource matching
	3.2 Dynamic search tree
	3.3 Search algorithm

	4 Saving broken reservations
	4.1 Reservation compatibility in rescheduling
	4.2 Algorithm description

	5 Performance evaluation
	5.1 Experimental settings
	5.1.1 Computing resources
	5.1.2 Workflow jobs
	5.1.3 Inaccuracy in prediction

	5.2 Scheduling scenarios
	5.2.1 Scenario 1: rescheduling for high throughput meeting deadlines
	5.2.2 Scenario 2: rescheduling for low makespan

	5.3 Experimental results
	5.3.1 Performance in guaranteeing workflow deadline

	5.4 Performance in minimizing workflow makespan

	6 Related work
	7 Conclusion
	Acknowledgments
	References


