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Abstract Adaptive deadlock-free routing mechanisms are required to handle variable
traffic patterns in dragonfly networks. However, distance-based deadlock avoidance
mechanisms typically employed in Dragonflies increase the router cost and complexity
as a function of the maximum allowed path length. This paper presents on-the-fly
adaptive routing (OFAR), a routing/flow-control scheme that decouples the routing
and the deadlock avoidance mechanisms. OFAR allows for in-transit adaptive routing
with local and global misrouting, without imposing dependencies between virtual
channels, and relying on a deadlock-free escape subnetwork to avoid deadlock. This
model lowers latency, increases throughput, and adapts faster to transient traffic than
previously proposed mechanisms. The low capacity of the escape subnetwork makes it
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prone to congestion. A simple congestion management mechanism based on injection
restriction is considered to avoid such issues. Finally, reliability is considered by
introducing mechanisms to find multiple edge-disjoint Hamiltonian rings embedded
on the dragonfly, allowing to use multiple escape subnetworks.

Keywords Interconnection network · Dragonfly network · OFAR · Adaptive
routing · Deadlock avoidance

1 Introduction

This paper presents an OFAR: On the Fly Adaptive Routing for dragonfly networks.
Dragonflies [21] have been proposed as a cost-efficient solution for large-scale inter-
connection networks. A dragonfly is organized in groups of routers. The interconnec-
tion between groups employs optical global links. Routers within groups are connected
using short local links, typically electrical. The topologies of the local and global inter-
connects are typically low-diameter direct topologies that exploit high-radix routers.
For example, the IBM PERCS Interconnect [1] employs an all-to-all topology (com-
plete graph, Kx ) in both the local and global interconnects, whereas the Cray XC30
(codenamed “Cascade”, [7]) employs a complete graph for the global interconnect
and a K16 × K6 topology within groups (where × represents the cartesian product of
graphs). For the rest of the paper we refer to the specific case of complete graphs for
both the local and global interconnect, but the results are general and can be easily
extended to any dragonfly.

The main dragonfly topological parameters, as defined in [21], are the number of
routers per group a, the number of processing nodes per router p and the number
of global links per router h. For a well-balanced network under uniform traffic, the
relations a = 2p = 2h must hold [21].

A balanced dragonfly using 64-port routers (h = 16) scales to more than 256 K
processing nodes.

The diameter of the dragonfly topology is 3, so any minimal path between two
routers will employ at most 3 hops. Minimal routing, as proposed in [1,21], is hier-
archical: a packet typically first traverses a local (l) and a global (g) link to reach
the destination group, and finally another local link at the destination group (path
l1 − g1 − l2). Each of these links can easily saturate under adversarial traffic patterns,
so nonminimal routing can be applied to randomize traffic and avoid saturated links.
Valiant routing [26], as used in [1,21], diverts traffic to an intermediate group before
heading the destination group. This leads to paths of up to 5 hops (l1−g1−l2−g2−l3).
In such paths, the first two hops correspond to global misrouting, that is, a nonmini-
mal path to an intermediate group. This global misrouting circumvents the potentially
saturated global link in the minimal path. Similarly, congestion in the intermediate
or destination group requires local misrouting, what implies even longer paths. The
different congestion scenarios and the corresponding nonminimal routing solutions
are presented with more detail in Sect. 2.

Cyclic routing dependencies can appear in Dragonflies, requiring a deadlock avoid-
ance strategy. Several proposals, [1,21], rely on a set of virtual channels (VCs) visited
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in a predefined order, based on the original mechanism in [13]. The number of VCs is
bounded by the length of the longest path: minimal routing allows for paths of length
3, whereas Valiant allows for length 5. However, as local links are used in hops 1, 3
and 5 and global links are used in hops 2 and 4, it is enough to implement 3 VCs in
local links and 2 VCs in global links; such VC configuration will be denoted as 3/2.
Shorter paths (e.g. l − g − g − l with Valiant) skip indexes corresponding to missing
hops. Tying the allowed path length with hardware resources is undesirable, because
it makes the use of longer paths (required for local misrouting or in-transit adaptive
routing) more complex to implement. This problem might become much more signif-
icant if network routers are embedded within processor chips, as several vendors have
suggested in their roadmaps.

In summary, the main performance limitations in dragonfly networks come from
the different congestion issues and the capability to adapt in-transit for changing traffic
conditions. Additionally, the allowed paths have a direct impact on the implementation
cost when a restrictive use of VCs is imposed for deadlock avoidance. The mechanism
presented in this paper addresses all of these issues.

OFAR is a flow-control/routing mechanism that decouples the use of the virtual
channels from the deadlock avoidance mechanism. It allows each router in the path
to dynamically misroute packets depending on the observed congestion, leading to
faster adaptation to transient traffic patterns and avoiding congestion in local links.
An escape subnetwork is employed for deadlock avoidance. Our evaluations show
that such a model improves throughput and response time under different traffic pat-
terns, even in the most adverse cases. To prevent congestion in the escape subnetwork,
we combine OFAR with a simple congestion management (CM) mechanism: injec-
tion throttling based on local information, which happens to be enough to prevent
congestion in the escape subnetwork. Finally, we also consider the use of multiple
disjoint escape subnetworks for fault tolerance. Two previous papers of the authors,
[10,11], provide more detail on the work described here. The current paper unifies
the OFAR proposal under a common framework, considers the “Valiant-any” routing
from [24,26] as a reference mechanism and introduces a novel mechanism to find
disjoint escape rings for fault tolerance. Evaluations with multiple escape rings with
different mappings lead to the conclusion that the new ring mappings introduced in this
paper provide better performance than previous alternatives thanks to a lower network
congestion.

In Sect. 2 we study the main performance limitations of dragonfly networks caused
by adversarial traffic patterns, and discuss how global and local misrouting together
with in-transit misrouting efficiently avoid them. In Sect. 3 we detail OFAR consider-
ing two alternatives for the escape subnetwork (a Hamiltonian ring with bubble flow
control and a spanning tree with up–down routing), introduce mechanisms to find
multiple disjoint Hamiltonian rings for fault tolerance and present two simple con-
gestion management mechanisms (denoted as BCM and ECM). Section 4 details the
simulation infrastructure and Sect. 5 presents the performance results. Finally, Sect. 6
presents related work and Sect. 7 concludes the paper.
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2 Performance limitations of dragonfly networks

In this section we survey the main performance limitations of a well-balanced drag-
onfly network with complete graphs in its local and global topologies; the issues are
similar for other variants of such a topology.

Saturation of global links The transfer limit of each link is 1 phit/cycle (the phit
is the amount of information transferred through a link in one cycle) and up to one
global hop is required for each packet to reach its destination node with minimal
routing. Using h = p allows for maximum performance under uniform traffic, UN,
with minimal routing. However, in an adversarial traffic pattern the 2h2 computing
nodes in one group could send traffic to the same destination group, competing for
the bandwidth of a single global link. We denote this traffic as adversarial-global,
ADVG+N, where every source node in group i selects a random destination node in
group (i + N ) (mod G), (G is the number of groups). With minimal routing this
traffic would limit the maximum bandwidth to 1/(2h2) while leaving most of the
global links underutilized (with h = 16, throughput is limited to 1/512, less than
0.2 % of its maximum). Global misrouting tries to avoid a congested global link by
sending traffic to another group, possibly requiring a local hop in the source group.
Valiant routing, as used in [21], employs global misrouting to equalize the use of the
global links in the network. Each packet is sent to a random intermediate group, and
then minimally to its destination. Because this implies two global hops for any packet
to reach its destination, on average, global links will limit the maximum throughput
to 0.5 phits/(node · cycle).

The problem is not the scarcity of global links (since p = h), but their unbalanced
use under minimal routing, caused by the traffic pattern.

Saturation of local links Analogously, local links also saturate when all the p
computing nodes attached to a router Ri send traffic to the nodes in a neighbor router
Ro of the same group, as shown in Fig. 1a. We denote this traffic as adversarial-local,
ADVL. The p nodes attached to Ri offer a load of p phits/cycle to the only local link
between these two routers. As this link has a capacity of 1 phit/cycle, under minimal
routing the maximum traffic would be 1/p (for p = h = 16, this would limit traffic
to 6.25 % of its maximum). Again, the problem is not the number of local links in a
group, but their unbalanced use caused by the traffic pattern. Local misrouting avoids
a saturated local link by sending packets to an intermediate router within the group,
and then to the destination router, using two local hops instead of the saturated one.

Pathological saturation of local links under adversarial-global traffic Using global
misrouting requires up to 5 hops to get to destination , l1 − g1 − l2 − g2 − l3. The two
first hops l1 − g1 lead to an intermediate group. The intermediate local hop l2 is only
required if the source and destination groups are not connected to the same router in
the intermediate group.

For certain traffic patterns, this local link l2 will saturate and become the network
bottleneck, even when this leaves global links partially idle.

Specifically, the worst case occurs with the adversarial pattern ADVG+h. Figure 1b
shows two routers Ri and Ro of a given group Gi .
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(a) (b)

Fig. 1 Saturation problems in local links. a Saturation under traffic local to a group. b Pathological
saturation of the single local link, l2, connecting Ri and Ro in the intermediate group

Fig. 2 Accepted vs. offered load in a h = 6 dragonfly with Valiant and different adversarial traffic patterns

Ri receives misrouted traffic through its h global links, which has to be forwarded
through the h subsequent global links. Global wiring is typically consecutive, so all
these links are in the next router, Ro.

The single link connecting Ri and Ro can only convey 1 phit/cycle, so even in
the absence of any other throughput limit in the network, the localized saturation of
certain local links will limit throughput to 1/h phits/(node · cycle). The same happens
for any other ADV+(n · h) traffic pattern. For h > 2, the throughput limit imposed by
the saturation in these local links is more restrictive than the limit imposed by global
links with global misrouting, and such restriction grows with the network size.

The maximum throughput for adversarial traffic with global misrouting will depend
on the specific offset between the source and destination groups. Figure 2 shows how,
with the Valiant routing used in [21], throughput varies notably depending on this
offset, even in a small dragonfly with h = 6 (5,256 computing nodes).

ADVG+1 causes the lowest congestion, whereas ADVG+(n ·6) generates the high-
est. As with ADVL traffic, local misrouting (now, in the intermediate group) would
avoid this pathological saturation.
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Interestingly, the original definition of Valiant routing in [26] selects a random inter-
mediate router (not a group), which has been denoted as “Valiant Any” in [24]. This
oblivious routing is roughly equivalent to performing a global misrouting followed by
a local misrouting in the intermediate group.

Adapting to traffic changes Adaptive routing mechanisms select between minimal
and nonminimal paths depending on an estimation of the network congestion. Multiple
adaptive mechanisms proposed for Dragonflies (such as UGAL [21], CRT or Piggy-
backing [18]) employ source routing, selecting the path at injection. This requires
that congestion information extends throughout the network so that source routers can
properly sense it. To adapt quickly to traffic changes, in-transit adaptive routing can
switch from minimal to non-minimal (global misrouting) after injection of the packet.1

This implies that two local hops can be required in the source group, one minimal and
one nonminimal (required for global misrouting).

In-transit adaptive routing supporting local misrouting in the intermediate and des-
tination groups leads to relatively long maximum paths: l − l − g − l − l − g − l − l.
Using the standard distance-based deadlock avoidance mechanisms described in [13],
this would require at least six virtual channels in the local links.

3 OFAR: on-the-fly adaptive routing

OFAR differs in several key points with respect to previous ideas: (1) adaptive routing
is performed in transit, rather than being determined at injection time, with both local
and global misrouting; (2) use of local information (the credit count of the output
ports of the local router) rather than remote information to select between minimal
and nonminimal paths, and to select the intermediate destinations for local and global
misrouting; and (3) the use of a deadlock-free sub-network for deadlock avoidance.

3.1 Dynamic misrouting in OFAR

In OFAR the path of each packet is not determined at injection; each router can forward
traffic non-minimally to avoid network congestion, adapting the packet path. This
misrouting can use either local or global links of the current router. In principle, our
mechanism would allow for any number of misroutings without additional cost, but
a limit is set to prevent livelock: at most, one non-minimal global hop can be applied
per packet, and one non-minimal local hop per group. Two flags in the packet header
are used to limit misrouting. When packets do not travel on the escape subnetwork
that will be detailed in Sect. 3.3, the longest path is limited to 8 hops (2 global and 6
local), as discussed in Sect. 2.

Each packet in an input buffer of a router always has a ‘minimal output’ according
to its minimal path to the destination. Depending on the credits of the minimal output

1 We do not consider the opposite case (switching to minimal after a first nonminimal local hop which
corresponds to the global misrouting) because we model the MM+L global link selection policy [9] which
does not make a first local hop for global misrouting at injection. However, since OFAR decouples the
router resources and the path length, it would also support that case.
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and the header flags, the router can misroute the packet using a nonminimal output with
more credits. When traffic is internal to a group, only local misroute is allowed. When
the destination is a remote group, both local and global misroutes are allowed. In such
case, when the packet is still in its source group only global misrouting is allowed. In
a group other than the source group, only local misrouting is allowed, and only when
the minimal output is a saturated local port. Both local and global misrouting are
applied adaptively only when congestion is detected, so compared with the oblivious
“Valiant-Any” mechanism, OFAR can save the initial global misrouting or the local
misrouting in the intermediate group when there is no congestion.

Local misrouting always employs a local output port different than the minimal
one. For global misrouting we use the MM+L policy from [9] to determine which port
to use. Under this policy, packets still in injection queues of their source router are
misrouted directly by global channels of this router. When using global misrouting
this saves the first local hop, minimizing path length. By contrast, packets switching
from minimal to nonminimal routing after a first minimal local hop (which are in
local queues in the source group) always make a nonminimal local hop before their
nonminimal global hop. This avoids starvation under adversarial traffic if the current
node is the only one with a global link to the destination group.

3.2 Misrouting selection criteria

OFAR relies on the congestion observed in the minimal path to allow for non-minimal
routing and to select the specific output port used. We assume an input-buffered router
with a separable allocator. When a packet is in the header of an input queue, the routing
subsystem will report its corresponding minimal path, along with the allowed non-
minimal paths (i.e., no misrouting allowed, misroute by any local link, or misroute
by any global link). Depending on the measured network congestion, the input unit
of the allocator can request the minimal path or one of the non-minimal ones. If the
request is not assigned by the arbiter, subsequent requests can select different output
ports depending on the varying credit count.

To select between minimal and nonminimal routing, OFAR observes the occupancy,
Qmin, of the queue in the minimal path (minimal queue), and the occupancy, Qnon−min,
in any non-minimal output of the appropriate type, local or global (non-minimal
queues). As these queues have different sizes for local and global links, we consider
the percentage of buffer occupancy rather than the actual occupancy in phits. We use a
misrouting threshold Thnon−min. Misrouting is allowed only when the minimal port is
not available (it is already assigned to another input or Qmin = 100 %).2 In such case,
the output port is selected randomly among those available non-minimal ports that ful-
fil the occupancy condition Qnon−min ≤ Thnon−min. This prevents misrouting packets
to a group which is already congested. We consider a relative misrouting threshold,
which depends on the occupancy of the minimal queue: Thnon−min = 0.90 × Qmin.

2 A minimum occupancy might be also required in the minimal queue to allow for misrouting; we have
not considered such a threshold in this work.
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3.3 Deadlock avoidance based on escape subnetworks

When all minimal and nonminimal paths are unavailable, packets are diverted to a
deadlock-free escape subnetwork to avoid deadlock. If packets can reach their des-
tination through this escape subnetwork, the overall system is deadlock-free [6]. In
each output assignment any available VC can be selected because this solution does
not require virtual channels, although they help to mitigate Head-of-line blocking
(HoLB). The capacity of the escape subnetworks proposed for OFAR is very low as
compared to the canonical dragonfly. To avoid saturation, in each hop routers try to
forward traffic from the escape subnetwork back to a canonical link (minimal or not)
if possible, to reduce traffic in the escape subnetwork. Thus, regardless of the type
of input port of a packet, routers will always use the following precedence order for
the output selection: minimal–nonminimal–escape. Since minimal and escape routes
typically follow different paths, livelock might arise. Section 5.7 studies this issue
and finds that it is not a significant problem, especially when considering one of the
congestion management mechanisms presented later in Sect. 3.4.

The escape subnetwork must interconnect all the routers in the network. It can
employ links separated from the ones in the canonical network, using extra ports in the
routers and interconnecting them with additional local and global links. Alternatively,
it can be embedded in the canonical dragonfly, adding one extra virtual channel to
each link forming the escape subnetwork. We will denote this extra VC separately, for
example 3/2(+1). Depending on the topology employed, the cost and the performance
will vary. We consider two alternatives next.

3.3.1 Tree

In this case one of the routers is chosen as a “root”, Rroot. We denote the group
containing Rroot as Groot. Rroot is connected to all the remaining routers in Groot. Each
router in Groot is globally connected with one or several remote routers, each one in
a different group. Finally, each remote router is connected with the remaining routers
in its group. An example is presented in Fig. 3. The routing employed in the tree is
up-down, which makes it deadlock-free.

3.3.2 Hamiltonian ring

This escape subnetwork interconnects every router in the network, forming a ring.
With Virtual Cut-through, the ring is deadlock-free as long as there is space for at least
one packet in one of its buffers. To assure this, bubble flow control is applied to the
ring [4]. To inject a packet in the escape ring, free space for two packets is required in
the buffer, which preserves the previous condition. On the contrary, packets can freely
circulate without restrictions once they are inside the ring. Note that, in OFAR, this
only occurs when the canonical links are saturated, as discussed before.

A simple Hamiltonian ring, denoted as ring A, is generated as follows. The a = 2h
routers in a group are labeled from 0 (R0) to 2h − 1 (R2h−1). Router i is connected to
routers i ± 1 (mod a) in the same group, except for R0, and R2h−1. R0 in group j is
connected to R1 in group j and R2h−1 in group j − 1 (mod G), with G the number
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Canonical link

Escape 

Root Router

Node

Group

Router

tree link

Fig. 3 Dragonfly network h = 2 with an additional escape tree subnetwork

Fig. 4 Paths of two disjoint Hamiltonian rings in a group of a dragonfly network with h = 4. The remaining
links have been omitted for simplicity

of groups. R2h−1 in group j is connected to R2h−2 in group j and to R0 group j + 1
(mod G). This ring is partially illustrated in Fig. 4. The resulting Hamiltonian ring
connects all the routers in the network employing a minimal number of global links
equal to the number of groups. The large diameter of this Hamiltonian cycle will not
be a problem, because packets only travel a few hops in the escape subnetwork, as
will be studied in Sect. 5.7.

3.3.3 Fault tolerance and escape bandwidth

One or two link failures in the escape subnetwork (for a tree or ring respectively)
disconnect the escape subnetwork and potentially block the system. Additionally, the
bandwidth of the escape subnetwork is much lower than the one of the canonical
dragonfly, which can lead to congestion as detailed in Sect. 3.4. The use of several
disjoint subnetworks increases fault tolerance and total escape bandwidth.
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Considering embedded subnetworks, it is impossible to find two disjoint trees since
the root of one tree must share local ports with the other tree. However, there are
multiple algorithms to recalculate a spanning tree in case of a failure, such as those
defined for bridges in IEEE 802.1D [15]. In the case of rings, it is possible to find
multiple disjoint instances, but the solution introduced next is not as obvious as the
one for ring A presented in Sect. 3.3.2.

Considering a Hamiltonian escape ring, for a dragonfly with h > 2 it is possible to
generate at least a second edge-disjoint ring B using the following methodology. On
each group, we build a path traversing all the a = 2h routers in the group. For h > 2
even, we select router h

2 as the first router Rin of this path, and router 2h −1− h
2 as the

end router Rout. Router i is connected to routers i ± (h + 1) (mod a), except routers
Rin (which in its group is just connected to router h

2 + (h + 1)) and Rout (which in
its group is just connected to router 2h − 1 − h

2 − (h + 1) = h − 2 − h
2 ). This path

employs links which increase the index in ±(h +1); for any h > 2 this path is disjoint
with the local links of ring A, which increase indexes by ±1. Additionally, this path
exists for any h > 2 since h

2 + (2h − 1) · (h − 1) ≡ 2h − 1 − h
2 (mod a) and it

traverses all routers in the group since h + 1 is coprime with 2h. Finally, every router

Rout in group j is connected to router Rin in group j +
(

h2

2 + 2
)

(mod G), forming

a ring with global links between groups. The resulting ring B connects all the routers
in the network employing the same amount of local and global channels as ring A. An
example for h = 4 is presented in Fig. 4.

For h > 3 odd, the path of ring B is built from Rin = h+1
2 to Rout = 2h − 1 − h+1

2
using links which increase the index by ±(h + 2). Additionally, a third disjoint ring C
can be built from Rin = h−3

2 to Rout = 2h − 1 − h−3
2 using links which increase the

index by ±(h − 2). The proof that these two Hamiltonian rings exist for any h > 3 is
similar to the one presented for h > 2 even.

3.4 Congestion management

In OFAR, the capacity of the escape subnetwork is lower than the capacity of the canon-
ical dragonfly network. If all the buffers of the canonical network were completely full,
and only the escape subnetwork was used to deliver packets to their destination, perfor-
mance would drop significantly. Reaching such a condition should be very uncommon
as it must be provoked by the occurrence of multiple concurrent deadlocks that are not
alleviated in time by the escape subnetwork. As discussed in [23], deadlock is very
infrequent when paths are short and there is a rich routing freedom, exactly the case
of the dragonfly. Despite this situation being unlikely, proper congestion management
(CM) mechanisms have to be applied to the network to guarantee that it does not
happen in practice.

Figure 5 shows the throughput and latency results obtained for OFAR under UN
traffic with an embedded tree as escape subnetwork, using only 2/1(+1) VCs. Simu-
lation details are presented later in Sect. 4 and the results of Piggybacking are shown
only as a reference. With OFAR, if no congestion management mechanism is applied
(OFAR Tree), throughput drops significantly when the load is high and the canonical
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(a) (b)

Fig. 5 Latency and throughput under uniform traffic UN for OFAR with a tree escape subnetwork and
different Congestion Management alternatives

network gets congested. In such case, the canonical network cannot handle the traffic
that receives, which is diverted to the escape subnetwork, and the overall network
throughput becomes that of the escape subnetwork. However, using a simple conges-
tion management mechanism (BCM or ECM, described next) the throughput does not
fall. Similar mechanisms have been studied before in other networks [22].

3.4.1 Escape Congestion Management (ECM)

Network congestion increases the use of the escape subnetwork to prevent deadlock.
The Escape Congestion Management (ECM) mechanism employs the occupancy of
the local buffers of the escape subnetwork in the current router as an indicator of
congestion. No packets are injected from any of the end nodes connected to a router
when the occupancy Q of all the escape buffers exceeds a threshold:

Qi > ThECM ∀i ∈ {escape buffers}

In such case, the nodes in the current router will have to wait for a subsequent cycle to
inject their traffic. The threshold used is chosen empirically, ranging from 0 to 100 %.
ECM does not take into account the occupancy of the queue in which the packet should
be injected, contrary to the following mechanism BCM.

3.4.2 Base Congestion Management (BCM)

The Base Congestion Management (BCM) mechanism forbids the injection of packets
when the canonical (base) network is congested. This is implemented as a variant of
a bubble flow control mechanism [4]. A certain “bubble” is required for computing
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nodes to inject packets in a buffer, which prevents traffic injection from introducing
deadlock in the canonical network. A packet at an injection queue can be injected in
the network only if the free space S in the destination buffer covers the packet size
plus the bubble size (in phits):

S ≥ PktLength + Bubble × Max(PktLength)

Otherwise, the packet will have to wait for a subsequent cycle. The bubble size can
range from 1 to the buffer size in packets minus 1, and it is chosen empirically.

The BCM mechanism does not consider the occupancy of the escape subnetwork,
it only takes into account the state of the canonical network.

4 Methodology

We have implemented the different routing proposals on FOGSim [8], a single-cycle
simulator developed in the University of Cantabria. Its results for existent routing
mechanisms are consistent with those published in previous works. We model a FIFO
input-buffered Virtual Cut-through (VCT) router, [20]. Unless otherwise noted in the
text, the parameters employed in the simulations are presented in Table 1. We do not
model router speedup, but employ an iterative allocator similar to [14] to compensate
the lack of speedup. We model different latencies for the different links on the system,
depending on them being short (local) or long (global). While we do not model the

Table 1 Parameters of the
simulated dragonfly

Parameter Value

Ports per router 23

Global ports per router 6

Computing nodes per router 6

Inter- and intra-group topology Complete graph

Routers per group 12

Groups 73

Overall computing nodes 5, 256

Packet size 8 phits

Latency of local/global links 10/100 cycles

Buffer size, local/global ports 32/256 phits

Number of VCs 3/2; 3/2(+1) for OFAR

Switching mechanism Virtual Cut-through

Arbitration policy Least-recently served

Router speedup No

Allocation iterations 3

VC selection in OFAR Shortest queue

OFAR threshold Thnon−min 0.9 · Qmin

ECM threshold ThECM 20 %

BCM bubble 2 packets
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router delay, the overall latency (in absence of network congestion) includes the sum
of both router delay and link latency; in our model, router delay can be considered to
be subsumed within link latency values.

We employ synthetic traffic to evaluate performance. Each source node generates
packets according to a Bernoulli process, with a controllable injection probability in
phits/(node · cycle). Packet latency is measured from its generation to its complete
reception in the destination node; the average latency is obtained by averaging across
all packets received in the network. Such latency includes injection buffering, link
latency, and additional cycles lost due to allocation or congestion issues. Throughput
is measured as the amount of phits received in the network, averaged by the number of
cycles and computing nodes, generating a result between 0 and 1 phit/(node · cycle).
We average five simulations to generate the results in the plots.

The destination node is selected randomly depending on the traffic model. We have
considered two corner cases:

– Uniform (UN): The destination is selected among all the network nodes, including
the source group but not the source node itself.

– Adversarial-global+N (ADVG+N): The destination is selected among all nodes in
the group i + N , where i is the source group. ADVG+1 causes the lowest congestion
on local links, while ADVG+n · h generates maximum congestion.

We evaluate then ADVG+h (and not ADVL) because it is enough to evaluate the
problem of local link saturation as discussed in Sect. 2. Moreover, we want to ensure
that implementations do not fail on pathological situations.

We have considered the following routing mechanisms:

– Minimal (MIN): Minimal hierarchical path between the source and destination. It
only uses 2/1 VCs.

– Valiant (VAL): As used in [1,21], packets travel to a random intermediate group
(global misrouting), and then travel minimally to its destination.

– Valiant-any (VAL-any): As defined in [26], and employed in [24], packets travel to
a random intermediate router (roughly equivalent global and local misrouting), and
then travel minimally to its destination. It employs 4/2 VCs.

– Piggybacking (PB, [18]): The injection router selects between minimal and Valiant
paths as used in [1,21] based on remote congestion information broadcast among
all the routers of each group.

– OFAR: The base model presented in Sect. 3.
– OFAR-L: The same model, without allowing misrouting in local links. This is used

to expose the specific benefits of in-transit local misrouting.

PB is used as a reference, as it is the source routing mechanism with the best overall
results in previous works, [18]. It always employs 3/2 VCs, which are required for
deadlock avoidance. In fact, OFAR is the only alternative which can employ a variable
number of VCs, as a trade-off between implementation cost and performance.

As with any other adaptive routing mechanisms in dragonflies, OFAR employs a
variable misroute threshold which can be tuned to favor minimal or nonminimal rout-
ing. The selected value Thnon−min = 0.9 · Qmin allows misrouting if the minimal
queue is not available (it is assigned to another packet or without credits), only by
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those queues that have less than 0.9 times the occupancy of the minimal one. This
threshold was selected empirically for our network configuration, by simulating mul-
tiple threshold values and selecting a reasonable trade-off between the performance
in adversarial and uniform traffic patterns. A similar study was performed for the
threshold values in PB, and for the Bubble in BCM and ThECM in ECM.

We employ the escape subnetwork and congestion management mechanisms
detailed in Sect. 3.4: OFAR Ring+BCM, OFAR Ring+ECM, OFAR Tree+BCM and
OFAR Tree+ECM. Each subnetwork is embedded in the canonical dragonfly by adding
an extra VC in the corresponding escape links. We prefer to show the results of this
design, to focus in the case which is more prone to congestion. It implies a lower cost
than a physical escape link using extra router ports, but in the absence of congestion
the performance results are similar, since it is scarcely used.

5 Performance results

We first show the results for a base model of OFAR using a Hamiltonian ring without
congestion management, in three different scenarios: steady state, transient variations
and traffic bursts. Next, we focus on the impact of the escape subnetwork topology,
congestion management mechanisms, unfairness issues and path length. Finally, we
present a study of performance with multiple escape subnetworks.

5.1 Steady state

After 50,000 cycles of warm-up, these tests measure the average latency and through-
put during a second period of 50,000 cycles, as described in Sect. 4. Figure 6 shows
the results under uniform random (UN) and adversarial-global (ADVG) traffic pat-
terns: ADVG+2 which requires global misrouting,3 and ADVG+6 which additionally
requires local misrouting to avoid congestion. All simulations employ 3/2 VCs, except
for MIN (2/1) and VAL-any (4/2), and no CM is used for OFAR.

For UN, using MIN as a reference, the OFAR models provide a competitive latency
under low loads, but they saturate significantly later. The latency of the adaptive
mechanism PB, by contrast, is significantly larger, due to a higher number of misrouted
packets. Both OFAR models improve throughput over MIN and PB, but in either case,
the use of local misrouting does not make a significant difference.

For adversarial traffic patterns ADVG, OFAR provides the best latency and through-
put, both with ADVG+2 and ADVG+6.

Under ADVG+6 without local misrouting throughput is limited to 1/h = 1/6 =
0.166 phits/(node · cycle).

Figure 6f shows that this occurs for VAL, PB and OFAR-L. VAL-any and OFAR reach
around 0.36, confirming that local misrouting in the intermediate group compensates

3 We do not show results of ADVG+1 as it could be argued that the additional ring link between the source
and destination groups favors the OFAR models. However, since the escape network utilization is only used
to avoid potential deadlock situations and not to carry traffic to the destination, the results are similar.
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(a) (b) (c)

(f)(e)(d)

Fig. 6 Average latency (top) and throughput (down). Uniform (UN) and adversarial (ADVG+2 and
ADVG+6) traffic, without any congestion management. a Latency UN, b latency ADVG+2, c latency
ADVG+6, d throughput UN, e throughput ADVG+2, f throughput ADVG+6

for the pathological saturation problem. However, the latency results show that OFAR
is more efficient since it adaptively misroutes traffic only when required.

5.2 Transient traffic

The following experiments explore the response time when the traffic pattern changes.
The network is warmed up with ADVG+2 traffic with a load of 0.12 phits/(node ·
cycle), which does not cause congestion even without local misroute. Once it reaches
the steady state, the traffic changes to ADVG+6. Figure 7 shows the measured latency
of the packets that are sent each cycle, with the adaptive routing mechanisms. OFAR
makes the transition almost instantaneous thanks to in-transit routing decisions, while
the source-routing PB suffers from a clear adaptation period while the congestion
information is propagated.

5.3 Traffic bursts

In parallel programs, communication and computation phases are typically synchro-
nized, so traffic bursts after barriers are common. We simulate such behaviour using
packet bursts. Each node injects a fixed amount of packets (2,000) as fast as possible,
with a mixture of different traffic patterns. With h = 6, this figure corresponds to
around a million packets received. We measure the time to consume all the packets
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Fig. 8 Burst consumption time, normalized to PB, using 3/2 VCs. Lower is better

in the network. The destination of each packet is variable according to a certain dis-
tribution. We have simulated UN, ADVG+2, ADVG+6 and three mixes of traffic with
different rates of uniform and adversarial: In MIX1 80 % of the traffic is UN, 10 % is
ADVG+1 and 10 % is ADVG+6. In MIX2 the rates are 60–20–20 and in MIX3 they
are 20–40–40.

Figure 8 shows the burst consumption time normalized to the result of PB. Com-
pared to PB, the execution time of OFAR ranges from a 43.1 to a 81.5 %. On average,
the time to consume traffic for OFAR is 0.695 and the time for PB corresponds to a
speedup of 1.438×. The complete OFAR model always finishes sooner than all the
others, including its −L counterpart.

5.4 Number of virtual channels

With OFAR, VCs are not employed for deadlock avoidance, but they help mitigate
Head-of-Line Blocking (HoLB). A higher number of VCs improve performance, until
a point at which there is another factor that limits performance more than HoLB. Past
that point, a higher number of them can degrade performance, because routers have
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(a) (b)

(d)(c)

Fig. 9 Latency and throughput under uniform and adversarial traffic (ADVG+2) for PB and OFAR varying
the number of VCs. Ring escape subnetwork with BCM congestion management. a Latency UN, b latency
ADVG+2, c throughput UN, d throughput ADVG+2

to handle a higher number of VCs and there are more packets in the network, which
can make allocation more complex and increase congestion.

As OFAR can be prone to congestion, especially with a low number of VCs as dis-
cussed in Sect. 3.4, we employ the BCM mechanism with a bubble size of two packets
in these evaluations. BCM will be evaluated with more detail in Sect. 5.5. Figure 9
shows the average latency and throughput results obtained for OFAR Ring+BCM with
a different number of VCs under uniform (UN) and adversarial (ADVG+2) traffic.
The number of VCs ranges from 1/1(+1) to 4/4(+1). PB is also shown as a reference.

In general OFAR always obtains better performance than PB (3/2 VCs) when using
the same or more VCs. Even with a lower number of VCs, 2/2(+1), OFAR results are
better. Only when OFAR employs fewer VCs, 2/1(+1) or 1/1(+1), and with ADVG+2
traffic, PB outperforms OFAR. When the traffic is uniform, Fig. 9a, b, OFAR 1/1(+1)
obtains a result very close to that for PB. All other configurations present a better
performance, very close to each other. OFAR with 3/3(+1) VCs is the configuration
that achieves the best overall performance for all the traffic patterns. Further increase
of the number of VCs does not provide a better performance: OFAR 4/4(+1) obtains
worse results, especially for latency when the traffic is adversarial.

A problem of network unfairness appears when the VC count is low. With 2/1(+1)
VCs and adversarial traffic, OFAR average latency rises at around 0.15 phit/(node ·
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cycle). However, its throughput reaches 0.3 phit/(node · cycle). This effect is typical
for unfairness issues, when some specific nodes of the network suffer from starvation:
their latency is much higher than the rest, which increases the average latency values.
In this case, the problem arises from localized congestion, as will be studied in more
detail in Sect. 5.6.

With the same amount of resources, or even less, OFAR outperforms PB. Only
under ADVG+2 traffic with a reduced number of VCs, 2/1(+1) or lower, OFAR cannot
match PB due to HoLB issues. Next subsections will only focus on this specific
OFAR configuration with few resources, 2/1(+1), to study the effects of congestion
and alternative ways to cope with it.

5.5 Congestion management and escape subnetwork

This subsection explores how the escape subnetwork and congestion management
mechanisms affect the performance of OFAR with few resources, 2/1(+1) VCs; when
more VCs are used, no significant congestion issues arise, as studied in Sect. 5.4. The
performance of OFAR Ring and OFAR Tree is studied with BCM and ECM congestion
management. Under UN traffic there are no differences, because the escape subnetwork
is hardly ever used. The latency and throughput steady state results under adversarial
patterns are shown in Fig. 10. The variants with ECM obtain higher throughput than
those with BCM. Under ADV G + 2 traffic, the maximum throughput with BCM is
slightly lower than with PB, while with ECM it is higher.

Some anomalies caused by load imbalance are present. The latency of OFAR
Ring+BCM with 2/1(+1) in Fig. 10a above load 0.1 keeps increasing, up to reach-
ing the throughput saturation load. Also, the throughput for OFAR Tree+ECM at low
adversarial traffic loads is slightly lower than for the other configurations. This con-
figuration also presents high latency values before saturation. These are also caused
by load imbalance, and both will be discussed in detail next in Sect. 5.6.

Figure 11 shows results for the traffic burst experiments for PB and the different
OFAR configurations. An additional traffic pattern is included, in which traffic is sent
according to an All-to-all global communication primitive. The number of messages
sent in each case is similar. In every case, OFAR Ring consumes traffic faster than
OFAR Tree. Both are faster when the congestion management mechanism is ECM,
although, on average, the difference in time is not very large. As a result, OFAR Ring
with ECM is the fastest OFAR configuration, followed very closed by OFAR Ring with
BCM. The only case in which PB using 3/2 VCs is faster than the OFAR configurations
with 2/1(+1) is when the traffic is ADVG+2. Even in that case, the running time of
OFAR Ring with ECM is very close to that of PB.

5.6 Network fairness

In the experiments in Fig. 10, OFAR obtains very similar throughput results with
the ring or the tree escape subnetworks, regardless of the congestion management.
However, as shown in Fig. 11, OFAR Ring consumes adversarial traffic faster than
OFAR Tree. This behavior of OFAR Tree is due to a load imbalance introduced by

123



1134 M. García et al.

(a) (b)

(d)(c)

Fig. 10 Latency (up) and throughput (down) under adversarial traffic for PB (with 3/2 VCs) and OFAR with
few resources that lead to congestion, 2/1(+1) VCs. a Latency ADVG+2, b latency ADVG+6, c throughput
ADVG+2, d throughput ADVG+6

Fig. 11 Traffic consumption time for PB and OFAR with 2/1(+1) VCs

the asymmetry of the escape subnetwork. Figure 12, obtained with BCM, shows
this effect. It depicts the total number of packets injected in the network by nodes in
group G0 and Groot for OFAR Tree and OFAR Ring in 50,000 cycles, after warm-up,
when the applied load is 1 phit/(node · cycle). Results for UN, ADVG+2 and ADVG+h
are presented. Groot is the group containing the root router Rroot when the escape
subnetwork is a tree. G0 is a group chosen as a baseline for comparison. As there is
no root in a ring, for OFAR Ring only results for G0 are shown.
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Fig. 12 Average number of packets injected per router in groups 0 and Root with an offered load of 1
phit/(node · cycle), when BCM and only 2/1(+1) VCs are used

For OFAR Tree, the number of packets injected by nodes in Groot is significantly
lower than in G0. When a packet is injected into a tree escape subnetwork, the prob-
ability that it has to pass through the root router Rroot is very high. As a result, Rroot
and its group Groot receive more traffic than the rest of the routers and groups of the
network. There is a small part of the network, Groot, that concentrates a large part
of the escape traffic. This does not happen with an escape ring, as it is a symmetric
topology that balances the load among all the groups in the network. With the tree
escape subnetwork, packets in the injection queues of routers in group Groot have to
wait longer to be injected in the network. Therefore, in the same amount of cycles,
nodes in Groot inject less packets than nodes in the rest of the groups. This explains
the slightly lower throughput in Fig. 10c, d especially with ECM. Also, in the traf-
fic consumption experiments, the consumption time increases because nodes in Groot
have difficulties injecting packets.

This asymmetry of the tree escape subnetwork is also responsible for the high aver-
age latencies at low traffic loads for OFAR Tree+ECM when the traffic is adversarial
(Fig. 10a,b). With that configuration, OFAR only injects packets if the escape subnet-
work is not saturated. Although at low traffic loads the escape subnetwork should not be
saturated, this occurs in Groot, due to the concentration of traffic in that group. Routers
in Groot detect the escape subnetwork as congested, prohibiting packet injection and
increasing average packet latency. A solution for this problem might come from using
multiple escape trees, to distribute the traffic generated by the escape subnetwork.

Apart from load imbalance between groups, there could also exist imbalance
between routers within the same group. This problem occurs for OFAR Ring+BCM
in Fig. 10a, b. Specifically, under an adversarial-global traffic patterns all the pack-
ets in a source group would leave it minimally through a single router. If this router
also happens to have a global link of the embedded escape topology, it will receive
much more traffic than other routers in the group. BCM will then prevent local traffic
injection due to the congestion in the links of this router.

The experiments in this subsection show that both topologies, the tree and the
Hamiltonian ring, cause load unbalance in the dragonfly network. In the case of the
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tree, the root group is the one in which traffic concentrates and routers in that group
are not able to inject as many packets as routers in other groups. For the Hamiltonian
ring, there is one specific router per group that finds difficulties to inject packets in the
network. However, whereas with OFAR Tree the traffic unbalance appears for every
traffic pattern, for OFAR Ring the unbalance only appears under adversarial traffic and
low traffic loads.

5.7 Length of network paths

The maximum path length in the canonical dragonfly network with local and global
misrouting is 8 hops (6 local and 2 global). If a packet enters the escape subnetwork,
this length can increase significantly. If a packet followed the escape subnetwork up
to its destination, the number of hops would be much higher if the escape subnetwork
was a Hamiltonian ring (up to N/2 hops, being N the total number of routers in the
network), than if it was a tree (up to 6 hops).

However, the escape subnetwork is used in few occasions, only to escape from
potential cyclic dependencies, and packets return to the canonical network as soon
as possible. Therefore, packets can enter and leave the escape subnetwork multiple
times, making the maximum path length unbounded. Although it would be easy to
limit the path lengths by employing a counter of the times a packet can move between
the canonical and escape subnetworks, we have preferred not to include it, to study in
depth such issue. This subsection studies this concern when a congestion management
mechanism is used, and observes that, in practice, unbounded paths do not happen.

Figure 13 shows a histogram of the path lengths in traffic consumption experiments
as shown in Sect. 5.5 under ADVG+h traffic, with and without BCM, and with log
scale on the vertical axis. Interestingly, under ADVG+h traffic, OFAR Ring provides
shorter paths than OFAR Tree, pointing out that an escape subnetwork with longer
average and maximum distances does not necessarily lead to longer paths.

Figure 13 shows that long paths are really infrequent when congestion management
is used. In the simulations carried out, the longest path with OFAR Tree+BCM was

Fig. 13 Hops histogram under adversarial traffic (ADVG+h) using 2/1(+1) VCs
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20 hops, and with OFAR Ring+BCM only 14 hops. Bigger differences appear when
there is no congestion management. In that case, in the simulations carried out for this
work, for OFAR Ring the longest path took 24 hops whereas with OFAR Tree one of
the packets had to make 217 hops, many of them in the escape subnetwork. OFAR
Ring+BCM presents the overall best performance.

Multiple injections can occur in the escape subnetwork. When a packet is in the
source group and congestion is detected in the canonical network, it goes into the
escape subnetwork. If the next group following the escape subnetwork is also con-
gested, the packet will have to wait long to advance to it. As a result, whenever there
is space, the packet will return to the canonical network; then, congestion is detected
again and the packet is injected once more in the escape subnetwork. This process
will be repeated as long as congestion remains. As explained in Sect. 5.6, with the
tree escape subnetwork, group Groot is more prone to congestion than the rest of the
groups. Therefore, in this case multiple injections in the escape subnetwork are more
likely.

Livelock might occur if packets bounced consecutively from the escape to the
canonical subnetworks. Nevertheless, this situation is not so common as to pose a
significant problem. In the worst configuration of OFAR Tree under ADVG+h traffic
in Fig. 13, more than a 99.99 % of the packets need less than 30 hops to reach their
destination. Additionally, a traditional alternative to mitigate the potential livelock
issue is to employ a counter of injections into the escape path; after the counter exceeds
a given threshold (for example, 15 for a 4-bit counter) the packet is not allowed to leave
the escape subnetwork again. Since the amount of packets with such a high number
of injections is very low, this would not have a significant impact in performance.

5.8 Single vs. multiple escape subnetworks

This subsection studies the use of multiple escape subnetworks, specifically two dis-
joint Hamiltonian rings added to a dragonfly of size h = 6. Both rings are embedded
employing one extra virtual channel per subnetwork. The first ring, ring A, is the one
described in Sect. 3.3.2, with Rin = 0 and Rout = 11. Ring B is the second ring
described in Sect. 3.3.3 with Rin = 3 and Rout = 8. Ring B connects router i with
router i + 7 (mod a) within the same group, where a = 2h = 12 is the number of
routers per group. Each group j is connected to group j +20 (mod G), where G = 73
is the total number of groups in this network.

In our implementation, when a packet is generated, one of the two escape rings is
assigned. This means that a packet can only employ that assigned ring for deadlock
avoidance. Although not studied in this work, in case of a link failure in a ring, all
packets should be automatically assigned the remaining ring.

OFAR performance is compared when employing one and two escape rings using
2/1(+1) VCs. In addition, the different performance results depending on how the single
Hamiltonian ring is mapped in the canonical dragonfly are studied. Figure 14 shows
the latency and throughput results for OFAR with BCM when the escape subnetwork
is the single ring A (OFAR with Ring A), the single ring B (OFAR with Ring B), and
when both Hamiltonian rings are employed (OFAR with 2 rings). Three adversarial
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(a) (b) (c)

(f)(e)(d)

Fig. 14 Latency (up) and throughput (down) under different adversarial traffic patterns (ADVG+2,
ADVG+h and ADVG+2h) for OFAR with different Hamiltonian ring escape subnetworks when applying
BCM and using 2/1(+1) VCs. a Latency ADVG+2, b latency ADVG+h, c latency ADVG+2h, d throughput
ADVG+2, e throughput ADVG+h, f throughput ADVG+2h

traffic patterns are considered: ADVG+2, ADVG+h and ADVG+2h. In the last case,
the global link which minimal paths use to leave the group does not contain a virtual
channel for any escape ring.

Each of the three OFAR configurations achieves a similar maximum throughput
of � 0.3 phits/(node · cycle). However, Fig. 14a, b shows that the latency for OFAR
with ring A and OFAR with two rings rises earlier than for OFAR with ring B. OFAR
with ring A presents the same latency curve as in Sect. 5.5, saturating at around 0.1
phits/(node · cycle) when the traffic is ADVG+2, and 0.15 phits/(node · cycle) when
the traffic is ADVG+h (h = 6). This effect is due to starvation of some of the routers in
the network, as explained in Sect. 5.6. This pathology does not show up when the ring
is mapped in the canonical dragonfly in a different way: OFAR with Ring B. For that
configuration, latency rises at approximately 0.27 phits/(node · cycle) in both cases,
a value close to the maximum throughput achieved. For adversarial traffic ADVG+2,
OFAR with two rings improves the latency results of OFAR with ring A, although it
cannot reach those for OFAR with ring B, due to the load unbalance caused by ring
A. However, when the traffic is ADVG+h, a more adversarial traffic for ring A, OFAR
with the two rings presents the same behavior as OFAR with ring A. The second ring
in that configuration, ring B, is not able to mitigate the load unbalance caused by ring
A.

When the traffic is adversarial ADV+12 (ADV+2h), Rout in OFAR with ring A (R11)
is not the router through which packets leave the group when using the minimal path
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(R10). As a result, starvation in Rout disappears. Figure 14c, f shows the performance
results.

The results in this subsection show that employing more than one embedded Hamil-
tonian ring does not provide performance improvements. On the contrary, the way in
which the ring is mapped in the canonical dragonfly does make a difference, as some
congestion situations due to certain traffic patterns can be avoided. Arguably, the alter-
native rings introduced in Sect. 3.3.3 are better options, since it is more unlikely that
adversarial traffic coincides with the global links of such rings due to their higher hop
in terms of group indexes. In any case, the use of several rings instead of a single one
still improves fault tolerance.

6 Related work

Significant details about the dragonfly architecture and routing can be found in
[1,18,21]. The problem of saturation of global links was introduced in [1,21]. Local
link saturation with inter-group traffic was first evidenced in [19] and the patholog-
ical saturation in local links was introduced in [10]. Saturation in local links could
be, arguably, more frequent than the saturation of global links, since the applica-
tions typically try to exploit the locality between neighbor processes usually allocated
sequentially in the same group. Bhatele et al. study how mapping choices can impact
performance in [2], suggesting random task placement. With such placement local
links do not get saturated, at the cost of locality loss.

The simplest routing mechanisms are oblivious to the network status. Minimal
routing hierarchically follows the shortest path between each pair of nodes. Valiant
routing, as used for the dragonfly in [21], applies global misrouting to each packet
regardless of the network status, by selecting an intermediate group. PERCS allows
the programmer to specify the intermediate group for each packet [1]. This differs
from the original definition from Valiant [26], which would select an intermediate
router. This is roughly equivalent to global misrouting followed by local misrouting in
the intermediate group. Such a definition is the one employed in the Cray Cascade [7]
to avoid pathological congestion issues similar to the case with our ADVG+h traffic,
and it has been evaluated as “Valiant-any” in [24].

Adaptive routing mechanisms select the path of each packet depending on the net-
work conditions. Two types of adaptive routing mechanisms have been proposed:
source and in-transit (or on-the-fly) routing. Source routing mechanisms determine
the path of each packet at injection time. Examples of source-routing mechanisms are
UGAL, Piggybacking (PB) or CRT [18]. These mechanisms need to estimate the con-
gestion in the global links of the group to select between a minimal and non-minimal
routing for each packet. This estimation typically relies on indirect information (for
example, the credit count in the outputs of other routers in the group). For this rea-
son, they are relatively complex and slow in adapting to traffic changes. Progressive
Adaptive Routing (PAR, [18]) introduced in-transit adaptive routing for Dragonflies.

Günther introduces in [13] the use of an increasing order of buffer classes to prevent
deadlock, which is employed in multiple previous routing mechanisms for Dragon-
flies. This strict policy of ordering virtual channels does not permit in-transit misrout-
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ing, which would require re-injecting the packet into the first virtual channel, V C0,
potentially generating a cyclic dependency. The PAR mechanism [18] addresses this
limitation by implementing an additional VC.

Our proposal relies on a deadlock-free subnetwork to avoid packet deadlocks, [6].
Based on this idea, Silla and Duato proposed a general deadlock-free mechanism
in [25] based on duplicating the number of virtual channels in the network. Their
mechanism is not specific to the Dragonfly network and their escape network topology
equals the original topology, what would require a larger number of VCs in the case of
the Dragonfly. In our proposal we study two different escape topologies: a tree and a
Hamiltonian ring to which injection restriction is applied to avoid deadlock. Seminal
deadlock avoidance mechanisms relying on restricting packet injection can be found
in [3,5].

Multiple congestion control mechanisms have been studied and proposed for dif-
ferent networks. A survey of their application in HPC can be found in [12]. Virtually
every mechanism relies on injection throttling, such as the transmission window in
TCP [17] or Quantized Congestion Notification (QCN, [16]) in Datacenter Bridging.
The differences rely on how they detect network congestion.

In this work we study two open-loop local congestion control mechanisms, BCM
and ECM, which apply source throttling based on the occupancy of the local queues.
Similar mechanisms have been studied in other networks [22].

7 Conclusions

This paper has identified and addressed the key performance limitations of dragonfly
networks. These limitations are mainly the saturation of local and global links and the
inefficiency of source routing. We have presented OFAR routing, which is an efficient
alternative which selects the misroute output port in-transit, rather than at injection
time.

This adaptive misrouting is enabled by employing an escape subnetwork to prevent
deadlock, rather than a fixed order of visiting virtual channels. To avoid congestion,
the combination of OFAR with simple injection throttling has been evaluated. This
alternative solves the main limitations of the base OFAR model: congestion problems
and the appearance in practice of very long paths. To tolerate faults, a mechanism that
finds multiple disjoint escape rings has been presented. Eventually, such a mechanism
can also help avoid network unfairness by avoiding the coincidence of traffic flows
with the escape ring paths.

Compared to alternative proposals, OFAR only relies on local information, achieves
higher performance thanks to its support of local and global misrouting without
increasing the number of VCs, and adapts faster to traffic changes. When the cost
in terms of VCs is similar, OFAR clearly outperforms alternatives such as PB which
employ source routing (so they are slower adapting to changes) and do not support
local misrouting.

Implementations with a very low number of VCs suffer from congestion and unfair-
ness issues. In such cases, two congestion management mechanisms, BCM and ECM,
and two escape subnetwork topologies, a Hamiltonian ring and a tree, have been eval-
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uated. Congestion management avoids escape network saturation that could lead to a
severe performance drop. The effect of the topology of the escape subnetwork on the
network load imbalance and performance has been analyzed. Despite path lengths with
OFAR could be unbounded in theory, results have shown that they are relatively short
in practice and that the use of a congestion management mechanism reduces them.
Finally, the use of multiple escape subnetworks helps improve fault tolerance, but not
performance; our evaluations highlight that escape subnetworks should be designed
so they do not overlap with frequent traffic patterns. Thus, the alternative escape rings
introduced in this work appear as the best option for the escape subnetwork.
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