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Abstract Developing a parallel program on Chip multi-processors (CMPs) is a criti-
cal and difficult issue. To overcome the synchronization obstacles of CMPs, trans-
actional memory (TM) has been proposed as an alternative control concurrency
mechanism, instead of using traditional lock synchronization. Unfortunately, TM has
led to seven performance pathologies: DuelingUpgrades, FutileStall, StarvingWriter,
StarvingElder, SerializedCommit, RestartConvoy, and FriendlyFire. Such pathologies
degrade performance during the interaction between workload and system. Although
this performance issue can be solved by hardware, the software solution remains elu-
sive. This paper proposes a priority scheduling algorithm to remedy these performance
pathologies. By contrast, the proposed approach can not only solve this issue, but also
almost achieve the same performance as hardware transactional memory systems.

Keywords Performance pathologies · Transactional memory · Priority scheduling

1 Introduction

Using lock synchronization to develop a parallel program on chip multi-processors
(CMPs) is difficult and error-prone. To exploit the instruction level parallelism (ILP),
many solutions have been proposed to resolve challenges including interconnection
network [1] and scheduling problem [2]. For example, the sorting problem executed in
parallel has been addressed for interconnection network [3]. Arabnia et al. proposed
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Table 1 Lock-based vs. transactional memory

Lock-based TM

Programming friendly Difficult and error-prone Easy and simple

Deadlock and livelock
prevention

Programmers require to adopt a
locking policy

Prevented entirely

Priority inversion Low-priority thread holding
exclusive access to a resource

High-priority transactions can
abort conflicting lower priority
transactions

parallel sort algorithms to resolve these overheads [4,5]. Their work was efficient
using pipelined-sort and MultiRing-Sort. In contract, one alternative to lock-based
synchronization to control concurrency is transactional memory (TM) [6]. For lock-
based synchronization, programmers must lock and unlock shared data carefully in a
parallel program to avoid significant performance degradation, deadlock, and livelock.
TM system can exploit the ILP of an application during execution; it provides re-use
buffer called read set and write set to replace wrong operations. Unlike scheduling, TM
can prevent error and avoid the addition of extra resources to improve performance.
Conversely, TM prevents deadlock and livelock entirely by employing priority mech-
anism. High-priority transactions can abort the conflicting transactions with lower
priority, and the mechanism can also prevent priority inversion. The main contrast
between lock-based synchronization and TM is shown in Table 1.

There are three major manageable mechanisms in TM: version management (VM),
conflict detection (CD), and conflict resolution (CR). In hardware transactional mem-
ory (HTM), read-sets and write-sets are investigated to control the concurrency mech-
anism. The selection to store the new data in memory or a log file is managed using
a VM mechanism. To determine whether the data version in read-sets and write-sets
is conflicting or not, CD is called. When a conflict occurs, we must achieve a CR to
abort one of transactions, and thereby allow the program to continue its execution.

The following describes the three manageable mechanisms that exist on HTM.

– Version management (VM) is a method to store newly written new existing and
old values. The newly written values are that when the transaction commits, they
need to be able to store in the right place and be visible to other transactions.
When the transaction aborts, the old values are needed to be written back from
the previous transaction. There are two policies on version management: eager
and lazy. Eager version management stores old values on an undo log [7–9] and
the newly written values are in place. When the transaction aborts, the old values
need to be written back from the undo log. Because the new values are already
in place, its commits faster than aborts. But, slow aborts make transactions more
contentious. On the other hand, lazy version management not only saves the old
values in place, but also saves the newly written values to a write buffer. When
the transaction commits, it needs to move data into the right place from the write
buffer. This technique makes aborts fast.

– Conflict detection (CD) is the policy to examine read-sets and write-sets for detect-
ing data conflicts. There are also two policies on conflict detection: eager and lazy.
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Eager conflict detection is a hardware transactional memory that detects a conflict
on individual memory references. Eager conflict detection reduces the conflict
times because it uses stalls rather than aborts. Lazy conflict detection is a hard-
ware transactional memory that detects conflicts when transactions commit. Lazy
conflict detection can mitigate the impact of some conflicts and has a batch of
checking conflicts [10,11].

– Conflict resolution (CR) is the policy to do when a conflict is detected. When we use
eager conflict detection, we resolve the conflicts on each memory reference. The
conflict resolution policy is stalling the requester, aborting the requester, or aborting
the others. Lazy conflict detection resolve conflicts when a committer checks the
conflicts between its own transactions and other transactions. The resolution policy
can abort all others, stall or abort the committer.

Based on VM, CD, and CR, we can specify these design points as LL (Lazy CD/Lazy
VM/Committer Wins) systems, EL (Eager CD/Lazy VM/Requester Wins) systems,
and EE (Eager CD/Eager VM/Requester Stalls) systems. Please note that there is no
LE (Lazy CD/Eager VM) system on HTM at present. LE system waits until commit
time to detect conflicts so that the transactions become “zombies”, continue executing,
waste resources, and even abort.

– Lazy CD/Lazy VM/Committer Wins(LL) LL (Lazy CD/Lazy VM/Committer
Wins) systems store new value in the write buffer and check if conflicts have
occurred. When the transaction commits, it writes the data to the correct place
from the write buffer and check whether the read-sets and write-sets conflict or
not. There is some research like TCC [12] and Bulk [10] using the LL system.
When transaction commits, it will acquire the commit token [11] or the commit
bus [10]. This means that there is only one transaction that can commit (including
writing data and checking conflict). There is a conflict when a transaction has read
the memory address in the committing transaction write-set. The conflict resolu-
tion is committer wins. No matter whether the transaction starts earlier than the
transaction which owns the commit token, it should be aborted. This system guar-
antees forward progress because it must have a transaction commit which aborts
the conflicting one. That is, the committing transaction always has a higher priority
to finish its own execution.

– Eager CD/Lazy VM/Requester Wins(EL) EL(Eager CD/Lazy VM/Requester
Wins) systems detect conflicts on individual memory references and store newly
values to the writer buffer. When the transaction commits, it needs to update the
newly data from the write buffer, such as LTM [13]. When the transaction requests
to access the conflict memory address, the requester has a higher priority than
others. So, the one that is conflicted with the requester must abort. Because the
old values remain in the right place until commit, it means that transactions can
abort quickly. The EL policy appeals to early adopters because it is compatible
with existing coherence protocols that always respond to coherence requests [14].

– Eager CD/Eager VM/Requester Stalls(EE) There are some existing EE (Eager
CD/Eager VM/Requester Stalls) systems, such as LogTM variants [7,8,15]. This
system also detects conflicts on individual memory references, and the newly
date is already in place. The old values will write into a per-thread log. EE stalls
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requester when conflicts and aborts only if a stall is on a potential deadlock. EE
records the transaction start time for detecting potential cycles. When a transaction
has been stalled by an older transaction, it could not be stalled. Eager version
management lets commit become faster, but abort becomes slower because it need
to restore the old values form the log. If the transaction has lots of newly data,
it possibly makes the private cache overflow on Lazy VM. So the advantage on
Eager VM is that we do not worry about buffer overflow problem. HMTM [6] is
similar to EE systems. It stores both new and old values in the cache. HMTM, like
EE, is quicker when conflict occurs. Unlike EE, HMTM aborts requesters instead
of stalling them.

Bobba et al. [14] reported that TM spends much time on useless execution behav-
iors including abort, commit, stall, and backoff. They also indicated the performance
pathologies that harm performance of TM programs and presented a hardware solu-
tion to solve these pathologies. Most previous research has accelerated programs using
hardware to improve TM program performance, and only a few software transactional
memory (STM) approaches were presented. Scherer and Scott [16] indicated that con-
flict resolution is the critical goal of STM to avoid too many pathologies to degrade
performance. Although HTM can achieve high performance, modifying hardware
architecture is costly [17]. In this paper, we present another way to accelerate TM
programs by parsing transactions in advance with a software approach, and applying a
priority scheduling scheme to resolve conflict for TM. Using software costs less than
using hardware and our approach can achieve the same, or an even higher performance,
by comparing our research with the work presented in [14].

The rest of this paper is organized as follows. Section 2 discusses the related work.
We describe the performance pathologies of HTM and introduce their hardware solu-
tions in Sect. 3. Section 4 presents the proposed priority scheduling approach. We
then describe the implementation details and show the result in Sect. 5. Finally, we
conclude this paper briefly in Sect. 6.

2 Related work

HTM systems may modify processors, cache, and bus protocol, to control transactions
such as LogTM variants [7,8], LTM [13,18,19], TM coherence and consistency(TCC)
[12,20], and Bulk [10]. The Log-based TM is based on the EE systems and uses MOESI
directory protocol. Although it can detect conflicts and commit quickly, they must roll
back to the old values when a transaction aborts. Furthermore, the LL system is similar
to the work presented in Bulk [10] and (TCC) [12]. TCC stores the new values in the
L1 cache and overwrites L2 cache and memory after transactions commit, and thus
detects any conflicts at that time. The EL system sample is LTM [13] that allows the
old value to remain in the main memory and stores the new value in the cache. LTM
detects conflict for each memory reference. HTM implementations can achieve better
performance with hardware complexity, but are limited to restricted semantics such
as object conflict detection. In contrast, STM can resolve the issues of transactional
memory semantics in a runtime library and or a programming language with some
hardware support such as an atomic compare and swap operation [21]. Compared
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with HTM, STM is more flexible, easier to be modified and integrated with existing
systems and language features, but they incur higher overhead. Thus, some researchers
proposed approaches to resolve this issue with contention manager [16,22,23].

Other researchers have examined TM with a given priority. First, Justin and Daniel
[24] extended a TM contention manager for the user-defined priority-based transac-
tions. Their system focused on real systems, or some strict systems, requiring more
restrictions. In contrast, our method does not have any limitation on systems. Addi-
tionally, Karma [16,23] had tracked the cumulative number of blocks opened by a
transaction as its priority. When a transaction commits, it resets the priority values
to zero. When the transaction opens the block, it increases their priority values. The
contention manager compares the transactions’s priority and aborts the smaller one
when a transaction conflict occurs. When a transaction retries, it will increase the
transaction priority value. In general, they are delay-based contention manager, like
backoff, Karma, and Polka. The detailed performance analysis of different designs has
recently been studied by Ansari et al. [25]. They suggested that priority will be the
efficient solution to resolve all pathologies. Spear et al. [22] identified downsides of
priority-related mechanism, and the critical challenge was read visibility. In addition
to the techniques above, a compiler optimization becomes a compromise among com-
peting imperatives. In this paper, we present an alternative approach to perform read
visibility with compiler and decide when a particular transaction executes [26]. The
most noteworthy difference with this manager and our approach is that their manager
does not analyze transactions in advance like read visibility. By comparison, we can
analyze transactions to obtain more information and apply it to modify the priority
values properly. Besides, a hybrid transactional memory has been presented to imple-
ment TM in software so that it can use best-effort HTM to boost performance [12].
Thus, programmers can develop and test transactional programs on existing systems
with HTM support.

To understand the software transaction memory is to use a priority to control trans-
action based on the size of transaction, the percentage of store instructions in each
transaction, the progress of thread which contains the transaction, and the number of
retries.

3 Background

The seven performance pathologies simplify the interaction of TM system design and
program transactions, leading to interesting execution patterns that can affect perfor-
mance. Pathologies degrade performance by preventing a transaction from making
progress or performing unusable work, which is then discarded when a transaction
aborts. They are described as follows.

DuelingUpgrades (DU): When two concurrent transactions read and later attempt
to modify the same cache block, this pathology occurs. Because both transactions
add the block to their read-sets, the conflict is detected when they write the same
data, causing one of the transactions to abort. This behavior is pathologic only for EE
systems because of their slower aborts. The requester-stalls resolution policy further
exacerbates the problem. For example, consider the case in Fig. 1. The committing
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Fig. 1 DuelingUpgrades pathology

Fig. 2 FutileStall pathology

transaction may first stall on one that abort (that is, the FutileStall pathology). The two
transactions begin and read the same block: transaction T1 then attempts to write the
block but stalls due to the conflict. When transaction T2 also tries to write, a deadlock
is detected and the system aborts the requester to resolve the possible deadlock. T2
stalls trying to read the now-exclusive block until T1 commits when it restarts. T1 can
repeat the conflict when it immediately starts another identical transaction, and loses
the conflict resolution because it becomes the requester of a possible deadlock.

FutileStall (FS): Eager conflict detection may cause a transaction that ultimately
aborted to stall for another transaction. In this case, the stall is unnecessary, because it
did not resolve a conflict with a transaction that performs useful work. Eager version
management exacerbates this pathology because the HTM system must restore the old
values to maintain isolation on its write-set. Thus, a transaction can stall on another
transaction that ultimately aborts and continues to stall while the system restores the old
values from the log. Transaction T1 is stalled to wait for transaction T2 that ultimately
aborts, as shown in Fig. 2.

StarvingWriter (SW): This pathology occurs when a transactional writer conflicts
with a set of concurrent transactional readers. The writer stalls to wait for the readers
to finish their transactions and release isolation. The writer may starve if new readers
arrive before the existing readers commit [27], as illustrated in Fig. 3. The writer
is blocked by a series of committing readers. In a more favorable case, the readers
continue their jobs and only the writer starves. In the least favorable case, none of the
transactions make progress, because the readers encounter a cyclic dependence on the
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Fig. 3 StarvingWriter
pathology

Fig. 4 StarvingElder pathology

writer after reading the block, abort (releasing isolation), but they then retry before
the writer acquires access.

StarvingElder (SE): The pathology may occur in a lazy conflict detection system
and a “committer-wins” policy because the system allows smaller transactions to
starve longer transactions [11]. Small transactions naturally reach their commit phase
faster and the committer-wins policy allows repeated small transactions to abort a
transaction. The resulting load imbalance may have a broad performance repercussion.
For example, the small transactions executed by threads T2 and T3 repeatedly abort
transaction T1, as shown in Fig. 4.

SerializedCommit (SC): HTM systems with lazy conflict detection serialize trans-
actions during commit to preserve a global serial order. Thus, committing transactions
may stall while waiting for other transactions to commit. This type of case always
happens in a program with many small transactions. However, the overhead can be
reduced if the finishing transaction is guaranteed to commit by a committer-wins reso-
lution policy [10,11]. Figure 5 illustrates this pathology. In this figure, the commits are
serialized due to the limitations on HTM systems, although none of the transactions
conflict.

RestartConvoy (RC): This pathology happens in HTM systems with a lazy con-
flict detection. When a committing transaction conflicts with (and aborts) multiple
instances of the same static transaction, the aborted transactions restart simultane-
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Fig. 5 SerializedCommit
pathology

Fig. 6 RestartConvoy
pathology

ously, compete for system resources, and then finish together due to their similarity.
The crowd of transactions competes to commit and the winner aborts the others. Con-
voys can persist indefinitely if a thread that wants to commit a transaction rejoins the
competition before all other transactions have a chance to commit [28]. A transaction
convoy degrades performance in the following two ways. First, convoys force the pro-
gram to be serialized in a single transaction when other parts of the program can be
executed concurrently. Second, the transactions that are restarted increasingly contend
for system resources. The convoy effect arising from restarting transactions is shown
in Fig. 6. As transaction T1 commits, the transactions of other threads abort. Those
threads restart and complete almost simultaneously, and one commits again and the
rest of the transactions abort. As a result, the convoy may persist if threads which pass
the transaction return and re-enter the convoy.

FriendlyFire (FF): Figure 7 illustrates this pathology, which occurs when one trans-
action conflicts with and aborts other transactions, which are then subsequently aborted
before committing any useful work. In the least favorable case, this pathology repeats
indefinitely with concurrent transactions, leading to abort each other and result in live-
lock. Because a simple requester-wins policy exhibits the FriendlyFire pathology and
frequently results in livelock under high contention [10,16,29,30], the baseline EL
policy of the GEMS simulator uses randomized linear backoff after an abort occurs
[31]. VTM also employs eager conflict detection and lazy version management, but
does not specify a conflict resolution policy [32].
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Fig. 7 FriendlyFire pathology

4 The proposed priority scheduling algorithm

In this section, we present our priority scheduling algorithm to resolve the seven
performance pathologies and show how to set the priority, including static priority and
dynamic priority. Considering these pathologies described in Sect. 3, we discuss each
pathology and compare hardware solutions with our approach.

4.1 Algorithm

The symbols used in the algorithm are defined as follows. For a transaction T ,

– Ti is the i th transaction,
– P(T ) is the priority of transaction T ,
– PS(T ) is the static priority of transaction T ,
– PD(T ) is the dynamic priority of transaction T ,
– C(T ) is the total clock cycles to execute transaction T ,
– TC is the total clock cycles of the whole program,
– S(T ) is the different store address counts of transaction T ,
– LS(T ) is the number of all loads and stores address counts of transaction T ,
– CE(T ) is the current execution cycles of transaction T ,
– NR(T ) is the number of RETRY times of transaction T ,
– BO(T )1 is backoff cycles of transaction T , and
– BObase(T ) is the original backoff cycles of transaction T .
– N (T ) is the successful counts of transaction T ,
– CES(T ) is the current execution time (cycles) when transaction T begins.

Figure 8 shows the proposed priority scheduling algorithm. First, we must obtain
the static priority of each thread of a transaction. The static priority consists of the

1 After T aborts, it waits backoff time to restart.
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Initial:
begin

For a transaction T
Assign PS(T ) to T

end

Manage Data:
begin

Update PD(T ) based on CE(T )

For transactions T and T ′, if a data conflict occurs
between T and T ′

if P (T ) > P (T ′)
Abort T ′
Update NR(T ′), PD(T ′) and BO(T ′)

else
Abort T
Update NR(T ), PD(T ) and BO(T )

end

Fig. 8 The proposed priority scheduling algorithm

execution time of each transaction, and also the different store addresses of each
transaction. If we know the execution steps of a transaction, including its memory
reference and execution time in advance, we can use this information to set the priority.
The information is defined before execution and does not change at run time; therefore,
we call them “static priority”. Next, we set the “dynamic priority” which is changed
based on the current execution time and the number of retries at run time. Dynamic
priority records the execution cycles of each transaction. If a transaction has been
executed for a while, it should not be aborted by the other one. Consequently, the
larger transaction does not waste the retry time. However, if a smaller transaction is
always aborted by larger transactions, we should handle this case carefully by taking
the number of retry times into account. Furthermore, since the priority values influence
the backoff time, a transaction will have a smaller backoff time (that is, the transaction
restarts faster) if it has higher priority. The transaction having the highest priority can
abort others and thus will not be interrupted by other transactions. When a transaction
is aborted, we must update the “dynamic priority” and backoff time.

4.2 Priority assignment

This section presents the priority setting in detail. Initially, each transaction is assigned
a priority value, and these priority values will change during execution, despite differ-
ent processors executing the same transaction due to the priority value being composed
of static and dynamic priorities. Notice that transactions executed by different proces-
sors have the same static priority, but their dynamic priorities are different because
they are determined by the current execution time and the number of retry times.
Thus, this approach can prevent transactions executed by different processors from
competing with each other. The traditional TM conflict resolutions are inflexible and
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do not consider all related issues. Therefore, this paper presents a new method by
taking all related issues into account to improve the original TM conflict resolution.
Most importantly, PS mitigates the performance pathologies as well as improves TM
program performance. The following is the way to set the priority.

PS(T ) = α × (N (T ) × C(T ))/TRS + β × S(T )/LS(T )

TRS =
∑

N (Ti ) × C(Ti ), Ti ∈ all transactions

PD(T ) = γ × (CE(T ) − CES(T ))/C(T ) + δ × NR(T )

BO(T ) = ε × (1/P(T )) × BObase.

Please note that α, β, γ , δ, and ε are the initial weights. The static priority is defined
based on the previous execution transactions of threads. We monitor the execution time
of each transaction and store different address counts to determine the static priority.
To verify whether the transaction is large or not, we record the execution time of each
transaction. If the transaction often modifies the memory addresses, we assume that
it spends more time and we assign it a higher priority. Notably, static priority must
be defined before invoking our priority scheduler. We exemplify how to calculate the
static priority as follows.

Example:

Cycles Instruction

100 Begin transaction(id)
101 LOAD A
102 STORE B
103 STORE A
104 STORE B
105 STORE C
106 LOAD B
107 Commit transaction(id)

C(T ) is 107-100 = 7
The transaction stores A, B, C, so S(T ) is 3
Based on the priority scheme,
PS(T ) = α × (7 × N (T ))/TRS + β × S(T )/LS(T )

= α × (7 × N (T ))/TRS + β × 3/LS(T )

4.3 PS on TM pathologies

In this section, we exemplify the seven pathologies with our priority scheduling algo-
rithm and identify the priority relationships between transactions.

Figure 9 illustrates DuelingUpgrades that have been solved by our approach. We
assume P(T2) > P(T1), because the execution time of T2 is longer than that of
T1, while the original conflict resolution stalls and aborts the requester in a possible
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Fig. 9 The proposed priority
scheduling for DuelingUpgrades
pathology

Fig. 10 The proposed priority
scheduling for FutileStall
pathology

deadlock. Here, we stall the requester but abort the transaction having the smaller
priority. T1 makes a request to store A at the first time, thus T1 is stalled by T2 and
afterwards T2 requests to store A. If we stall the requester too, it causes a deadlock.
Therefore, we must abort one of the transactions. Based on the priority values, we
abort the smaller one of both. A hardware solution EEP can decrease the pathology
ratio using a small write-set predictor to predict the deadlock [7]. We then anticipate
that our algorithm will be able to combine with EEP to achieve the most favorable
result with the smallest pathology ratio.

FutileStall: The EE system stalls and then aborts the requester on possible deadlock.
Figure 10 illustrates FutileStall as solved by our algorithm. FutileStall is similar to
DuelingUpgrades, but the situation in T2 is aborted by transactions other than T1.
We also assume P(T2) > P(T1). The original T2 is aborted by the other transaction;
but in our assumption, T2 has a higher priority and can continue executing without
wasting the execution time. The hardware does not target this pathology, but can be
resolved in this example. We have an advantageous position regarding this pathology.

StarvingWriter: This case also occurs in the EE system and thus it has the same con-
flict resolution as DuelingUpgrades and FutileStall. This case happens when readers
stall writer successively and writer may starve. The hardware solution EEH P extends
EEP to reduce STARVINGWRITER by allowing an older writer to abort a number
of younger readers simultaneously. Our approach is similar to EEH P by giving the
writer higher priority than readers. Hence, the writer does not starve and waste the
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Fig. 11 The proposed priority
scheduling for
STARVINGWRITER pathology

Fig. 12 The proposed priority
scheduling for StarvingElder
pathology

stall time. Figure 11 illustrates StarvingWriter to be solved by PS by considering the
store address times to set a priority value. In these pathologies, our approach may have
the same effect as the hardware solution, because the hardware solution lets the older
writer abort the younger readers immediately. We also assign the writer higher priority
to remedy this pathology.

StarvingElder: This problem happens in the LL system. If small transactions appear
many times, as well as the conflict resolution and the committer wins, it prevents the
larger transaction from having a chance to commit. As a result, the larger transaction
may starve. Figure 12 illustrates StarvingElder to be overcome by the proposed priority
scheduling. Our approach gives P(T2) = P(T3) > P(T1) at the initial time. To avoid
low-priority transaction starves, we also considered the number of retries. When T1
restarts the transaction, our approach immediately raises the dynamic priority, and then
T1 retries more times and obtains a higher priority. In Fig. 12, T1 may retry three times
and be assigned the highest priority, causing P(T1) > P(T2) = P(T3). When T1 can
abort other transactions, does not starve because we take retries into account when
calculating dynamic priority. The hardware solution LLB addresses RestartConvoy
and also can mitigate StarvingElder and SerializedCommit. Like the LL system, LLB

is based on the committerwins policy. However, restarting transactions use randomized
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Fig. 13 The proposed priority
scheduling for RestartConvoy
pathology

linear backoff to delay the restart of an aborted transaction. By staggering the restart of
each transaction in the group of transactions aborted by a given commit, LLB mitigates
convoy formation. But in our speculation, we think that the randomized linear backoff
cannot ensure that the same case will not happen again. Thus, we assign the backoff
time based on priority value. If the priority value is large, it means that the transaction
should have a higher priority to be executed. Thus, we give the high-priority transaction
smaller backoff time to restart immediately. In Fig. 12, it is different in the backoff
time whenever the transaction restarts. SerializedCommit: This problem arises from
the hardware restriction with only one write buffer. Hardware solution uses backoff
time to stagger the transactions. Similarly, we also use backoff to stagger the commit
time of a transaction based on priority. The high-priority transaction should execute
first, and we then improve the hardware solution to achieve a higher performance.
However, we do not show it because there is no fixed solution to execute the previous
example. We can only ensure that using backoff time, it does not allow transactions
to simultaneously commit.

RestartConvoy: Figure 13 illustrates that RestartConvoy is solved by PS. This prob-
lem affects resource contention and serialized execution. If transactions restart simul-
taneously, it will cause many more transactions to restart simultaneously. This result
leads to these transactions causing the same problem again. The solution sets the back-
off time to stagger the restart time. Although the hardware solution LLB also sets the
backoff time, ours uses priority value to decide the backoff time. If the transaction
has a higher priority, we assign it a shorter backoff time and let it restart immediately.
Higher priority transactions mean that they must finish earlier than others and thus
we use priority value to decide backoff time. In other words, the higher priority trans-
actions can commit earlier. Conversely, the hardware solution cannot ensure that the
same case will not happen again.

FriendlyFire: The EL system detects conflicts for each memory reference and writes
the new value to the writer buffer. This conflict resolution is requester wins and expo-
nential backoff on abort. FriendlyFire causes a livelock on TM programs. The hardware
solution ELT is similar to EL, but instead of always aborting in favor of the requester,
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Fig. 14 The proposed priority
scheduling for FriendlyFire
pathology

transaction conflicts are resolved according to the logical age of the transaction, as has
been completed before for implicit transactions [29] and eager alternative [10]. Our
approach is similar to the ELT system, as shown in Fig. 14. Our approach can solve the
problem in advance because the high-priority transactions such as T2 can abort others
no matter if T2 commits or not. In this figure, the setting of which transaction has
the highest transaction is not important, and therefore it then can avoid livelock. The
above shows the implementation details of the proposed algorithm and the solution
for pathologies. In next section, we show the experimental results regarding the occur-
rence ratio with the original TM setup, the hardware solution, and PS. We discovered
that PS can eliminate the pathologies and improve TM program performance.

5 Evaluation

We first introduce the simulation setup and the experimental flow, and then present the
evaluation results by comparing the HW solution with the proposed priority scheduling
approach.

5.1 Setup

We simulate a full-system infrastructure using Simics [33] and a customized mem-
ory model built with the Wisconsin GEMS toolset [31]. The GEMS toolset leverages
an existing full-system functional simulation infrastructure [31] and Simics [33] is
the basis to build a set of timing simulator modules for memory system and micro-
processor. Simics accurately models the SPARC architecture and GEMS supports a
TM memory model. The HTM interface is implemented using “magic” instructions,
which are special no-ops caught by Simics and passed to the memory model. The
software components of TM systems are implemented using hand-coded assembly
routines and C functions.

The setup is shown in Table 2. We model a 32-core CMP system, which is an in-
order and single-issue core. Each core has 32KB private write back L1 instruction and
data caches. All cores share a multi-banked 8-MB L2 cache consisting of 32 banks
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Table 2 System setup
Description

Process core 75 MHz in-order single-issue

L1 Cache 32 KB 4-way, 64-byte blocks, writeback, 2-cycle
latency

L2 Cache 8 MB 8-way unified, 64-byte blocks, writeback,
15 cycle latency

Memory 4 GB, 500-cycle latency

L2 Directory Bitvector of sharers, 6-cycle latency

Interconnect Tiled, 64-byte links, 3-cycle link latency

Fig. 15 Work flow

interleaved by a block address. On-chip cache coherence is maintained via an on-chip
directory, which maintains a bit vector of shares and implements the MESI protocol.

Figure 15 is the work flow divided into three stages. At first, an application is
compiled like the original TM execution phase. After compilation, the application is
executed to obtain the transaction information. Based on this information, we can know
the execution state and cycles of a transaction and then calculate the static priority of a
transaction with the aid of weights. Finally, the executable file is annotated with static
priority information and executed on the modified simulator, which is integrated with
the proposed priority scheduler. Following these steps, we can evaluate the effect of
the proposed approach on performance pathologies in Sect. 5.2.

Barnes, Cholesky, and Radiosity selected from the SPLASH [34] combining with
two microbenchmarks, Btree and Deque, were performed to evaluate results. For
Barnes, Cholesky, and Radiosity, these scientific programs were selected from the
SPLASH benchmark suite because they can demonstrate significant critical-section-
based synchronization. We replaced the critical sections with transactions while retain-
ing barriers and other synchronization mechanisms. Btree performed a lookup or an
insert and Deque enqueues/dequeues a value on the left/right of a global deque for
each transaction to perform a local job and increment the global counter.
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Table 3 Workload description
Benchmarks Input Description Units

Cholesky tk14.O Factorization 1

Barnes – Barnes-Hut method 512

Radiosity – Radiosity method –

Btree Uniform random BTree operation 100 K

Deque Uniform random Deque operation 100 K

Table 4 The percentage of execution time for EE system

Base HW PS

DU FS SW DU FS SW DU FS SW

Deque 5.1 0.2 3.0 <0.1 <0.1 <0.1 0.3 0.3 0.5

Cholesky 0.9 <0.1 0.4 <0.1 <0.1 <0.1 <0.1 <0.1 0.2

Btree 1.1 <0.1 0.8 0.9 12.1 0.3 0.2 2.8 0.2

Barnes 0.2 <0.1 0.6 <0.1 <0.1 <0.1 <0.1 0.2 0.4

Radiosity 1.1 <0.1 0.5 <0.1 <0.1 <0.1 0.1 <0.1 0.2

Table 5 The percentage of
execution time for EL system

Base HW PS
FF FF FF

Deque 3.2 <0.1 <0.1

Cholesky <0.1 <0.1 NA

Btree 0.8 <0.1 1.1

Barnes <0.1 <0.1 <0.1

Radiosity <0.1 <0.1 <0.1

Table 6 The percentage of execution time for LL system

Base HW PS

SE SC RC SE SC RC SE SC RC

Deque <0.1 <0.1 <0.1 0.1 0.6 <0.1 0.2 <0.1 <0.1

Cholesky <0.1 <0.1 0.6 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Btree 0.2 2.3 <0.1 0.2 2.1 <0.1 <0.1 <0.1 <0.1

Barnes <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Radiosity <0.1 <0.1 <0.1 NA NA NA <0.1 <0.1 <0.1

5.2 Results

In this section, we present the results of pathologies ratio and the performance for
the workloads previously introduced. Tables 3, 4, 5, 6, and 7 show the comparison
between the baseline result and three methods for seven pathologies. We discovered
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Table 7 The percentage of
execution time for PS with
write-set predictor

PS + Write-set predictor

DU FS SW

Deque <0.1 <0.1 <0.1

Btree 0.7 9.1 <0.1

Cholesky <0.1 <0.1 <0.1

Fig. 16 Speedup for EE system

that the hardware solution can eliminate these pathologies. In contrast, PS mitigates
most of these pathologies when compared with the baseline. FutileStall occurs in Btree
because there were numerous reads in it. Although the pathology ratio increased, the
speedup still achieved a speed of 1.5. Although sometimes PS cannot achieve the
highest performance, PS + predictor can achieve the highest performance because the
write-set predictor can reduce the percentage of wrong cases, as shown in Table 7.
Therefore, PS is an efficient approach to resolve seven pathologies. The read visibility
of the proposed work is a better way to improve the performance of different STMs.
In summary, PS is a comprehensive solution and can achieve better performance.

Figure 16 shows the speedup of the EE system. The average speedups of HW, PS,
and PS + predictor were 1.282, 1.173, and 1.171. Although PS can achieve a good
result, PS + predictor can outperform it with the help of prediction and achieve the
best maximum speedups in the EE system.

Figure 17 only shows the speedups of HW and PS for the LL system because
the write-set predictor was unnecessary for this case. From the result, HW and PS
only reduce the occurrences of performance pathologies a little, thus resulting in the
speedup of 1.017 and 1.015.

In Fig. 18, the average speedups of HW and PS for EL system were 1.569 and
1.541, respectively. Notice that the write-set predictor was also needed to perform for
this case and the only pathology happening in the EL system was friendly fire. After
analyzing the result, PS can overcome friendly fire quickly to make the performance
better.
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Fig. 17 Speedup for LL system

Fig. 18 Speedup for EL system

6 Conclusion

To improve the performance of transactional memory, we present a novel scheduling
approach to resolve conflicts of seven performance pathologies in this paper. The pro-
posed approach is an alternative to the accelerate TM program via parsing transactions
in advance, and then rapidly assign a thread a priority to enable a positive schedule.
When compared with HTM, our approach can almost achieve the same performance as
HTM by adjusting static priority and dynamic priority to remedy both these patholo-
gies without a higher hardware cost, with the exception of the EE system. However,
even for the EE system, the performance of our approach is equal to that of the HTM
with a predictor.
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