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Abstract As the number of cores increases in current and future chip-multiprocessor
(CMP) generations, coherence protocols must rely on novel hardware structures to
scale in terms of performance, power, and area. Systems that use directory information
for coherence purposes are currently the most scalable alternative. This paper studies
the important differences between the directory behavior of private and shared blocks,
which claim for a separate management of both types of blocks at the directory. We
propose the PS directory, a two-level directory cache that keeps the reduced number of
frequently accessed shared entries in a small and fast first-level cache, namely Shared
cache, and uses a larger and slower second-level Private cache to track the large
amount of private blocks. Entries in the Private cache do not implement the sharer
vector, which allows important silicon area savings. Speed and area reasons suggest
the use of eDRAM technology, much denser but slower than SRAM technology, for
the Private cache, which in turn brings energy savings. Experimental results for a 16-
core CMP show that, compared to a conventional directory, the PS directory improves
performance by 14 % while reducing silicon area and energy consumption by 34 and
27 %, respectively. Also, compared to the state-of-the-art Multi-Grain Directory, the
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PS directory apart from increasing performance, it reduces power by 18.7 %, and
provides more scalability in terms of area.

Keywords Chip-multiprocessors · Coherence · Sparse directories · Energy-aware ·
Area reduction · EDRAM

1 Introduction

As the number of cores increases in both current and future shared-memory chip-
multiprocessor (CMP) generations, coherence protocols must scale to sustain perfor-
mance. Directory-based coherence is the commonly preferred approach over snoop-
based coherence, because the former keeps track of cached blocks to avoid the use
of broadcast messages. Two main design choices have been used in both research
proposals [9,18] and commercial processors [4,8,26] to implement CMP directories:
Duplicate Tags and Sparse Directories.

Duplicate-tag based directories keep track of all cached blocks without invalidating
any of them due to directory space constraints, thus without hurting the cache per-
formance. Nevertheless, this approach may become prohibitive even for a relatively
small number of cores because of the high energy consumed by the highly associative
lookups, which are required to build the sharer vector on each directory access. On
the other hand, sparse directories use a cache-like structure, referred to as directory
cache, to keep track of the cached blocks. In this approach, when a directory entry is
evicted, all copies of the tracked block in the processor caches are invalidated, even
if the block is being used by the processor so rising the so-called coverage misses.
Mainly due to power reasons (i.e., low-associativity degree), sparse directories are the
preferred design choice for a medium to high number of cores.

Each entry of a conventional directory cache mainly stores the owner of the block
and the sharer vector, whose size grows linearly with the number of cores. As a conse-
quence, it is expected that directories in future CMP generations will have important
on-chip area and leakage overheads [34]. Therefore, large many-core CMPs demand
for directory designs that scale in terms of area and power. Several attempts have
addressed these issues by focusing on reducing (shortening or compressing) the sharer
vector length [1,6,7,22].

The directory cache proposed in this work follows a different approach and is based
on the different behaviors exhibited by cache blocks in parallel workloads. We found
that shared and private blocks present important differences from the directory cache
point of view, which translate to different directory cache requirements (e.g., number
of ways, cache size, or access time). Most of the accessed blocks are private [9,35]
and each of them uses an entry in the directory cache. But these blocks do not require
coherence actions, i.e., the sharer vector field is not used at all, which implies that
the entry size could be reduced for most of the directory entries. Moreover, since
private entries will not be accessed again after the block is fetched, their access time
does not affect system performance. On the other hand, most of the directory accesses
concentrate on a reduced number of entries that track shared blocks, which require
low associativity as shown in Sect. 2.1. So, most of the accesses to the directory could
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be solved by looking up a reduced number of ways and, therefore, bringing power
savings.

This paper proposes the PS (Private Shared) directory, which relies on empirical
findings on the block behavior from the directory cache perspective. The PS directory
consists of two independent caches, referred to as Private cache and Shared cache, each
one tuned to the behavior exhibited by each block type. The Shared cache is designed
with much less entries and associativity than a typical directory cache, attending to the
low fraction of expected shared blocks. Reducing associativity yields to significant
energy savings for an important amount of directory lookups. Due to its low access
latency, it can resolve indirections early. Moreover, most indirections are solved by
this small cache. In contrast, the Private cache implements a larger number of entries
and associativity, but its entries do not include the sharer vector field, thus enabling
scalability. Directory entries from the Private cache can be moved from the Private
cache to the Shared cache at run-time in case the tracked block becomes shared.

The PS directory can be implemented in typical SRAM (6T cells) technology.
Nevertheless, to address power and area scalability for a high number of cores we also
study the benefits of using eDRAM technology [20], which has been already used to
implement large caches in recent commercial processors like the IBM Power7 [13].
SRAM technology is used for speed to implement the small fast Shared cache with
low associativity while eDRAM is used for area and power in the much larger Private
cache, in which access time is not a concern.

The proposal has been compared against a conventional directory with the same
number of entries and the state-of-the-art Multi-Grain Directory. Experimental results
for a 16-core CMP show that, compared to the conventional directory, the PS directory
improves performance by 14 % due to the separate treatment of private and shared
blocks, while reducing area by 26.35 %. In addition, when eDRAM technology is
considered, this reduction is as high as 33.98 %. In terms of energy, the PS directory
allows energy savings by 27 % with SRAM technology. On the other hand, when
compared to the Multi-Grain Directory, the PS directory allows power savings by
18.7 % and speed ups the performance by 16.7 % while requiring less silicon area.
Concerning scalability, the PS directory is able to reduce up to 84.3% the area required
by the conventional directory cache for a 1,024-core system with the same number of
entries.

This paper presents two major contributions with respect to existing directory pro-
posals:

• We propose a sparse directory scheme which provides scalability in terms of area
and energy, which is the major shortcoming of sparse directories.

• The proposed directory presents minimal performance degradation with respect to
a perfect directory.

In short, the proposal achieves similar performance as the duplicate tags approach,
but with a feasible implementation for future many-core CMPs that provide major
energy gains. A short and preliminary version of this approach can be found in [30].
This paper refines the proposal and evaluates it in greater detail.

The rest of the paper is organized as follows. Section 2 analyzes the behavior of
shared and private blocks and discusses the main technology reasons that led us to do
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this work. Section 3 describes the assumed baseline processor. Section 4 presents the
proposed approach. Section5describes the simulation environment. Section6 analyzes
the performance, area and energy consumption. Section 7 discusses the related work.
Finally, Sect. 8 presents some concluding remarks.

2 Motivation

This section focuses on the two main pillars that support this work. First, the behavior
of shared and private blocks is analyzed, showing key observations that guided us to
the final design. Second, the key technology issues that enable the proposed design to
scale are discussed.

2.1 Analyzing the behavior of private and shared blocks from the directory point of
view

The PS directory relies on the fact that private and shared blocks present different
behavior from the directory point of view, which can be outlined in four key observa-
tions and one finding. As explained below, these five key points advocate to organize
directory caches in two independent structures, one for tracking private blocks and the
other for shared blocks.

• Observation 1 Directory entries keeping track of private blocks do not require the
sharer vector field.

• Observation 2 Most data blocks in parallel workloads are private.

According to these two observations, the Private cache should be designed narrower
and taller than the Shared cache, i.e., with shorter entries but with higher number of
them. Due to the smaller entry size in the Private cache, important area savings can be
achieved, especially for systemswith a large number of cores, thus offering scalability.
Notice that the larger the Private cache (in comparison with the Shared cache), the
more area savings can be obtained, thanks to the missing sharer vector field.

• Observation 3Most directory hits concentrate on shared entries.
• Observation 4 Almost all directory entries for private blocks are accessed only
once.

These observations emphasize that private blocks access the directory either when
they are not stored in the processor cache (e.g., the first access to a block or invalidations
due to directory evictions) or when a write-back is performed (e.g., due to space
constraints in the processor cache). The first case will cause a directory miss, while the
second case will hit in the private directory cache andwill invalidate the corresponding
entry. On the other hand, shared entries are accessed more times due to several cores
accessing the sameblock.Thus,most directory hits are due to shared blocks.According
to this reasoning, the PS directory scheme accesses the Shared cache first so preventing
likely useless accesses to the Private cache (which has higher associativity), whichwill
result in energy savings.
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Fig. 1 Number of hits to private and shared entries per kilo instruction in a conventional directory. aBarnes,
b blackscholes

Figure 1 depicts the number of directory entries’ hits (differentiating between shared
and private) per kilo instructions committed, varying the number of ways in the direc-
tory cache and keeping constant the number of sets.1 Two benchmarks, Barnes from
the SPLASH-2 benchmark suite [31] and Blackscholes from PARSEC [5], have been
used to illustrate these observations.

As can be seen in Fig. 1a, the number of hits in entries tracking shared blocks
is about 5× larger than that in entries tracking private blocks in Barnes. Entries of
private blocks are only looked up again in case a block is replaced either from the
directory or from the processor cache, and then asked again by the processor. In both
cases, the directory entry is removed, thus when the corresponding private block is
looked up in the directory, a miss will occur. Private entries are scarcely accessed in
spite of being the number of them much larger than that of shared entries. Results for
Blackscholes (Fig. 1b) showminor differences for higher number of ways because the

1 Experimental conditions are defined in Sect. 6.
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number of directory evictions is noticeably reduced in this benchmark as the directory
capacity increases. With a lower number of evictions, the number of L1 coverage
misses will also decrease. Hence the directory will be accessed less frequently. These
results suggest that while shared blocks should have a reduced directory access time
for performance, this time is not so critical for private blocks. Keeping this observation
in mind, we study the potential benefits of using a power and area aware technology
to implement the private cache.

• Finding 1 Shared directory entries have much less associativity requirements than
private directory entries.

To quantify the proper associativity degree, we ran experiments with a conventional
(or single–cache) directory varying the number of ways. We identified and quantified
the number of evicted directory entries that cause subsequent misses in the processor
caches, and classified them into private and shared according to the type of the block
that was being tracked. Then, the effect of both block types on performance was
measured. Misses in the processor caches that occur due to a directory entry eviction
will be referred to as coverage misses as also done in some recent works [9,24].

We found that private and shared entries have different associativity requirements.
Figure 2 illustrates the results for two different workloads. Results reveal that the
number of evicted shared blocks provoking coverage misses slightly varies with the
number of ways, while the number of private blocks drops dramatically. The number
of evicted private blocks is really high for a low-associativity degree, which translates
to significant performance degradation.

Assuming a typical LRU replacement policy and taking into account that entries in
the directory tracking private blocks are not accessed again, entries tracking a private
block work out like a FIFO policy, which means that, in absence of locality, the impact
of private blocks on performance mainly depends on the number of ways available
to them. The larger the number of ways, the longer is the time for each entry in the
directory cache. If it is too low, it is likely that the block will be forced to leave the
processor cache, even though it is still being used, thus increasing the number of
coverage misses. On the other hand, with higher number of ways, we give them more
chances before eviction. It can be observed that around 8 ways is enough to stabilize
the number of evictions of private blocks as well as the system performance.

Based on these results, the Private cache will be designed with around 8 ways (see
Sect. 5 for further details), whereas the Shared cachewill implement a lower number of
ways (i.e., 2 ways), since the impact of shared blocks on performance mainly depends
on their access locality and are not benefited from such a large complexity.

2.2 Dealing with scalability in future CMPs

Chip-multiprocessor systems must be designed to accommodate specific area and
power budgets. Both technological constraints represent major design concerns since
they prevent future many-core CMPs from scalability with future increasing core
counts. Power consumption is mainly distributed between cores and large on-chip
cache memories in current designs. Caches occupy a large percentage of the on-chip
area tomitigate the huge penalties of accessing the off-chipmainmemory.Givingmore
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Fig. 2 Number of evictions of private and shared entries per kilo instruction in a conventional directory
and its effect on performance. a Barnes, b blackscholes

silicon area and power to the cache hierarchy and related structures (e.g., directory
caches) leaves less space and power for cores, which could force CMP designs with
simpler cores so yielding to lower performance, especially harmful for single-threaded
applications [19].

Many efforts have been carried out in both the industry and academy to deal with
power and area focusing on the cache subsystem, including processor caches, off-chip
caches and directory structures. Regarding the latter structures, directory caches have
been proven to provide effectiveness and scalability, both in terms of power and area,
for a small to medium number of cores. However, these design issues must be prop-
erly faced by future systems since the pressure on achieving good cache performance
increases with the core count. There are two main ways to tackle these issues: archi-
tectural solutions to achieve a good tradeoff among performance, area and power, and
mingling disparate technologies in a power and/or area aware design. Both ways can
be applied independently or together, as proposed in this work.

123



2854 J. J. Valls et al.

Table 1 Comparing
technological features of SRAM
versus eDRAM

Technology Density Speed Power

SRAM Low Fast High

eDRAM High Slow Low

This paper presents architectural innovations to track separately private and shared
blocks in two independent directory caches. The main aim of this two-cache approach
is to tailor each cache structure to the requirements of each block type with architec-
tural solutions. In addition, alternative technologies can be used for implementing the
different caches. For instance, a power aware technology can be used for one cache
while a fast technology can be employed for the other one.

The cache hierarchy has been typically implemented with SRAM technology (6
transistors per cell) which incurs in important power and area consumptions. A few
years ago, technology advances have allowed to embed DRAM (eDRAM) cells in
CMOS technology [20]. An eDRAM cell integrates a trench DRAM storage into a
logic circuit technology. Table 1 highlights the main properties of these technologies
regarding the design issues addressed in this work. Compared to SRAM, eDRAMcells
have both less power consumption and higher density but lower speed. Because of the
reduced speed, eDRAM cells have not been used in manufactured first-level high-
performance processor caches. In short, both technologies present diverse features
regarding density, speed, and power.

These CMOS compatible technologies have been used both in the industry and the
academia to implement processor caches. For instance, in some modern microproces-
sors [13,27,28] SRAM technology is employed in L1 processor caches while eDRAM
cells are used to allow huge storage capacity in last level caches. Regarding academia,
some recent works [29,32] mingle these technologies in several cache levels. In short,
both technologies properly combined at different (or even the same) cache structures
can be used to address speed, area, and power in the cache subsystem.

In this paper, and to the best of our knowledge, this is the first time that both
technologies are combined to implement the directory cache.We use SRAM for speed
in the frequently accessed Shared cache while eDRAM is employed for power and
area savings in the much larger Private cache. Therefore, scalability and performance
are provided by design thanks to the joined use of architectural techniques and the
choice of the appropriate technology for each cache structure.

3 Base architecture

A tiled CMP architecture consists of a number of replicated tiles connected by a
switched direct network. Different tile organizations are possible so, to focus the
research, this work assumes that each tile contains a processing core with primary
caches (both instruction and data caches), a slice of the L2 cache, and a connection to
the on-chip network. Cache coherence is maintained at the L1 caches. In particular, a
directory-based cache coherence protocol is employed with a directory cache storing
coherence information. Both the L2 cache and the directory cache are shared among
the different processing cores but they are physically distributed among them, i.e.,
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Fig. 3 Organization of the tile assumed in this work and a 4 × 4 tiled CMP

Fig. 4 Private-Shared directory organization

it is implemented as a NUCA architecture [14]. Therefore, a fraction of accesses to
the L2 cache is sent to the local slice while the rest is serviced by remote L2 slices.
In addition, L1 and L2 caches are non-inclusive, i.e., some blocks stored in the L1
caches may not have an entry in the L2 cache (but in the directory). Figure 3 shows
the organization of a tile (left side) and a 16-tile CMP (right side), which is used as
baseline for experimental purposes.

4 The PS directory scheme

The main goal of the proposed approach is to take advantage of the different behavior
exhibited by shared and private directory entries to design scalable directory caches
while, at the same time, improving their performance. Figure 4 depicts the proposed
two-level organization consisting of the Private cache and the Shared cache. As pre-
viously exposed, the Private cache is designed with narrower entries since they do not
require the sharer vector and with a larger number of entries because of the expected
high number of private blocks. On the other hand, the Shared cache has a reduced
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number of entries, thus the sharer vector is only implemented in a small fraction of
directory entries.

When an access to a memory block misses in the processor cache, it is looked up
on the directory for coherence maintenance. Then, if the access results in a directory
miss, the block is provided by the correspondingNUCA slice (or by themainmemory)
to the processor cache, and an entry is allocated in the directory cache to track that
block. In the PS directory, this entry is allocated in the Private cache since the block
is held at this point of time by a single cache. Then, the core identifier is stored in the
owner entry field.

On subsequent accesses to that memory block by the same processor, it will find
the block in its L1 cache, so no additional access to the directory cache will be done.
On the other hand, when that block is evicted from the processor cache, two main
actions are carried out: (i) the data block is written back in the NUCA cache, and
(ii) the directory cache is notified to invalidate the entry of that block (stored in the
Private cache). Thus, a subsequent access to that block will result in a directory cache
miss. This means that the Private cache access time does not affect the performance
of private blocks since these blocks are provided directly to cores by the NUCA cache
or main memory.

If a block tracked by the Private cache is accessed by a core other than the owner,
the block becomes shared and its entry is moved to the Shared cache updating the
sharer vector accordingly. From then until eviction, coherence of this block is tracked
in the Shared cache. That is, the proposal allows only unidirectional movements from
the Private to the Shared cache. Bidirectional transfers of entries among both caches
have been also explored but the extra hardware cost does not justify the scarce benefits.

Regarding timing, directory caches are typically accessed in parallelwith theNUCA
cache. On a directory hit, the data block can be provided either by the NUCA cache
or by a remote processor cache (i.e., the owner). In case that the data block must be
provided by a remote processor cache, the NUCA access is canceled. Analogously,
the PS directory could access both directory cache structures simultaneously; how-
ever, since most directory accesses concentrate on shared blocks, the PS scheme only
accesses the Shared cache in parallel with the NUCA slice. This way provides major
energy savings with minimal performance penalty. Figure 5 depicts this design choice.
Depending on the protocol, specific coherence actions can start as soon as a hit rises
in the Shared cache; for instance, read requests can be forwarded to the owner of the
block, or invalidation requests can be issued to the caches sharing the block in case
of write requests. On a miss in the Shared cache, the Private cache is accessed. As
mentioned, this access could be also performed in parallel with the Shared cache but at
expenses of power while bringing minimal benefits on performance. On a miss in this
cache, which is the most frequent case, there will be no energy or performance gains
or penalties by accessing both directory structures in parallel instead of sequentially,
since both structures have to be accessed and the sum of their access time is still lower
than the NUCA access time that is accessed in parallel. The main difference appears
on a Private cache hit. By accessing both directory structures in parallel, the directory
access time would be slightly reduced on a private directory hit, but at the expense of
higher and unnecessary energy consumption on a shared directory hit. Since hits on
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Fig. 5 Parallel access of the Shared cache and the NUCA cache. Private cache is only accessed on a miss
in the Shared cache

Fig. 6 Directory controller flow diagram

the shared directory aremore frequent, making this access sequential was the preferred
design choice.

Figure 6 summarizes the actions carried out by the directory controller on a coher-
ence access, which works as follows:

• When a coherence request reaches the directory, the directory controller looks up
first the Shared cache since it is more likely that the access results in a hit in this
cache due to the higher fraction of accesses to shared entries. On a hit, the controller
updates (if needed) the sharer vector, performs the associated coherence actions,
and cancels the NUCA access (depending on the block state). On a miss in the
Shared cache, the controller looks up the Private cache. This sequential timing has,
on average, negligible impact on performance since most directory accesses are
to shared blocks, and most accesses to private blocks provide the block from the
NUCA cache.

• A hit in the Private cache means that the block is shared because another core
already has a copy of it in its cache. The processor that accessed it the first time will
not access the directory again because its cache already holds the block, unless a
data cache or directory eviction occurs and then the entry will miss in the directory
again. Hence, the directory entry is moved to the Shared cache. This way ensures
that entries for private blocks are retained in the Private cache while shared entries
are filtered and moved to the Shared cache.

• On a directory miss, the corresponding block entry is allocated in the Private cache
to keep track of the missing block. As there is no coherence information stored for
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that block in the two directory caches, then the block is not being currently cached
by any processor. Thus, the block is assumed to be private to the core accessing it
and the owner information (requesting processor) is updatedwith the core identifier.

• In the proposed implementation, when an entry is replaced from any of both direc-
tory caches it leaves the directory after performing the corresponding invalidations,
and no movement to the other cache is allowed.

The proposal reduces area by design with respect to conventional caches imple-
mented with the same number of entries since directory entries in the Private cache
are much narrower. In addition, power is also reduced by accessing smaller cache
structures sequentially. Nevertheless, the use of two independent organizations with
different design goals, speed for the Shared and capacity for the Private, suggests that
using specific technologies addressing these design issues could provide the proposal
further energy and area savings.

Low-leakage technologies or transistors with low-leakage currents could be used
in the Private cache, whose number of entries is much higher and its access time is
not critical for performance. This work explores the use of eDRAM technology in
the Private cache which provides, as experimental results show, important area and
leakage savings.

5 Simulation environment

The proposed cache scheme has been evaluated with full-system simulation using
Virtutech Simics [16] along with the Wisconsin GEMS toolset [17], which enables
detailed simulationofmultiprocessor systems.Toevaluate systemswith higher number
of cores (see Fig. 9), we have implemented a Pintool [15] that simulates both the base
system and the behavior of our PS directory scheme. The interconnection network
has been modeled using GARNET [3], a detailed network simulator included in the
GEMS toolset. We simulate a 16-tile CMP architecture as described in Sect. 3. The
values of the baseline system parameters used in the evaluation are shown in Table 2.
We used the CACTI 6.5 tool [21] to estimate access time, area requirements and power
consumption of the different cache structures for a 32 nm technology node.

Different configurations for the PS directory have been evaluated with a 1× cov-
erage ratio if not stated a different ratio. This ratio indicates the number of directory
entries per processor cache entry. For instance, in the 1× ratio, each directory cache
slice has the same amount of entries as an L1 cache (i.e., 1×). Two PS directory con-
figurations have been evaluated varying its shared-to-private ratio (1:3 and 1:7), i.e.,
the number of entries in the Private cache is three and seven times greater, respectively,
than that of the Shared cache. These two directory configurations have been chosen
for comparison purposes, because they have the same number of entries (computed
as the sum of entries in both directory caches) as the conventional directory cache.
Additionally, we perform a sensitivity study with lower coverage ratios for our PS
directory to show the significant reduction in directory area and power that it can
achieve without degrading application performance (Sect. 6.3).

Table 3 shows the access time and characteristics of the studied directory structures.
The first row, labeled as single cache, refers to the conventional single-cache approach
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Table 2 System parameters
Memory Parameters

Cache hierarchy Non-inclusive

Cache block size 64 bytes

Split L1 I and D caches 64 KB, 4-way (256 sets)

L1 cache hit time 2 cycles

Shared single L2 cache 512 KB/tile, 8-way (1,024 sets)

L2 cache hit time 2 (tag) and 6 (tag + data) cycles

Single-directory cache 256 sets, 4 ways (same as L1)

Single-directory cache hit time 2 cycles

Memory access time 160 cycles

Network Parameters

Topology 2-dimensional mesh (4× 4)

Routing technique Deterministic X–Y

Flit size 16 bytes

Data and control message size 5 flits and 1 flit

Routing, switch, and link time 2, 2, and 2 cycles

Table 3 Directory latencies

Directory cache # Ways 1× # Sets Latency

1× 0.5× 0.25× 0.125×
Single cache 4 256 2 2 2 –

Shared dir 1:3 2 128 2 2 2 2

Private dir 1:3 SRAM/eDRAM 6 128 2/4 2/4 2/3 2/3

Shared dir 1:7 2 64 2 2 2 2

Private dir 1:7 SRAM/eDRAM 7 128 2/4 2/4 2/3 2/3

(sparse directory) used as baseline. Then, two different PS architectures are presented.
Values for the Private cachewere calculated both for SRAMand eDRAM technologies
and for different coverage ratios. Since, CACTI provides latencies in ns, we rounded
these values to obtain an integer number of processor cycles. The L2 cache access time
was assumed to be 6 cycles, and the remaining access times were scaled accordingly.
Notice that eDRAM latency is much longer than SRAM latency.

A key finding (as discussed in Sect. 2.1) is that private blocks are more benefited
from higher number of ways than shared blocks. This finding suggests that the Pri-
vate cache should implement higher associativity degree. Based on this finding, the
baseline design proposes a 6-way Private cache (two ways over the conventional base-
line cache). However, for a fair comparison, the associativity of the Shared cache is
lowered to only 2-ways (i.e., two ways less than the conventional one). Notice that,
considering both cache structures, the average number of ways per set matches that
of the conventional cache, but skewed to the Private cache in the PS directory.
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Apart from comparing the PS directory with a conventional directory cache with
as many entries as the sum of the Private and the Shared caches, the PS directory
has also been compared against the recently proposed Multi-Grain Directory (MGD)
scheme [33]. MGD uses different entry formats of same length and tracks coherence
at multiple different granularities to provide scalability. EachMGD entry tracks either
a temporarily private memory region, or a single-cache block with any number of
sharers. Using a single entry instead of using one entry per block in the private region,
the coherence directory size can be reduced. Region entries rely on a presence vector to
indicate which blocks of the region are allocated in the private L1 cache. On a directory
miss, a region entry is allocated in the directory. When a second private cache tries
to access a block from a private region, the appropriate bit in the region’s presence
vector is reset and a block entry is allocated in the directory. Block entries work the
same way as they do in conventional sparse directories. In the presented results, the
associativity of the MGD is 4 ways as in our baseline directory cache, the memory
interleaving is 1 KB, and the number of entries is 0.5× that of the conventional and
PS directories. This coverage ratio has been chosen for theMGD as suggested by their
authors with the aim of providing scalability in terms of area and power by grouping
blocks in regions.

We evaluate the aforementioned directory schemes with a wide range of scientific
applications. Barnes (16K particles), FFT (64K complex doubles),Ocean (514× 514
ocean), Radiosity (room, -ae 5000.0 -en 0.050 -bf 0.10), Radix (512K keys, 1,024
radix), Raytrace (teapot—optimized by removing locks for unused ray ids), Volrend
(head), andWater-Nsq (512molecules) are from the SPLASH-2 benchmark suite [31].
Blackscholes (simmedium) and Swaptions (simmedium) belong to PARSEC suite [5].
The experimental results reported in this work correspond to the parallel phase of the
evaluated benchmarks.

6 Experimental evaluation

6.1 Performance

This section analyzes the performance of the proposed PS directory for a 16-tile CMP
compared to the conventional sparse directory and to a multi-grain directory (MGD).
The performance of the directory cachemust be addressed because it may significantly
affect the system performance. Effectively, every time a directory entry is evicted,
invalidation messages are sent to the corresponding processor caches for coherence
purposes. These invalidations will cause coverage misses upon a subsequent memory
request to those blocks, therefore, impacting on the final performance.

Figure 7a shows the L1 MPKI (Misses per KiloInstruction) classified in 3C (i.e.,
cold or compulsory, capacity and conflict),Coherence, andCoverage. As observed, the
PS directory cache is able to remove themost coveragemisses caused by a single cache
or sparse directory approach with the same number of entries (by 84.2 and 68.2 %
for 1:7 and 1:3 private-to-shared ratios, respectively). Essentially, this reduction in
coverage misses comes from removing conflict misses in the directory cache, which
are mainly caused by private directory entries, as shown in Sect. 2.1. Therefore, by
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adding two additional ways to the Private cache (at the cost of reducing the number of
sets, so the number of entries remains the same), most directory conflict misses can
be avoided. To illustrate where benefits come from, let us study the 1:3 ratio. This
ratio provides the same number of sets as the Shared and as the Private cache, with
2-way and 6-way associativity, respectively. In other words, this PS organization has
exactly the same number of sets as the 4-way single cache and, on average, the same
number of ways per set. Thus, this scenario clearly shows that critical private sets are
efficiently handled by the PS scheme. To sum up, performance benefits mainly come
from identifying that the private entries suffer from conflict misses and selectively
adding associativity to specific structures depending on the requirements of the type
of the entries.

The MGD directory reduces the L1 coverage misses by 3.2 % with respect to the
single-conventional directory. Notice that the MGD is able to reduce the number of
coveragemisseswith half the number of entries than the sparse directory.Nevertheless,
this reduction is much lower than the one achieved by the PS directory.

An observation that can confuse the reader is that, in certain applications, by reduc-
ing the number of misses, the number of executed instructions rises. This is a side
effect that can occur in multi-core systems, like the one studied in this work, when
running parallel workloads. The main reason is due to spin-waiting instructions. More
precisely, in parallel workloads, due to synchronization instructions (e.g., barriers)
some cores (the faster ones) have to wait for the slower ones to reach the synchro-
nization point. This causes additional spin-waiting instructions that hit the cache and
affect the MPKI values by further reducing them. Moreover, execution times do not
benefit from it. Some examples of this occurrence are Barnes, where the PS direc-
tory increases the instructions executed by 10 % and Ocean, where MGD increases
instructions executed by 2 % and shows a lower MPKI although it slightly increases
the number of misses.

Performance of a multilevel directory cache can be defined as the number of coher-
ence requests that find the required coherence information in the directory, i.e., as
the overall directory hit ratio regardless of the directory structure that provides such
information. Figure 7b presents the accesses to each PS directory cache classified in
misses and hits. In case of a hit, it is also classified in the directory structure that
currently has the entry (Private or Shared caches).

Notice that, as expected by design, the Private cache shows on average a poor
hit ratio despite the much higher number of entries (3× and 7× times the entries of
the Shared cache), and most directory hits concentrate on the Shared cache, which
corresponds to the smaller and faster directory structure. Remember that each hit in
the Private cache refers to a private block that becomes shared. Although the 1:7 ratio
could seem to have a Shared cache too small, it provides on average better results than
the 1:3 ratio reducing the number of accesses to the directory. Ratio 1:3 and ratio 1:7
reduce the number of accesses to the directory by 37.9 and by 45.1 %, respectively,
while the MGD directory only reduces this number by 1 %.

Reducing both the number of coveragemisses in the processor caches and the access
latency to the directory cache translate into improvements in execution time as shown
in Fig. 8. This figure compares the performance of the studied directory schemes
with that of a perfect directory cache. A directory cache is referred to be perfect
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when it does not incur in performance degradation, i.e., there are no coverage misses.
Therefore, a perfect directory cache provides the same performance as a duplicate tags
approach but it offersmore scalability.Nevertheless, unlike the proposed scheme, there
is no realizable implementation of a duplicate tag approach. Benchmarks with high
coverage miss values (i.e., Radix or Blackscholes) are the ones that benefit the most
from our proposal or similar ones like MGD. The higher the reduction of coverage
misses, the shorter is the execution time. Compared to the single-directory cache, the
PS directory reduces execution time on average by 13.6 and 11.1 % for the 1:7 and
1:3 shared-to-private ratios, respectively. Compared to the perfect cache, the single
cache increases the execution time on average by 22.3 %, yielding in some case to
unacceptable performance (e.g., by 60 % in Radix). However, performance drops of
this proposal with respect to the perfect cache are by 6.4 and 2.9 % for the ratios 1:3
and 1:7, respectively.

The small reduction of coverage misses achieved by MGD also brings, on average,
small performance gains (by 3.9 %) over the conventional single-cache directory.
Compared to the PS directory, the MGD presents a slow down of 11.6 and 16.7 %
considering the 1:3 and 1:7 ratios, respectively. This is due to the fact that shared
blocks are more frequently accessed at the directory; thus, a shared cache with shorter
access time can positively impact on cache miss latency.

To study the scalability of the proposal, we compare the cumulative L1 misses, that
is the number the directory accesses (the lower the better), of the considered directory
schemes with 16 and 64 cores. Figure 9 shows the results normalized with respect
to the L1 misses of the single directory with 16 cores. As observed, when increasing
the number of cores from 16 to 64, the single directory increases its L1 misses (i.e.,
the amount of directory accesses) by 44.8 %. An interesting observation is that PS
configurations with 64 cores present less L1 misses (by 4.2 and 18 % for ratios 1:3
and ratio 1:7) than a single directory with four times less cores. The reason behind this
is, as explained before, the important reduction in coverage misses that the proposal
achieves. Hence, we can conclude that the PS directory is able to scale in performance
better than more conventional schemes, mainly due to the different treatment of block
types, which brings significant reductions in coverage misses.

In short, results present the PS directory as a simple and effective design, which
is able to reach performance close to a perfect directory with reduced hardware com-
plexity.

6.2 Area and energy analysis

This section shows how the PS directory is able to reduce area and energy consumption
while increasing performance.

Table 4 shows the area required for different PS schemes and the single-directory
cache. Both SRAM and eDRAM technologies (as stated in the Private (Tech.) col-
umn) have been considered for the Private cache design, while the smaller Shared
cache is always implemented with fast SRAM technology. As expected, all the PS
configurations are able to reduce area, even those entirely implemented with SRAM
technology. In particular, compared to the single cache, the PS configurations with
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Table 4 Area (in
mm2 × 1,000) of the different
PS configurations for 16 cores
compared with the Single-cache
directory

Directory Shared Private (Tech.) Total Area (%)

Single 19.51 – 19.51 100.00

PS 1:3 6.40 9.50 (SRAM) 15.90 81.49

6.40 8.22 (eDRAM) 14.63 74.98

PS 1:7 3.45 11.08 (SRAM) 14.54 74.52

3.45 9.60 (eDRAM) 13.05 66.88

8 16 32 64 128 256 512 1024

Number of ways

0.00

0.05

0.10
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Fig. 10 Scalability analysis in terms of area

SRAM Private caches save by 18.51 and 25.48 % of area for 1:3 and 1:7 shared-to-
private ratios, respectively. These savings come because the Private cache does not
include the sharer vector field. In addition, when eDRAM technology is considered,
these reductions grow up to 25.02 and 33.12% for 1:3 and 1:7 shared-to-private ratios,
respectively.

Figure 10 depicts the required silicon area per core for the studied directory con-
figurations. As observed, the single-cache directory and the MGD require more area
than any of the PS configurations. Additionally, their area requirements grow faster
with the number of cores. Notice that in spite of using half the number of entries
of a PS directory, the MGD scales poorer than the PS directory. The PS directory is
able to reduce by 84.3 % (ratio 1:7) and 73.3 % (ratio 1:3) the area required by the
conventional directory for a 1,024-core system, even though all of them have the same
number of entries. Thus, the PS directory overcomes one of the biggest problems that
sparse directories present, namely, their scalability.

On the other hand, the PS directory attacks energy consumption by design, espe-
cially leakage, since it uses two low hardware complexity structures with less storage
capacity than a single conventional directory cache. Figure 11 shows the total energy
consumed during the benchmarks execution, normalized with respect to the single-
cache directory. SRAM technology has been assumed in the Private cache of the PS
directory. We can observe that a PS directory with the same number of entries as a
single-cache directory can save around 27 and 20.5 % of the energy consumption
of the single-cache directory for the 1:7 and the 1:3 ratios, respectively, while MGD
only reduces by 8.9 %. This means that a PS directory, with either 1:3 or 1:7 ratio, is
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able to improve the multi-grain scheme in terms of energy. In short, the PS directory
reduces energy consumption by 18.7 % with respect to MGD. Moreover, when taking
eDRAM technology in the Private directory cache into consideration, the savings are
as high as 87.3 and 81.3 % for the 1:7 and the 1:3 ratios, respectively, with respect to
the single-cache directory.

6.3 Directory coverage ratio analysis

This section evaluates the impact on performance of reducing the directory coverage
ratio, i.e., the number of entries in the PS directory cache. As the number of entries
is reduced in the directory cache, a degradation in performance is expected, but at the
same time area and energy consumption will improve. The ideal directory cache size
is the one that entails negligible impact on performance while at the same time allows
area and energy savings.

Figure 12a shows the L1MPKI (as Fig. 7a) classified in 3C,Coherence, andCover-
age for different coverage ratios. As shown, with the only exception of a 0.125× cov-
erage ratio, the proposal still incurs in less L1 cache misses than a single-conventional
directory cache, on average, allowing a significant reduction in directory cache area.
For a 0.125× coverage ratio the increase in the number of cache misses is roughly
20 %, on average. This increase in coverage misses translates into a degradation in
execution timewith respect to a 1× coverage ratio PS directory. However, with respect
to a single directory, the execution time is still shortened, even for a 0.125× cover-
age ratio, as shown in Fig. 12b. Therefore, if reducing silicon area is a target design
goal, which would be the main reason for a lower coverage ratio, one can opt for
reducing the area overhead of the directory without losing performance with respect
to a conventional directory. The PS directory is able to improve the performance of a
conventional single-directory cache while using 8 times less entries.

Table 5 shows the area required for different PS schemes with different coverage
ratios2 and the single-directory cache. As expected, all the PS configurations are able
to reduce area, even those with the same number of entries (1×) as the conventional
directory cache. This is due to the fact that the Private cache does not implement the
sharer vector field. When the directory coverage ratio is reduced (0.5× and 0.25×
coverage ratios), area savings significantly increase up to 80.24 % for the 0.25× 1:7
configuration, while still improving the system performance (as shown previously).
Comparing the results for both shared-to-private ratios, we can see that configurations
with 1:7 ratio are more area efficient since they are able to reduce area from 12 up to
26 % (depending on the directory coverage ratio) over configurations with 1:3 ratio,
while providing similar performance results.

Table 6 shows the energy (dynamic and static) consumed by the PS directory cache
with different coverage ratios and compared to the 1× single-directory cache. As
observed, the 1× and 0.5× PS configurations consume more dynamic energy per
access than the conventional cache, but this is highly offset by the much lower leak-
age consumed by the PS configurations, which is highly reduced even using SRAM

2 Results for 0.125× are not shown because CACTI is not able to provide results for so small caches.
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Table 5 Area (in
mm2 × 1,000) of the different
PS configurations for 16 cores
compared with the 1×
Single-cache directory

Coverage Directory Shared Private (Tech.) Total Area (%)

1× Single 19.51 – 19.51 100.00

PS 1:3 6.33 9.50 (SRAM) 15.83 81.15

PS 1:7 3.28 11.08 (SRAM) 14.37 73.65

PS 1:3 6.33 8.22 (eDRAM) 14.56 74.61

PS 1:7 3.28 9.60 (eDRAM) 12.88 66.02

0.5× PS 1:3 3.28 4.80 (eDRAM) 8.09 41.47

PS 1:7 1.74 4.80 (eDRAM) 6.55 33.60

0.25× PS 1:3 1.74 3.01 (eDRAM) 4.76 24.39

PS 1:7 0.84 3.01 (eDRAM) 3.85 19.76

Table 6 Static and dynamic energy consumption of the different PS configurations for 16 cores compared
with the 1× Single-cache directory

Configurations Pleakage (mW) Eread (pJ)

Coverage Directory Shared Private (Tech.) Total Shared Private (Tech.) Total

1× Single 4.2346 – 4.2346 0.0048 – 0.0048

PS 1:3 1.1877 2.2572 (SRAM) 3.4450 0.0027 0.0028 (SRAM) 0.0055

PS 1:7 0.6404 2.6334 (SRAM) 3.2739 0.0016 0.0032 (SRAM) 0.0049

PS 1:3 1.1877 0.5123 (eDRAM) 1.7001 0.0027 0.0067 (eDRAM) 0.0094

PS 1:7 0.6404 0.5977 (eDRAM) 1.2382 0.0016 0.0078 (eDRAM) 0.0094

0.5× PS 1:3 0.6404 0.4114 (eDRAM) 1.0518 0.0016 0.0035 (eDRAM) 0.0052

PS 1:7 0.3650 0.4799 (eDRAM) 0.8450 0.0010 0.0041 (eDRAM) 0.0052

0.25× PS 1:3 0.3650 0.3276 (eDRAM) 0.6927 0.0010 0.0027 (eDRAM) 0.0037

PS 1:7 0.2181 0.3822 (eDRAM) 0.6003 0.0007 0.0032 (eDRAM) 0.0039

technology in the Private cache. Leakage is reduced from 19 % for the SRAM 1×
1:3 configuration up to 86 % in the eDRAM 0.25× 1:7 configuration. Comparing
1:3 and 1:7 shared-to-private ratios, the 1:7 configurations are able to reduce leakage
consumption from 5 up to 15 % with respect to the 1:3 configurations. Taking into
account these values, Fig. 13 shows the energy consumed during the execution of the
benchmarks by the PS directory normalized with respect to the energy consumption
by the single-cache directory. Lower coverage ratios lead to less energy consumed at
the cost of performance degradation.

Figure 14 depicts the area per core scalability for the studied directory configura-
tions. As observed, the conventional directory cache exhibits the worst area behavior
with significant area differences with the PS directory configurations. These differ-
ences increase with the number of cores. Even it requires for 128 cores more area than
all the PS configurations with up to 1,024 cores, with the only exception of the PS 1×
1:3 configuration.
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Fig. 14 Scalability analysis in terms of area

As stated in previous section for a 1× coverage configuration, the PS directory is
able to reduce by 26.71 % (ratio 1:7) and 15.71 % (ratio 1:3) the area required by
the conventional directory cache for a 1,024-core system using both the same number
of entries. Of course, the area is further reduced with smaller coverage ratios. In
particular, for the 0.5× PS configurations, the PS directory requires only by 14.47 %
(ratio 1:3) and 8.13 % (ratio 1:7) the area required by the single-cache directory, and
for the 0.25× PS configurations only 7.52 % (ratio 1:3) and 4.77 % (ratio 1:7) the area
required by the single cache directory.

7 Related work

Cache coherence is needed in shared memory systems where multiple cores are
allowed to access the same memory blocks. This work focuses on directory-based
protocols, which are the commonly adopted solution for a medium to large core count.
These protocols use a coherence directory to track which private (e.g., L1) processor
caches share each block. The directory structure is accessed to carry out coherence
actions such as sending invalidation requests to serialize write operations, or asking a
copy of the block to the owner (e.g., the last processor that wrote it).

Traditional directory schemes does not scale with the core count, which is the cur-
rent trend in the microprocessor industry. Thus, implementing directories that scale
to hundreds of cores in terms of power and area is a major design concern. Direc-
tory implementations, both in academia and industry, follow two main approaches:
duplicate-tag directories and sparse directories.

Duplicate-tag directories maintain a copy of the tags of all tracked blocks in the
lower cache level (e.g., the L1 core cache). Therefore, this approach does not raise
directory-induced invalidations. The sharer vector is obtained by accessing the highly
associative directory structure. This approach has been implemented in modern small
CMP systems [4,26] and is the focus of recent research works [23,34]. The main
drawback of this approach is the required associativity of the directory structure,
which must be equal to the product of the number core caches by the associativity of
such caches. This means that a directory access requires a 512 associative search for
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64 8-way L1 caches. Duplicate-tag directories are area efficient; however, the highly
associative structures yield to a non-scalable quadratic growth of the aggregated energy
consumption [10], so this approach becomes prohibitive for a medium to large core
count.

The high-power consumption incurred by duplicate-tag directories has led some
research to focus on providing high associativity with a small number of ways. Cuckoo
Directory [10] uses a different hash function to index each directory way, like skew-
associative caches. Hits require a single lookup but replacements require frommultiple
hash functions to provide multiple candidates, so giving the illusion of a cache with
higher associativity but at the expense of higher consumption and latency.

Sparse cache directories [12] are organized as a set-associative cache like structure
indexed by the block address. Reducing the directory associativitymakes this approach
more power efficient than duplicate-tag directories. Each cache directory entry encodes
the set of sharers of the associated tracked block. Conventional approaches use a
bit vector, i.e., a bit per-core cache, to encode the sharers. In this scheme, the per-
core area grows linearly with the core count and the aggregated directory area grows
quadratically, since the number of directory structures increases with the number of
cores. Previous research works have focused on reducing directory area by focusing
on the entry size.

To shorten the entry size, some approaches use compression [1,6,7,22]. In [1,2], a
two-level cache directory is proposed. The first level stores the typical sharer vector
while the second level uses a compressed code.When using compression, area is saved
at expenses of using an inexact representation of the sharer vector, thus yielding to
performance losses. Hierarchical [11] representation of the sharer vector has been also
used for entry size reduction purposes. However, hierarchical organizations impose
additional lookups on the critical path so hurting latency. Sparse directoriesmay reduce
area by reducing the number of directory entries but at the expense of performance
since directory evictions force invalidations at the core caches of the blocks being
tracked.

Unlike typical sparse directories, SCD [25] uses different entry formats of the same
length. Lines with one or a few sharers use a single directory entry while widely shared
lines employ several cache lines (multi-tag format) using hierarchical bit vectors.
This scheme requires extra complexity and accesses for managing dynamic changes
(expanding/contracting) in the format.

Multi-grain directories (MGD) [33] also uses different entry formats of same length
and tracks coherence at multiple different granularities to achieve scalability. Each
MGD entry tracks either a temporarily private memory region or a single cache block
with any number of sharers. Differently from the PS directory, this proposal is limited
to a range of directory interleavings (those higher or equal to the size of a memory
region) in order to achievemaximum benefits. MGD has been evaluated and compared
to our PS directory, as shown in the evaluation section.

Finally, other proposals [9] focus on reducing the number of entries implemented
in the cache directory instead of focusing on the sharer vector. While this approach
does not affect the performance, it requires modifying the OS, the Page Table, the
processor TLBs and the coherence protocol.
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8 Conclusions

This work identifies five key characteristics that clearly differentiate the behavior of
private and shared blocks from the directory point of view.Based on these observations,
we introduce thePSdirectory, a directory cache that uses twodifferent cache structures,
each one tailored to one type of block (i.e., private or shared). The Shared directory
cache, which tracks shared blocks, is small, with low associativity and fast. The Private
directory cache is aimed at tracking private blocks, which are highly dominant in
current workloads. This structure does not store the sharer vector, is larger than the
shared cache, and it is implemented with higher associativity.

Experimental results for a 16-core CMP show that, compared to a single-directory
cachewith the same number of entries, the PS directory improves performance by 14%
due to the separate treatment of private and shared blocks. Additionally, directory area
is reduced by 26.35 % mainly due to not storing the sharer vector for the private
blocks, and by 33.98 %when eDRAM technology is considered for the Private cache.
Regarding energy consumption, reductions about 27 % are achieved. Compared to the
state-of-the-art MGD scheme, the PS directory increases the performance by 16.7 %
and reduces energy by 18.7 %, being also much more scalable in terms of area. Thus,
the proposal provides noticeable scalability in terms of area and energy with respect
to the single cache and the MGD directories, while also being able to surpass a single-
cache directory in terms of performance scalability.

Finally, we would like to remark that the mentioned benefits are obtained with
almost the same performance as the duplicate tags approach (i.e., perfect directory)
but with a feasible implementation that scales in performance better than conventional
approaches.
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