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Abstract This paper presents MIMOPack, a set of optimized functions to perform
some of the most complex stages in multiple-input multiple-output (MIMO) communi-
cation systems such as channel coding, preprocessing, precoding and detection. These
functions are optimized to be run in a wide range of architectures increasing the porta-
bility of scientific codes between different computing environments. MIMOPack aims
to become a useful library for the research community facilitating to the programmer
the development of adaptable parallel applications and also to speed up simulation plat-
forms used to assess different technologies proposed by several companies involved
in standarization processes.
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1 Introduction

Multiple-input multiple-output (MIMO) systems have a high impact in the current
wireless communications, since they allow increase in the realiability, coverage and
transmission rates without the need for extra-bandwidth or power cost [1]. To boost
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the data rates of current generation cellular networks, MIMO technologies have been
adopted by many wireless standards such as long-term evolution (LTE), worldwide
interoperability for microwave access (WiMAX), wireless local area network (WLAN)
and also by broadband standards such as digital video broadcasting next-generation
handheld (DVB-NGH). The influence of the new handheld devices such as smart
phones and tablets is also important, since it has caused the drastic growth of mobile
multimedia services. Hence, MIMO surely will become an imperative technology of
wireless communication systems to increase the data traffic capacity.

However, the use of MIMO technologies involves an increment of the detection
process complexity. The detector is present in the receiver side and is the responsible
for recover the transmitted signals (which are affected by the channel fluctuations)
with the maximum reliability. This step becomes in many cases the most complex
stage in the communication. Another important factor that affects the performance of
a MIMO system is the number of transmit and receive antenna, because as the system
grows the communication data processing becomes more complicated. Although the
number of antennas currently allowed in the standards is not large, it is expected that
more than 100 transmit antennas could be used in the near future [2]. All the above
reasons motivate the search for high-throughput versatile receiver implementations
capable to be reconfigured and scalable with the system parameters.

Practical implementation of MIMO receiver schemes and software-defined radio
(SDR) platforms has been traditionally developed using digital signal processors (DSP)
[3], field programmable gate arrays (FPGA) or application-specific integrated circuits
(ASIC) [4,5]. The last advances in computational hardware have allowed the devel-
opment of high-throughput implementations. In last years, the number of scientific
contributions and research projects related to the use of high-performance computing
(HPC) systems has significantly increased. This phenomenon has occurred in almost
all engineering fields that require intensive computing, and signal processing is not an
exception.

The use of the last generation of high-performance computing (HPC) systems such
as multi-core CPUs and graphic processing units (GPUs) has become attractive for
the efficient implementation of parallel signal processing algorithms with high com-
putational requirements, such as the scheme reported in [6], high-throughput MIMO
detectors [7,8] and fast low-density parity check (LDPC) decoders [9]. Currently,
the simultaneous use of different types of architectures (GPUs and CPU) on a same
heterogeneous system enjoys great popularity and is currently used, for example, by
numerical linear algebra libraries as MAGMA [10] or CULA [11].

2 Motivation

The use of the high-performance computing systems not only brings big benefits,
but also poses big challenges. These systems introduce asymmetries and hetero-
geneities that complicate the development of efficient algorithms. In the recent years,
a large variety of machine architectures have appeared, in view of this situation scien-
tients of the research community are obliged to write the codes in different program-
ming languages and consider many details of the architecture to use efficiently the
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whole target system. Therefore, this high-performance computing library is essen-
tial to facilitate the implementation of scientific codes on a widespread range of
architectures. Furthermore, there are several important companies involved in the
development of new wireless and broadband standards. Each company proposes tech-
nologies to satisfy the functional requirements of the new standards. In many cases,
simulation is the only way to develop and test these proposals but these simulations
often involve high-computational burden, and require weeks or even months to be
completed. Thereby, this library may allow the launch of large simulations, open-
ing the door for researchers to analyze its technologies faster than their conventional
simulation.

In this sense the HPC libraries became valuable tools for specialists of a particular
field, since it facilitates the development of scientific codes. Some software companies
have already released to the market various libraries with extensive backgrounds and
acceptance, most of them in numerical linear algebra (e.g. BLAS, LAPACK). However,
there are few tools or high performance libraries available for communication systems
design. For example, Communications System Toolbox [12] provides algorithms for
designing, simulating and analyzing communications systems. Although this software
is excellent and widely used by the scientific community, nowadays just a small set of
functions are prepared to use parallel computing with GPUs. Other library is IT++[13],
which is a C++ library of mathematical, signal processing and communication classes
and functions. IT++ makes an extensive use of existing open-source or commercial
libraries for increased functionality, speed and accuracy. In particular BLAS, LAPACK
and FFTW libraries can be addressed. However, this library is oriented to its exclusive
use on multicore machines. It does not support the use of GPUs.

As mentioned, existent tools do not provide features to ease the development of
adaptable parallel applications in accordance with the architecture of the executing
platform, so we have made a special effort to develop a high-performance library for
MIMO communication systems called MIMOPack. The library aims to implement
efficiently, using parallel computing, a set of functions to perform some of the critical
stages in MIMO communication systems. One of the main features of this library is
that it can be used with the last generation of machine architectures (e.g GPUs and
multicore) to fully exploit its computational capacity and reduce the response time of
costly and complex problems.

3 MIMOPack software package

The library is written in C language and is composed by several modules. Fig-
ure 1 illustrates the basic simulation chain through the library modules. The inter-
face of the functions is common to all environments to ease its use, regard-
less of the machine where it was executed. This feature increases the portabil-
ity of codes between different computing platforms. Nowadays, it supports the
execution of its routines on a sequential/multicore processor and GPU/Multi-GPU
devices. In future releases are expected to enable the use of the Intel Xeon Phi
COprocessor.
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Fig. 1 Simulation chain through the MIMOPack library modules

The library is continuously growing, the updated release collects a set of functions
divided in four blocks (most of them ready to be called from MATLAB through MEX-
Files):

— Hard-output detection: ML-exhaustive (MLE), zero forcing SIC (ZF-SIC), hard
fixed sphere decoder (HFSD), Kbest decoder (KBEST), Schnorr Euchner sphere
decoder (SDSE), automatic sphere decoder (ASD). For some performance results
see [14-16].

— Soft-output detection: Soft fixed sphere decoder, fully parallel fixed-complexity
soft-output detector, max-log. For some performance results see [14—17].

— Precoding: Zero-forcing precoding, Tomlinson—Harashima, lattice reduction-aided
Tomlinson—Harashima, lattice reduction aided, enhanced lattice reduction aided.
For some performance results see [18,19].

— Error control coding: LDPC decoder [20].

Also other kind of auxiliary functions such as QAM modulators (modulator.h),
AWGN channel functions (link.h), preprocessing algorithms (preprocessing.h) and
several mathematical functions are included in the library.

3.1 MIMOPack configuration

One of the most important features of MIMOPack is the configurability. The library
allows to configure for each simulation the following MIMO systems parameters:

— nT: Number of transmitter antennas.

— nR: Number of receiver antennas.

— snr: Signal to noise ratio (dB).

— M: Modulation (constellation size).

— Nc: Number of signal vectors to be transmitted.

— Lch: Variation of the channel, is the number of transmitted signal vectors with the
same channel matrix.
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Furthermore, the library allows the user to assign the type and number of resources
to use during the execution. For a given C source code, the user may specify a different
distribution of the computational resources for each function by the configuration of
the mmp_config structure which contains the following parameters:

— omp_threads is the number of OpenMP threads.

— n_gpus is the number of GPUs. The library automatically selects those with more
CUDA cores on the detected devices.

— workload_gpu is the percentage of workload that will be executed among the
n_gpus. The remaining work will be computed by omp_threads threads.

— use_mkl indicates if MKL library will be used in some parts of the algorithms.

Two commands are currently provided by the package to allow the user the cor-
rect configuration of the environment: set_mmp_config and check_config. The first
function is used to fix parameters of the mmp_config structure. To ensure the proper
configuration, the library implements the function check_config, which checks the
properties of the execution platform and indicates the setup incompatibilities, if any.
This routines can be called from a C source code as follows:

mmp_config set_mmp_config(int num_gpus, int omp_threads,
int workload_gpu, bool use_mkl);
void check_config (mmp_config config) ;

A calling example could be the following. In this example, we are using a config-
uration with 80 % of workload for two GPUs and 20 % of workload for 12 OpenMP
threads without any MKL call.

mmp_config my configuration;
my_configuration = set_mmp_config(2, 12, 80, false);
check_config(my_configuration) ;

3.2 Heterogenous mode

The library allows the execution of several functions in a heterogeneous mode to fully
exploit the computational capacity. The workload can be split between the different
types of devices on the target machine (GPU or CPU). Normally, the user will try to
simulate a large number of transmitted signals, then the dispatcher splits the amount
of signals among the different resources. Using the parameter workload_gpu defined
in the Sect. 3.1 we can specify the number of signals that each device must perform.

Figure 2 shows a simple example for the detection of 10 signal vectors, denoted as
x where i is the index for a given signal. The configuration is 40 % for 4 CPU threads
(4 signals) and 60 % for 2 GPUs (6 signals). Initially, the dispatcher launches 2 threads.
One of the threads will distribute the load percentage among omp_threads threads; to
carry out this distribution the option omp_nested must be activated allowing nested
parallelism. The other thread is in charge of controlling and creating many threads as
GPUs have selected with the parameter n_gpus seen in previous section.
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Fig. 2 Example of MIMO detection with heterogeneous mode

3.3 Example of simulation with MIMOPack

Let us consider a MIMO system with nT transmitter and n R receiver antennas and
a certain signal-to-noise ratio (SNR). The input data stream is split equally into nT
transmit antennas. The baseband equivalent model for this system is given by

y:HX+V, (1)

where x represents the transmitted signal vector composed of the elements resulting
of mapping sets of information bits to symbols belonging to a certain constellation £2
of size M. Vector y denotes the received symbol vector, and v is a complex additive
white Gaussian noise vector. The detection problem in MIMO systems consists in
determining the transmitted vector xm with the highest reliability. In practice, the
detection problem is carried out by solving the following least squares problem

xm = arg min |y — Hx||>. )
xennT

To exemplify the use of the library, we show below an example for a simulation of
the transmission of Nc signals in the system explained above.

mmp_conf my conf;

my_conf = set_mmp_config(2, 32, false, 80);
mmp_modulator my_mod;

my_mod = set_mmp_modulator (M, nT);

mmp_simulation my_sim;

my_sim = set_mmp_simulation(M, nR, nT, Nc, Lch, snr,

o Ul i W DN
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my_mod) ;

7. generate_bits(bits, Nc*my_mod.k*nT) ;

8. gam_mapper_demux (my_mod, bits, Nc*my mod.k*nT, xX_r,
x_1);

9. rand_channel values(H_r, H_i, Lch, Nc, nT, nR);

10. pass_channel(H_r, H i, x r, x_i, v.r, y_i, snr, Nc,
Lch, nT, nR);

11. init_timer (my_sim) ;

12. dt_mle(my_conf, my_sim, ped, xm r, xm_ i, H r, H_1,
y.r, y_i);

13. stop_timer (my_sim) ;

14. save_simulation(my_ sim, x r, x_i, xXm_r, xm_i);

15. printf (Time \%$f, my_sim.etime);

16. printf (Time = \%f, my_sim.ber);

As we can see, there is an initial stage where some parameters of the platform,
modulator and simulation are configured (see lines 1-6). After that, we need to generate
the random bits which simulate the transmission of a service. Next, these bits are
multiplexed and mapped into constellations symbols. Also it is necessary to generate
the random channel values to simulate the conditions of the link through which they
will be sent. Then, we initialize the timer to assess the performance of the detector
(MLE detector in line 12) with the configuration selected in the line 2. Finally, the
user must save the simulation results to calculate some statistics (e.g. execution time,
bit error rate, symbol error rate or throughput).

4 Performance evaluation

To assess the performance of our library, we have evaluated the execution times of a set
of hard-output detectors. Clearly, there are several methods and versions in the state
of the art devised to recover the information in a MIMO system, but only a selection
of these have been evaluated in this paper. This selection is formed by detectors
with mixed complexities and performances intended to cover multiple use cases with
different MIMO scenarios and channel conditions. These detectors can be grouped in
two main groups: ML and non-ML detectors. The ML detectors (MLE and SDSE) are
optimum in terms of bit error rate but at the expense of increased complexity. On the
other hand, non-ML detectors (ZF-SIC and KBEST) are simplest but the reliability of
the systems decreases when using this kind of detectors to obtain an approximation
of the detected symbols [21].

The tests are executed on a platform with one Nvidia Tesla K20Xm GPU with 14
SM, each SM including 192 cores. The core frequency is 0.73 GHz. The GPU has
5GB of GDDRS5 global memory and 48 kB of shared memory per block. The installed
CUDA toolkitis 5.5. The Nvidia card is mounted on a PC with two Intel Xeon CPU E5-
2697 at 2.70 GHz with 12 cores and hyperthreading activated. We consider a simple
simulation example of a MIMO system with 6 transmit and receive antennas, 16-
QAM symbol alphabet and a channel SNR of 5dB. The speedup is defined as the
ratio between the computational time resulting of executing the simulation of 50,000
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Table1 Runtime and biterror rate of hard-output MIMOPack detectors with different library configurations

Detector Runtime (s) BER
Sequential 32 threads GPU

MLE 1.28 x 10° 7.41 x 103 5.69 x 103 0.083205
SDSE 34.44 2.39 7.46 0.083205
ZFSIC 0.32 x 1071 0.71 x 1072 3.68 0.099947
2-BEST 0.79 0.06 4.13 0.091043
4-BEST 1.10 0.20 4.95 0.085659
16-BEST 2.90 0.21 5.88 0.083308

Table 2 Runtime in seconds of non-ML MIMOPack detectors for very large MIMO systems

ny =npg ZE-SIC 2-BEST
Sequential 32 threads Sequential 32 threads
20 0.11 0.02 2.28 1.16
40 0.30 0.03 6.40 0.44
60 0.71 0.07 13.04 0.94
80 1.22 0.11 21.59 2.29
100 1.78 0.15 32.45 2.44

signals on the sequential CPU (with one OpenMP thread) and the time to execute the
same simulation on a multicore and GPU system.

As we can see in Table 1, we have a good speedup for the multicore version for
all kind of detectors. MLE GPU version exhibits a good performance even better than
that obtained with multicore version. However, due to the low complexity and the
non-parallel pattern of the suboptimal methods, ZF-SIC and K-BEST methods have
a higher execution time than sequential version because the time needed to transfer
data between the CPU and the GPU is greater to the detection time itself. Therefore,
it is necessary to increase the computational burden of the simulation to obtain good
performance with GPUs.

Table 2 shows the execution time of the non-ML detectors for Massive MIMO
systems. The simulation have been done with the same parameters of the Table 1 but
increasing from 20 x 20 to 100 x 100 the MIMO system size.

5 Conclusions

This paper presents a high-performance library for MIMO communications systems
which aims to provide a set of routines needed to perform the most complex stages in
the current wireless communications. The proposed library exhibits three important
features: portable, efficient and user friendly. These aspects make this library a very
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useful tool for companies involved in the development of new wireless and broadband
standards, which need to obtain results and statistics of its proposals quickly and also
for other researchers making easier the implementation of scientific codes. The use
of the library in heterogeneous mode allows the user to simulate the behavior of the
system with multiple values, thereby providing greater versatility and speedup. The
efficiency of MIMOPack has been evaluated by comparing the BER and computa-
tional time with different types of hard-output detectors and platform configurations.
The variety of detectors with mixed complexities and performances allows to cover
multiple use cases with different channel conditions and scenarios such as massive
MIMO. Moreover, parallel implementations allow the execution of large simulations
over different architectures thus exploiting the capacity of the modern machines.
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