
J Supercomput (2015) 71:781–807
DOI 10.1007/s11227-014-1325-4

DASC-DIR: a low-overhead coherence directory
for many-core processors

Alberto Ros · Manuel E. Acacio

Published online: 5 November 2014
© Springer Science+Business Media New York 2014

Abstract Current trends point toward future many-core processors being imple-
mented using the hardware-managed, implicitly addressed, coherent caches memory
model. With this memory model, all on-chip storage is used for private and shared
caches that are kept coherent by hardware. Communication between cores is per-
formed by writing to and reading from shared memory, and a scalable point-to-point
interconnection network is in charge of transmitting messages. Cache coherence in
this context is guaranteed by means of a directory-based protocol. Unfortunately, it
has been previously shown that the directory structure required to keep track of sharers
can restrict the scalability of these designs due its excessive area or energy require-
ments, or for a compressed directory, the increased coherence traffic that in some
cases it could cause. On the other hand, in many-core architectures, memory blocks
are commonly assigned to the banks of a NUCA shared cache by following a physical
mapping. This mapping assigns blocks to cache banks in a round-robin fashion, thus
neglecting the distance between the cores that more frequently access every block and
the corresponding NUCA bank for the block. This issue impacts both cache access
latency and the amount of on-chip network traffic generated and causes that some
area- and energy-efficient compressed directories significantly increase the number of
messages per coherence event, which finally translates into degraded performance. In
this work we propose an efficient and low-overhead coherence directory which is built
around two main ingredients: the first is the use of the distance-aware round-robin
mapping policy, an OS-managed policy which tries to map the pages accessed by a
core to its closest (local) bank, at the same time it introduces an upper bound on the

A. Ros · M. E. Acacio (B)
Universidad de Murcia, Murcia, Spain
e-mail: meacacio@ditec.um.es

A. Ros
e-mail: aros@ditec.um.es

123

782 A. Ros, M. E. Acacio

deviation of the distribution of memory pages among cache banks, which lessens the
number of off-chip accesses. The second is the utilization of a very compressed direc-
tory structure which takes advantage of this mapping policy to represent sharers in a
very compact way without increasing coherence network traffic. Simulation results
for a 32-core architecture demonstrate that compared to a full-map directory using the
typical round-robin physical mapping policy, our proposal drastically reduces the size
of the directory structure (and thus, its area and energy requirements); at the same time,
it does not increase coherence network traffic and 6 % average savings in execution
time are achieved.

Keywords Many-core CMPs · Dynamic home assignment · Compressed sharing
codes · Energy consumption · Execution time · Area overhead · Network traffic

1 Introduction

An ever-increasing power consumption and diminishing returns in performance of
single-core architectures have led to the advent of general-purpose multi-core chips (or
chip-multi-processors or CMPs) during the last decade [1]. Since then, most processor
manufacturers have joined this multi-core wave, developing products with an ever-
increasing number of cores. With a growing number of transistors available at each
new technology generation, coupled with a reduction in design complexity enabled
by its modular design, multi-core chips look set to stay.

Multi-core architectures that integrate several tens of processor cores (usually
known as many-core architectures) are already a reality in the commercial arena—
an example is the 60-core Intel Xeon Phi processor [2]—and the number of cores
is expected to keep growing, which may lead to hundreds and even thousands of
cores integrated on a single chip [3]. To organize such a big number of cores, tiled
multi-core architectures have been advocated as the most feasible organization. Tiled
chip multi-processors are designed as arrays of identical or close-to-identical building
blocks (tiles). In these architectures, each tile comprises a core, one or several levels of
caches, and a network interface that connects all tiles through a scalable point-to-point
interconnection network. Regarding the communication model, current trends point
toward future many-core processors being implemented using the hardware-managed,
implicitly addressed, coherent caches memory model. With this memory model, all on-
chip storage is used for private and shared caches that are kept coherent by hardware.
Communication between cores is performed by writing to and reading from shared
memory, and a directory-based cache coherence protocol implemented in hardware
is in charge of ensuring the consistency of data stored in private caches. Figure 1
shows the organization of a 16-core tiled CMP with per core private L1 caches for
instructions (L1I$) and data (L1D$) and a physically distributed, but logically shared
L2 cache (L2$). Without loss of generality, this is the cache hierarchy assumed in this
work. This way, from now on we will use the terms last-level cache (LLC) and L2
cache interchangeably.

The cache coherence protocol in a many-core architecture becomes a key design
issue since it adds requirements of area and energy consumption to the final design and,

123

DASC-DIR: a low-overhead coherence directory 783

30 1 2

4 5 6 7

8 9 10 11

12 13 14 15

CPU Core
L1D$L1I$

L2$
(Tags)

R
outer

D
irectory

L2$ (Data)

Fig. 1 Architecture of a tiled CMP

therefore, could restrict severely its scalability. The directory structure is distributed
between the last-level shared cache banks, usually within the tags’ portion [4]. In this
way, each tile keeps the sharing information of the blocks mapped to the L2 cache bank
that it contains. This sharing information comprises two main components (apart from
other implementation-dependent bits): the state bits used to codify one of the three
possible states the directory can assign to the block (Uncached, Shared and Private),
and the sharing code that holds the list of current sharers. Most of the bits of each direc-
tory entry are devoted to codifying the sharing code. Since the directory is commonly
stored as part of the on-chip L2 cache, it is desirable that its size be kept as low as
possible. Moreover, a hard to scale directory organization could require re-designing
the L2 cache to adapt the tile to the range of cores that is expected for the CMP.

In a traditional directory organization, each directory entry keeps track of the sharers
of the corresponding memory block through a simple full-map sharing code (one bit
per private cache). Unfortunately, this sharing code is only feasible for a handful of
cores due to the excessive area requirements that it introduces when the number of
cores is large. On the other hand, compressed sharing codes, whose size does not grow
linearly with the number of cores, drastically reduce area overhead at the expense of
increasing coherence traffic and, therefore, degrading performance and harming energy
consumption.

Besides the organization of the coherence directory, another important design issue
in a many-core chip is the distribution of the memory blocks among the different
tiles. This aspect directly affects L2 cache access latency, since it depends on the bank
wherein the block is allocated, i.e., the home bank or tile.

The most straightforward way of distributing blocks among the different tiles is by
using a physical mapping policy in which a set of bits in the block address defines the
home bank for every block. Most commercial CMPs [5,6] choose the less significant
bits of the block address for selecting the home bank. In this way, blocks are assigned
to banks in a round-robin fashion with block-size granularity. This distribution of
blocks does not take into account the distance between the requesting core and the
home bank on an L1 cache miss. Moreover, the average distance between two tiles
significantly increases with the size of the CMP, which can become a performance
problem for many-core CMPs.

On the other hand, page-size granularity seems to be a better choice than block-size
granularity for future tiled CMPs because (1) it is more appropriate for new technolo-

123

784 A. Ros, M. E. Acacio

gies aimed at reducing off-chip latencies, such as 3D stacking memory architectures
[7], and (2) it provides flexibility to the OS for implementing more efficient mapping
policies [8,9], such as first-touch, which has been widely used in NUMA architectures
to achieve more locality in the memory accesses. The behavior of a first-touch policy
is similar to a private cache organization, but without replication. One good aspect
of this policy is that it is dynamic in the sense that pages are mapped to cache banks
depending on the particular memory access pattern. However, this policy can increase
off-chip accesses when the working set of the application is not well balanced among
cores.

Additionally, many-core architectures are very suitable for throughput computing
[10] and, therefore, constitute a highly attractive choice for commercial servers in
which several programs run at the same time using different subsets of the cores
available on chip. The use of these architectures as commercial servers emphasizes
the need of efficient mapping policies because (1) data are shared by cores that are
placed in a small region of the chip, but with a round-robin policy they could map to any
bank in the chip, and (2) more working set imbalance can occur in these systems, since
the applications running on them could have very different memory requirements.

In this work, we propose DASC-DIR, an efficient and low-overhead coherence
directory which is built around two main ingredients. The first is the use of the distance-
aware round-robin mapping policy [11], an OS-managed policy which without any
extra hardware structures tries to map the pages accessed by a core to its closest (local)
bank; at the same time it introduces an upper bound on the deviation of the distribution
of memory pages among cache banks, which lessens the number of off-chip accesses.

The second ingredient is the utilization of a very compressed directory structure
which takes advantage of this mapping policy to represent sharers in a very com-
pact way without increasing coherence network traffic, which we call distance-aware
sharing code or DASC.

This way, this paper extends our previous work [11] by removing the scalability
limit imposed by the full-map sharing code assumed in [11] through the use of several
compressed sharing codes. Additionally, this paper presents and evaluates for the first
time our distance-aware sharing code, which is especially designed to be used in
conjunction with the distance-aware round-robin mapping policy.

Simulation results for a 32-core architecture demonstrate that compared to a full-
map directory using the typical round-robin physical mapping policy, our proposal
drastically reduces the size of the directory structure (and thus, its area and energy
requirements); at the same time, it does not increase coherence network traffic and 6%
average savings in execution time is achieved.

The rest of the paper is organized as follows. A background on mapping policies
for NUCA caches is given in Sect. 2. In this section, we also describe two compressed
sharing codes that already appeared in the literature. Section 3 describes the distance-
aware round-robin mapping policy and the impact of distance-aware mapping policies
on private cache miss rate. The distance-aware sharing code is discussed in Sect. 4.
Section 5 introduces the methodology employed in the evaluation. Section 6 shows
the performance results. Section 7 presents a review of the related work and, finally,
Sect. 8 concludes the paper.

123

DASC-DIR: a low-overhead coherence directory 785

2 Background

2.1 Mapping policies in NUCA caches

Non-uniform cache access (NUCA) caches [12] are a set of cache banks distributed
across the chip and connected through a point-to-point network. Although cache banks
are physically distributed, they constitute a logically shared cache (the L2 cache level
in this work). Therefore, the mapping of memory blocks to cache entries is not only
defined by the cache set, but also by the cache bank. The cache bank where a particular
block maps is called the home bank for that block.

Most CMP architectures that implement NUCA caches map memory blocks to
cache banks by taking some fixed bits of the physical address of the block [5,6]. This
physical mapping uniformly spreads blocks among cache banks, resulting in optimal
utilization of the cache storage. Commonly, the bits taken to select the cache bank for
a particular block are the less significant ones, leading to a block-grained interleaving
(Block diagram in Fig. 2a). One of the advantages of this interleaving is that it offers
less contention at the home tile by distributing contiguous memory blocks across
different cache banks.

Another option is to use an interleaving with a granularity of at least the size of a
page (e.g., Page or L2 bank diagram in Fig. 2a). As shown in Fig. 2b, when a physical
mapping, or round-robin, policy is considered the granularity of the interleaving does
not significantly affect the average distance to the home bank. However, this interleav-
ing becomes an important decision when either 3D stacked memory or OS-managed
mapping techniques are considered.

A 3D stacked memory design can offer latency reductions for off-chip accesses
when a coarse-grained interleaving (at least of page size) is employed. In tiled CMPs
with 3D stacking memory, each tile includes a memory controller for the memory
bank that it handles [7]. Low-latency, high-bandwidth and very dense vertical links

Home
Bank

L2 Set

B.O.P.O.

L1 Set

B.O.

L1 Set

B.O.P.O.

L1 Set

L2 Set Home
Bank

L2 Set

Bank
Home

P.O.

L2 Set

L2 bank

Page

Block Virtual to Physical

Virtual to Physical

Virtual to Physical

Block Page L2 bank
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

A
ve

ra
ge

 h
om

e
di

st
an

ce

Round Robin
First Touch

(a) Different granularities of interleaving

(P.O.=Page offset, B.O.=Block offset).

(b) Impact on average home distance for

the SPLASH-2 benchmark suite and 16

cores.

Fig. 2 Granularity of L2 cache interleaving and its impact on average home distance

123

786 A. Ros, M. E. Acacio

[13] interconnect the on-chip controller with the off-chip memory. These vertical
links provide fast access to the main memory. On an L2 cache miss, it is necessary
to reach the memory controller of the memory bank where the block is stored. If the
memory controller is placed in a different tile than the home L2 bank, a horizontal
on-chip communication is entailed. Since blocks in memory are handled at page-size
granularity, it is not possible to assign the same mapping for the L2 cache if a block-
size granularity is considered. Differently, with a granularity of at least the size of a
page the same mapping can be assigned to both memories, thus avoiding the horizontal
latency.

The other advantage of a coarse-grained interleaving is that it allows the OS to
manage the cache mapping without requiring extra hardware support [8]. The OS
maps a page to a particular bank the first time the page is referenced, i.e, a memory
miss. At that moment, the OS assigns a physical address to the virtual address of the
page. Therefore, some bits in the address of the page may change (Virtual to Physical
field in Fig. 2a). Then, the OS can control the cache mapping by assigning to this page
a physical address that maps to the desired bank. For example, a first-touch policy can
be easily implemented by assigning an address that physically maps to the tile wherein
the core that is accessing the page resides. The OS only needs to keep in software a
list of available physical addresses for each memory bank. With a first-touch mapping
policy, finer granularity offers shorter average distance between the missing L1 cache
and the home L2 bank, as shown in Fig. 2b. Therefore, it is preferable to use a grain size
as fine as possible. Since block granularity is not suitable for OS-managed mapping,
the finest granularity possible is achieved by taking the less significant bits of the
Virtual to Physical field, i.e., a page-grained interleaving.

The drawback of a first-touch policy is that applications with a working set not
balanced among cores do not make optimal use of the total L2 capacity. This happens
more frequently in commercial servers where different applications with different
memory requirements run on the same system, or when some applications are running
in a set of cores while the other cores remain idle. To avoid this situation, policies
like cache pressure [8] can be implemented. Cache pressure uses bloom filters to
collect cache accesses to determine the pressure of the different data mapping to
cache banks. In this way, newly accessed pages are not mapped to the most pressured
caches. However, this approach has several drawbacks. First, it requires extra hardware,
(e.g., bloom filters that have to be reset after a timeout period). Second, an efficient
function to detect the pressured cache banks can be difficult to implement. Third, this
mechanism only considers neighboring banks, i.e., banks at 1-hop distance. Finally, as
far as we know, neither parallel nor multi-programmed workloads have been evaluated
using this technique.

2.2 BT and BT-SN compressed sharing codes

One approach for reducing area requirements in the context the directory-based cache
coherence protocols typically employed in tiled CMPs is the use of compressed shar-
ing codes. Compressed sharing codes store the directory information in a compressed
way to use fewer number of bits, introducing a loss of precision compared to exact

123

DASC-DIR: a low-overhead coherence directory 787

ones (e.g., full-map). This means that when this information is reconstructed, some
of the cores codified in the sharing code are real sharers and must receive the coher-
ence messages, whereas some other cores are not sharers actually and unnecessary
coherence messages will be sent to them. Unnecessary coherence messages lead to
increased miss latencies, since more messages are required to resolve caches misses.
Moreover, unnecessary coherence messages also entail extra traffic in the intercon-
nection network and useless cache accesses, which will increase energy consumption.
Conversely, a full-map directory does not generate unnecessary coherence messages
and thus shows the best results in terms of both performance and energy consumption.

Among the compressed sharing codes previously proposed in the literature, we
consider in this work two organizations (BT and BT-SN) previously proposed in [14].
Both compressed sharing codes are based on the multi-layer clustering approach.

Multi-layer clustering assumes that nodes are recursively grouped into clusters of
equal size until all nodes are grouped into a single cluster. Compression is achieved by
specifying the smallest cluster containing all the sharers (instead of indicating all the
sharers). Compression can be increased even more by indicating only the level of the
cluster in the hierarchy. In this case, it is assumed that the cluster is the one containing
the home node for the memory block. This approach is valid for any network topology.

Although clusters can be formed by grouping any integer number of clusters in the
immediately lower layer of the hierarchy, we analyze the case of using a value equal
to two. That is to say, each cluster contains two clusters from the immediately lower
level. By doing so, we simplify binary representation and obtain better granularity to
specify the set of sharers. This recursive grouping into layer clusters leads to a logical
binary tree with the nodes located at the leaves.

As an application of this approach, two compressed sharing codes were previously
proposed in [14]. The sharing codes can be shown graphically by considering the
distinction between the logical and the physical organizations. For example, we have
the 16-tile CMP with a mesh as the interconnection network previously shown in Fig.
1, and we can imagine the same system as a binary tree (multi-layer system) with
the tiles (nodes) located at the leaves of this tree, as shown in Fig. 3. Note that this
tree only represents the grouping of nodes, not the interconnection between them. In
this representation, each subtree is a cluster. It can be observed that the binary tree is
composed of five layers or levels (log2 N + 1, where N is a power of 2). From this,
the following two compressed sharing codes were derived in [14]: binary tree (BT)
and binary tree with symmetric nodes (BT-SN).

Fig. 3 Multi-layer clustering approach: logical view

123

788 A. Ros, M. E. Acacio

2.2.1 Binary tree (BT)

Since nodes are located at the leaves of a tree, the set of nodes (sharers) holding a copy
of a particular memory block can be expressed as the minimal subtree that includes
the home node and all the sharers. This minimal subtree is codified using the level
of its root (which can be expressed using just �log2

(
log2 N + 1

)� bits). Intuitively,
the set of sharers is obtained from the home node identifier by changing the value of
some of its least significant bits to don’t care. The number of modified bits is equal to
the level of the above mentioned subtree. It constitutes a very compact sharing code
(observe that, for a 128-node system, only 3 bits per directory entry are needed). For
example, consider a 16-node system such as the one shown in Fig. 1, and assume that
nodes 1, 4 and 5 hold a copy of a certain memory block whose home node is 0. In this
case, node 0 would store 3 as the tree level value, which is the one covering all sharers
(see Fig. 3). Unfortunately, this would include as well nodes 0, 2, 3, 6 and 7 that do
not have a copy of such memory block and thus would receive unnecessary coherence
messages on a subsequent coherence event.

2.2.2 Binary tree with symmetric nodes (BT-SN)

This sharing code introduces the concept of symmetric nodes of a particular home node.
Assuming that three additional symmetric nodes are assigned to each home node, they
are codified by different combinations of the two most-significant bits of the home
node identifier (note that one of these combinations represents the home node itself).
In other words, symmetric nodes only differ from the corresponding home node in
the two most significant bits. For instance, if 0 were the home node, its corresponding
symmetric nodes would be 4, 8 and 12. Now, the process of choosing the minimal
subtree that includes all the sharers is repeated for the symmetric nodes. Then, the
minimum of these subtrees is chosen to represent the sharers. The intuitive idea is the
same as before but, in this case, the two most significant bits of the home identifier
are changed to the symmetric node used. Therefore, the size of the sharing code of
a directory entry is the same as before plus the number of bits needed to codify the
symmetric nodes (for 3 sym-nodes, 2 bits). In the previous example, nodes 4, 8 and 12
are the symmetric nodes of node 0. The tree level could now be computed from node
0 or from any of its symmetric nodes. In this way, the one which encodes the smallest
number of nodes and includes nodes 1, 4 and 5 is selected. In this particular example,
the tree level 3 must be used to cover all sharers, computed from node 0 or node 4.

As it has been shown, in both BT and BT-SN, the set of sharers is calculated from
the home of each memory block. This makes these sharing codes especially attractive
for use in conjunction with the OS-managed cache mapping strategy proposed in this
work.

3 DARR: distance-aware round-robin mapping

Distance-aware round-robin mapping (DARR) [11] is a simple OS-managed mapping
policy for many-core CMPs that assigns memory pages to NUCA cache banks. This

123

DASC-DIR: a low-overhead coherence directory 789

P0 P1

P2 P3

2x2 tiled CMP

1 0

0 0

1.P0 → 0x00

1 1

0 0

2.P1 → 0x01

1 1

0 0

3.P1 → 0x00

2 1

0 0

4.P0 → 0x02

2 1

1 0

5.P0 → 0x03

1 0

0 0

6.P3 → 0x04

2 0

0 0

7.P0 → 0x05

Fig. 4 Example of the distance-aware round-robin mapping policy

policy minimizes the total number of off-chip accesses as happens with a round-robin
mapping, and reduces the access latency to a NUCA cache (the L2 cache level in
this work) as a first-touch policy does. Moreover, this policy addresses this trade-off
without requiring any extra hardware support.

The OS starts assigning physical addresses to the requested pages according to a
first-touch policy, i.e, the physical address chosen by the OS maps to the tile of the
core that is requesting the page. The OS stores a counter for each cache bank which is
increased whenever a new physical page is assigned to this bank. In this way, banks
with more physical pages assigned to them will have higher value for the counter.

To minimize the amount of off-chip accesses, we define an upper bound on the
deviation of the distribution of pages among cache banks. This upper bound can be
controlled by the OS through a threshold value. In this way, in case that the counter
of the bank where a page should map following a first-touch policy has reached the
threshold value, the page is assigned to another bank. The algorithm starts checking
the counters of the banks at one hop from the initial placement. The bank with smaller
value is chosen. Otherwise, if all banks at one hop have reached the threshold value,
then the banks at a distance of two hops are checked. This algorithm iterates until a
bank whose value is under the threshold is found. The policy ensures that at least one
of the banks has always a value smaller than the threshold value by decreasing by one
unit all counters when all of them have values different from zero.

Figure 4 shows, from left to right, the behavior of this mapping policy for a 2 × 2
tiled CMP with a threshold value of two. First, processor P0 accesses a block within
page 0x00 with faults in memory (1). Therefore, a physical address that maps to the
bank 0 is chosen for the address translation of the page, and the value for the bank 0 is
increased. Then, processor P1 performs the same operation for page 0x01 (2). When
processor P1 accesses page 0x00, no action is required for our policy because there
is a hit in the page table (3). The next access of processor P0 is for a new page, which
is also stored in bank 0, which reaches the threshold value (4). Then, if processor P0
accesses a new page again, this page must be allocated to another bank (5). The closer
bank with a smaller value is bank 2. Finally, when processor P3 accesses a new page,
the page is assigned to its local bank and all counters are decreased (6), allowing bank
0 to map a new page again (7).

The threshold defines the behavior of our policy. A threshold value of zero denotes
a round-robin policy in which a uniform distribution of pages is guaranteed, while
an unlimited threshold implies a first-touch policy. Therefore, with a small threshold
value, our policy reduces the number of off-chip accesses. Otherwise, if the threshold
value is high, our policy reduces the average latency of the accesses to the NUCA
cache. Note that the threshold value serves as a proxy approximation for the cache
pressure, since the actual pressure does not directly depend on the uniform distribution

123

790 A. Ros, M. E. Acacio

of pages, but on the utilization of blocks within pages. However, pages are distributed
among all cache banks, thus performing an efficient use of the shared cache. Although,
the OS could choose different thresholds depending on the workload, we have found
that values between 64 and 256 work well for the workloads considered in this work.

4 DASC: distance-aware sharing code

In this section we propose DASC, a new sharing code especially suited for the DARR
mapping policy previously described. DASC shares some characteristics with the
previously described BT and BT-SN sharing codes. First, DASC is a compressed
sharing code with a very extreme compression ratio, thus ideal for scalable systems.
In a compressed sharing code more cores than necessary may be codified, i.e., false
positives can appear. Due to these false positives, unnecessary coherence messages
may arise. Second, as in BT and BT-SN, the representation of the set of sharers in
DASC is computed from the home node of each memory block.

DASC is especially suited for the DARR mapping policy (and in general for first-
touch mapping policies) because it takes advantage of the fact that the DARR mapping
policy tends to locate memory blocks closer to the tiles that use them. Note that BT,
BT-SN and DASC compute the sharers from the home tile. If the home tile is one
of the frequent sharers, important reductions in extra invalidation messages can be
achieved.

The idea behind DASC is to codify the set of sharers as the distance (number of
network links) between the home tile and the farthest sharer. Then, all nodes within
this distance are considered potential sharers. To implement this, we use a saturating
counter with a fixed number of bits (very small) and reserve the greater binary value
to denote the situation in which all nodes must be included, i.e., when the counter is
saturated.

As an example, Fig. 5 shows the distance (in number of links) between home tile 0
and the rest of tiles for a 16-core CMP with a two-dimensional mesh topology. Table
1 depicts the tiles that would be included for the possible different combinations of
both a two-bit and a three-bit DASC. For example, the fact that nodes 1, 4, and 5 hold
a copy of a certain memory block whose home node is 0 would be codified in DASC
using value 2. This would include as well nodes 0, 2, and 8 that do not have a copy

Fig. 5 Distance from tile 0 to
the rest of the tiles

123

DASC-DIR: a low-overhead coherence directory 791

Table 1 Codification examples using DASC in a 16-tile CMP with a two-dimensional mesh, from the
point of view of the home tile 0

2 bits 3 bits

Value Covered tiles Value Covered tiles

0 {0} 0 {0}

1 {0,1,4} 1 {0,1,4}

2 {0,1,2,4,5,8} 2 {0,1,2,4,5,8}

3 All nodes 3 {0,1,2,3,4,5,6,8,9,12}

4 {0,1,2,3,4,5,6,7,8,9,10,12,13}

5 {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14}

6–7 All nodes

of such memory block and thus would receive unnecessary coherence messages on a
subsequent coherence event.

DASC brings three important advantages compared with BT and BT-SN. The first
one is that the computation of the value of DASC that includes all the sharers for
a particular memory block does not require complex hardware: along its way to the
home tile, every request message calculates the DASC value. To do so, every time
a link is traversed, a saturating counter of the same number of bits than the DASC
implementation increases (for example, at the same time the routing logic determines
the output port for the message). This information is stored into the request message.
Then, when the request reaches the home tile, the computed value will be the new
DASC value if it is greater than the one already stored in the directory. On the contrary,
BT and BT-SN require more complex extra hardware at each directory controller to
compute the tree level every time a new request for each block is received. This,
obviously increases energy consumption (besides area requirements) and can impact
also directory occupancy (which could increase cache miss latencies and, therefore,
degrade performance).

The second advantage is that DASC can work for any network topology and does
not requires hard-coded information of the topology, i.e., it is topology agnostic. Dif-
ferently, BT and BT-SN are more suitable for tree topologies, and for other topologies
they may require previous information to reduce the number of false positives.

The third advantage is that multi-cast coherence messages could be sent in a more
efficient way with DASC. In particular, on every coherence event, only one coher-
ence message has to be created in the home tile with DASC, which keeps propagating
through all the ports of every router until the remaining links to be traversed become
zero. This requires the addition of a field to every multi-cast coherence message ini-
tialized by the directory with DASC value. If the greater binary value is inserted, every
router copies the messages along all its output ports (i.e., a broadcast is required and
the message must reach all the tiles). A value 0 in this field means that the router has
to deliver the message just to the local L1 cache controller. For the rest of the val-
ues, every router would decrement the value of the field and spawn and propagate the
multi-cast coherence message through the rest of its output ports (including the one
that connects with the local L1 cache controller). Contrarily, in BT and BT-SN several

123

792 A. Ros, M. E. Acacio

unicast messages must be created by the directory on every coherence event. Extra
logic is needed at each directory controller for computing the destinations of every
coherence message, which is sent as several unicast messages through the network.
Again, this can result in increased directory occupancy and energy consumption and
also more network traffic in the interconnect.

5 Simulation environment

We have evaluated our proposals using the Simics full-system multi-processor sim-
ulator [15] extended with both GEMS [16] and SiCoSys [17]. GEMS provides a
detailed cache coherent memory system timing model. SiCoSys simulates a detailed
interconnection network that allows one to take into account most of the VLSI imple-
mentation details with high precision, but with much lower computational effort than
hardware-level simulators.

We have modified the GEMS simulator to evaluate the three mapping policies
evaluated in this work. The first mapping policy, named as RoundRobin or RR, is an
OS-managed policy that assigns physical pages in a round-robin fashion to guarantee
the uniform distribution of pages among cache banks. This policy gets similar results
as the hardware round-robin policy implemented in GEMS, as shown in [11]. The
round-robin policy does not take into consideration the distance from the cores to
the home bank. The second mapping policy that we have implemented, named as
FirstTouch or FT, maps memory pages to the local cache bank of the first processor
that requested the page. Although this mapping policy is distance aware, it is not
concerned about the pressure on some cache banks. Finally, we also implement the
policy proposed in [11], named as DARR. We simulate DARR with a threshold value
of 128, as suggested in [11].

On the other hand, we have also implemented in GEMS the different sharing codes
evaluated in this work: BT, BT-SN and DASC (evaluated both for a saturating counter
of 2 and 3 bits). We also run the traditional full-map (FM) sharing code, which keeps
one bit per core in the system.

The simulated system is a 32-core tiled CMP connected by a 8×4 2-D mesh. Each
tile contains an in-order processing core since a large number of simple cores can
offer better performance/watt ratio than a small number of complex cores. Moreover,
a memory controller connected to a 3D-stacked memory bank is placed in each tile.
Table 2 shows the values for the main parameters of the system evaluated in this
work. Memory blocks stored in the private L1 caches are kept coherent by means of
a directory-based cache coherence protocol that uses MESI states. We account for
the variability in multithreaded workloads [18] by doing multiple simulation runs for
each benchmark in each configuration and injecting random perturbations in memory
systems timing for each run.

5.1 Benchmarking and characterization

We have evaluated our proposal with both parallel and multi-programmed workloads.
Multi-programmed workloads consist of several program instances running at the same

123

DASC-DIR: a low-overhead coherence directory 793

Table 2 System parameters
Memory parameters: GEMS (3 GHz)

Cache block size 64 bytes

Split L1 I & D caches 32 KB, 4-way

L1 cache hit time 2 cycles

Shared unified L2 cache 256 KB/tile, 8-way

L2 cache hit time 10 cycles

Memory access time 300 cycles

Page size 4 KB

Network parameters: SICOSYS (1.5 GHz)

Topology 8 × 4 2-dimensional mesh

Switching technique Wormhole

Routing technique Deterministic X-Y

Data and control message size 4 flits and 1 flit

Routing time 1 cycle

Switch time 1 cycle

Link latency (one hop) 2 cycles

Link bandwidth 1 flit/cycle

time in the system. We classify workloads as either homogeneous, heterogeneous,
or in-between. Homogeneous workloads uniformly distribute memory pages among
cache banks when a first-touch policy is employed. In contrast, in heterogeneous
workloads a few banks allocate more pages than the others when the first-touch policy is
considered. In-between workloads are neither extremely heterogeneous nor extremely
homogeneous.

Our application set includes ten parallel scientific benchmarks that are representa-
tive of both homogeneous and heterogeneous scenarios. Barnes, Cholesky, FFT, FMM,
LU, Ocean, Tomcatv and Water-NSQ, represent the homogeneous workloads. Unstruc-
tured, Raytrace, Radix, and Volrend constitute the heterogeneous workloads. Barnes,
FFT, Ocean, Radix, Raytrace, Volrend, and Water-NSQ belong to the SPLASH-2
benchmark suite [19] whereas Tomcatv and Unstructured are irregular scientific appli-
cations. The input size of each application is shown in Table 3.

We also consider multi-programmed workloads. We run the configurations shown
in Fig. 6, two homogeneous and two heterogeneous workloads. Radix4 consists of four
instances of the Radix application, with eight threads in each one. Ocean8 consists of
eight instances of the Ocean application, with four threads in each one. They represent
the homogeneous workloads. Mix4 and Mix8 run Ocean, Raytrace, Water-NSQ and
Unstructured. In Mix4, each application has eight threads. In Mix8, two instances
of each application are run with four threads each. These two workloads represent
the heterogeneous and more common multi-programmed scenario. A summary of the
multi-programmed applications is also shown in Table 3.

To perform the characterization of the applications evaluated in this work, we first
identify the number of pages mapped to each bank for a first-touch policy. Figure 7
shows this number for each of the 32 banks of the simulated NUCA cache. The darker

123

794 A. Ros, M. E. Acacio

Table 3 Benchmarks, input sizes, and characterization

Benchmarks Input size Average Deviation Page footprint

SPLASH 2 (10 benchmarks)

Barnes 16K particles, 4 time steps 30.9688 13.6157 In-between

Cholesky tk15.O 187.344 272.578 Heterogeneous

FFT 64K complex doubles 30.8125 5.39713 Homogeneous

FMM 16K particles 59.25 119.349 Heterogeneous

LU 512 × 512 matrix 18.9062 3.83952 Homogeneous

Ocean 258 ×258 ocean 128.938 18.2651 Homogeneous

Radix 1M integers, 1,024 radix 80.25 51.2388 In-between

Raytrace Teapot 27.2188 23.581 In-between

Volrend Head 6.78125 10.1409 Heterogeneous

Water-NSQ 512 molecules, 4 time steps 21.5938 11.7885 In-between

Scientific (2 benchmarks)

Benchmarks Input size Average Deviation Homogeneous

Tomcatv 256 points, 5 time steps 29.0625 6.60401 Homogeneous

Unstructured Mesh.2K, 5 time steps 29.0938 48.3545 Heterogeneous

Multi-programmed (4 combinations)

Benchmarks Input size Average Deviation Homogeneous

Radix4 Radix × 4 530.344 32.3639 Homogeneous

Ocean8 Ocean × 8 934.781 29.7549 Homogeneous

Mix4 Ocean,Ray,Water,Unstr. 166.281 198.582 Heterogeneous

Mix8 (Ocean,Ray,Water,Unstr.)×2 313.406 382.611 Heterogeneous

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Radix4

Radix Radix

Radix Radix

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Ocean8

Ocean Ocean Ocean Ocean

Ocean Ocean Ocean Ocean

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Mix4

Ocean Raytrace

Water-NSQ Unstructured

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Mix8

Oce
an

Ray
tra

ce

Oce
an

Ray
tra

ce

W
at
er-

NSQ

Uns
tru

ctu
red

W
at
er-

NSQ

Uns
tru

ctu
red

Fig. 6 Multi-programmed workloads evaluated in this work

123

DASC-DIR: a low-overhead coherence directory 795

100 43 26 26 28 26 25 25

25 25 26 30 27 30 34 35

28 27 25 28 25 26 26 25

25 27 25 29 27 42 33 42

Barnes
234 153 69 861 99 72 66 64

1063 115 68 124 65 1094 110 112

86 65 119 118 72 70 112 107

202 66 66 132 121 63 65 162

Cholesky

32 56 30 27 29 31 29 27

31 29 31 27 29 29 34 42

30 27 29 31 32 27 31 30

27 31 29 29 29 29 29 33

FFT

554 3 35 4 7 3 4 4

3 11 226 232 8 5 61 4

5 2 4 8 9 2 4 227

5 35 2 40 4 275 71 39

FMM
18 18 17 18 17 34 17 21

26 17 17 17 19 17 17 24

17 17 17 17 18 18 19 17

17 17 27 17 17 17 17 22

LU
224 125 152 123 127 122 125 123

124 124 135 126 122 125 124 125

126 126 124 124 124 123 125 124

122 125 123 126 124 124 123 137

Ocean

157 45 45 52 45 45 44 55

45 47 43 50 228 49 42 79

46 53 43 56 60 55 120 64

73 60 107 96 158 141 182 183

Radix
18 57 2 3 37 9 18 16

45 8 92 3 5 20 41 35

61 4 3 18 60 47 28 4

27 39 18 6 43 15 77 12

Raytrace

62 28 28 30 25 28 26 27

27 34 26 28 27 31 27 38

28 26 24 27 29 29 26 30

26 28 25 26 26 29 28 31

Tomcatv

165 21 18 24 14 234 12 102

12 15 15 12 15 9 11 27

10 13 11 11 11 11 9 15

17 13 15 16 9 25 11 28

Unstructured
55 1 2 1 2 1 1 2

5 1 10 2 10 9 20 4

9 14 11 5 1 5 13 2

7 4 1 2 1 1 1 14

Volrend
31 30 31 22 16 19 16 17

16 17 20 16 17 17 16 63

16 22 17 17 16 17 19 17

16 17 19 16 21 16 17 64

Water-NSQ

658 468 485 469 126 110 106 60

468 470 469 490 102 44 65 79

0 20 17 26 52 42 49 48

28 26 29 88 52 45 46 84

Mix4
1133 920 125 253 927 921 126 254

932 938 120 186 922 953 130 179

0 32 73 74 0 29 79 75

39 95 81 112 39 94 77 112

Mix8
1091 921 927 921 923 922 927 921

921 948 942 937 921 947 922 947

933 926 925 931 935 921 927 921

931 937 922 937 923 937 932 937

Ocean8

601 484 491 549 492 550 494 554

477 520 524 562 522 561 517 561

492 547 497 549 492 548 486 558

526 562 514 568 521 571 516 565

Radix4

Fig. 7 Number of pages mapped to each cache bank in a first-touch policy for the workloads evaluated in
this work

the color of the box, the more pages are mapped to that bank. We can see that there are
applications such as FFT, LU, Ocean, Tomcatv, Radix4, and Ocean8 that are clearly
homogeneous. We can also observe that Cholesky, FMM, Unstructured, Volrend, Mix4,
and Mix8 are heterogeneous.

To give a numeric value to the degree of heterogeneity we employ the coefficient of
variation of the pages mapped to NUCA banks in a first-touch policy. The coefficient
of variation is calculated as the ratio of the standard deviation to the mean. Table 3
shows these values for each of the applications considered in this work.

We consider that an application is homogeneous if its coefficient of variation is
smaller than 0.4. On the other hand, if the coefficient of an application is greater than
1.0, we consider it as heterogeneous. Applications with a coefficient in between these

123

796 A. Ros, M. E. Acacio

0 20 40 60 80 100 120 140 160 180 200

Average number of pages per core (footprint size)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
C

oe
ffi

ci
en

t o
f v

ar
ia

tio
n

(h
et

er
og

en
ei

ty
)

Barnes

Cholesky

FFT

FMM

LU
Ocean

Radix

Raytrace

Tomcatv

Unstructured
Volrend

Water-NSQ

0 100 200 300 400 500 600 700 800 900 1000

Average number of pages per core (footprint size)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n
(h

et
er

og
en

ei
ty

)

Radix4 Ocean8

Mix4 Mix8

(a) Parallel workloads (b) Multi-programmed workloads

Fig. 8 Characterization of the applications evaluated

values are in between, i.e., neither homogeneous nor heterogeneous. Figure 8 plots
graphically this characterization. The y-axis represents the coefficient of variation,
while the x-axis indicates the average number of pages mapped to each tile. An appli-
cation like Volrend, which is heterogeneous but has a small working set (footprint
size), can work well when the first-touch policy is employed, but applications like
Mix8 will incur a lot of evictions from the NUCA cache and the consequent off-chip
accesses.

In the next section, evaluation results are shown splitting considered applications
in these three categories: homogeneous, heterogeneous, and in-between.

6 Evaluation results

The main focus of this work is to study the advantages of implementing very com-
pressed sharing codes, such as BT, BT-SN, and especially DASC, in systems that
employ a distance-aware NUCA mapping policy, like first-touch and DARR. For a
detailed evaluation of the DARR mapping policy we refer the interested reader to [11].

To understand the effects that the DARR mapping policy can have on the election
of the sharing code, we first study the average distance of the sharers to the corre-
sponding home cache bank. Then, we show how shorter distances reduce the number
of coherence messages (invalidations and cache-to-cache transfer commands) when
compressed sharing codes are used. This leads to reductions in execution time and
power consumption when they are used in conjunction with distance-aware mapping
techniques, as will be shown later. Finally, we analyze the scalability of the DASC
sharing code proposed in this work.

6.1 Average distance of sharers to the home banks

The sharing code proposed in this work is very sensitive to the distance from the sharers
of a memory block to the corresponding home bank. The shorter the distance, the better
are the sharing code works. Fortunately, both the first-touch and the DARR mapping

123

DASC-DIR: a low-overhead coherence directory 797

Barnes

Cholesky
FFT

FMM Lu
Ocean

Radix

Raytra
ce

Volrend

Water-N
sq

Tomcatv

Unstru
ctured

Mix4
Mix8

Radix4

Ocean8

Average

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

S
ha

re
rs

-h
om

e
av

er
ag

e
di

st
an

ce

RR
FT
DARR

Fig. 9 Average distance of sharers to their home

policies reduce the average distance from the sharers to the home banks, and this is
why DASC is revealed as a good option for systems implementing distance-aware
mapping policies.

Figure 9 plots the average distance in terms of network hops between the shar-
ers of a memory block and its home bank. Average distances shown in this graph
are computed assuming a 8 × 4-mesh 32-core system and for the three mapping
policies considered in this work: round-robin (RR), first-touch (FT), and DARR.
We can see that the average distance from sharers to the home banks in RR is
around four network links. This is because this policy does not care about the dis-
tance from the requesting cores (i.e., the cores that can share the block) to the home
node. When the mapping process is performed taking into account distance to the
home nodes, average distance can be considerably reduced, especially for scenar-
ios when different applications are running in the same system (e.g., Mix4, Mix8,
Radix4, and Ocean8). Although the average distance obtained with FT is lower than
that observed for DARR (2.3 vs. 2.5), FT causes unbalanced distribution of the load
of the cache banks (number of pages assigned to each bank) in heterogeneous appli-
cations, which results in extra L2 misses. DARR distributes better the pages among
the cache banks to reduce off-chip accesses caused by L2 misses, thus increasing
the distance from requesters to home banks. However, as it can be seen, this dis-
tance is not increased considerably and, consequently, DASC sharing code can work
efficiently.

6.2 Number of messages per coherence event

By obtaining a short distance between sharers and home banks, compressed sharing
codes based on the distance can reduce the number of false positives and work in a
more efficient way. Figure 10 plots the number of coherence messages sent on average
for any coherence event such as L1 cache misses or directory evictions. Particularly,
this figure shows 15 bars, one per each of the configurations considered in this work.
They are grouped in sets of three bars. From left to right, the first three bars are for
the full-map sharing code (FM) when it is used in combination with the round-robin
(RR), first-touch (FT) and distance-aware round-robin (DARR) policies, respectively.
The next bars are for the BT-SN and BT sharing codes (3 + 3). The final six bars are

123

798 A. Ros, M. E. Acacio

FFT Lu Ocean Radix Tomcatv Radix4 Ocean8 Average
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0

M
es

sa
ge

s
pe

r
co

he
re

nc
e

ev
en

t
FM-32bits_RR
FM-32bits_FT
FM-32bits_DARR

BT-SN-4bits_RR
BT-SN-4bits_FT
BT-SN-4bits_DARR

BT-3bits_RR
BT-3bits_FT
BT-3bits_DARR

DASC-3bits_RR
DASC-3bits_FT
DASC-3bits_DARR

DASC-2bits_RR
DASC-2bits_FT
DASC-2bits_DARR

Barnes Radix Raytrace Water-Nsq Average
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0

M
es

sa
ge

s
pe

r
co

he
re

nc
e

ev
en

t

FM-32bits_RR
FM-32bits_FT
FM-32bits_DARR

BT-SN-4bits_RR
BT-SN-4bits_FT
BT-SN-4bits_DARR

BT-3bits_RR
BT-3bits_FT
BT-3bits_DARR

DASC-3bits_RR
DASC-3bits_FT
DASC-3bits_DARR

DASC-2bits_RR
DASC-2bits_FT
DASC-2bits_DARR

Cholesky FMM Volrend Unstructured Mix4 Mix8 Average
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0

M
es

sa
ge

s
pe

r
co

he
re

nc
e

ev
en

t

FM-32bits_RR
FM-32bits_FT
FM-32bits_DARR

BT-SN-4bits_RR
BT-SN-4bits_FT
BT-SN-4bits_DARR

BT-3bits_RR
BT-3bits_FT
BT-3bits_DARR

DASC-3bits_RR
DASC-3bits_FT
DASC-3bits_DARR

DASC-2bits_RR
DASC-2bits_FT
DASC-2bits_DARR

(a) Homogeneous

(b) In-between

(c) Heterogeneous

Fig. 10 Coherence messages per coherence event

for the two implementations of DASC: the one using three bits (bars 10, 11 and 12)
and the other one using two (last 3 bars). This is also applicable to Figs. 11 and 12
that will be discussed later on.

The numbers shown in Fig. 10 are for the simulated 32-core system, so in a
broadcast-based protocol, i.e., a protocol without a directory, this number would be
32 for write misses and read misses that do not find the data in L2. Differently, we
have very compressed sharing codes that require a few bits per entry (from 4 to 2)
and much less coherence messages. We also show the number of messages required
by a precise full-map (FM) sharing code. We split the graphs into the three categories
mentioned in the characterization: homogeneous, heterogeneous, and in-between.

123

DASC-DIR: a low-overhead coherence directory 799

FFT Lu Ocean Radix Tomcatv Radix4 Ocean8 Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

FM-32bits_RR
FM-32bits_FT
FM-32bits_DARR

BT-SN-4bits_RR
BT-SN-4bits_FT
BT-SN-4bits_DARR

BT-3bits_RR
BT-3bits_FT
BT-3bits_DARR

DASC-3bits_RR
DASC-3bits_FT
DASC-3bits_DARR

DASC-2bits_RR
DASC-2bits_FT
DASC-2bits_DARR

Barnes Radix Raytrace Water-Nsq Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

FM-32bits_RR
FM-32bits_FT
FM-32bits_DARR

BT-SN-4bits_RR
BT-SN-4bits_FT
BT-SN-4bits_DARR

BT-3bits_RR
BT-3bits_FT
BT-3bits_DARR

DASC-3bits_RR
DASC-3bits_FT
DASC-3bits_DARR

DASC-2bits_RR
DASC-2bits_FT
DASC-2bits_DARR

Cholesky FMM Volrend Unstructured Mix4 Mix8 Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

FM-32bits_RR
FM-32bits_FT
FM-32bits_DARR

BT-SN-4bits_RR
BT-SN-4bits_FT
BT-SN-4bits_DARR

BT-3bits_RR
BT-3bits_FT
BT-3bits_DARR

DASC-3bits_RR
DASC-3bits_FT
DASC-3bits_DARR

DASC-2bits_RR
DASC-2bits_FT
DASC-2bits_DARR

1.7 1.5 1.7 1.7 1.7

(a) Homogeneous

(b) In-between

(c) Heterogeneous

Fig. 11 Normalized execution time

Figure 10a shows the results obtained for the homogeneous workloads. In this case,
distance-aware mapping policies can reduce distance of sharers to a greater extent,
and therefore we can observe a significant reduction in terms of number of coherence
messages when FT or DARR is employed. The lower the number of bits used for
the sharing code, the more are the false positives and coherence messages required.
However, this is more acute for the RR mapping. Note also that the three-bit DASC
entails less coherence messages than the three-bit BT sharing code, so it will perform
better. This is because two nodes can be very close in the system but far away in the
binary tree. For example, in the 16-core example in Fig. 5, node 4 and node 8 are
separated by only one link, but in the tree structure in Fig. 3 their common level is the
root of the tree. On the other hand, although the two-bit DASC sharing code noticeably
increases the coherence messages over the three-bit DASC for RR, when FT or DARR
are employed this increase is more acceptable. In particular, the number of messages
per coherence event required by DASC-2bits for both FT and DARR is around 2.3,

123

800 A. Ros, M. E. Acacio

FFT Lu
Ocean

Radix

Tomcatv
Radix4

Ocean8

Average

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Control
Data

1. FM-32bits_RR
2. FM-32bits_FT
3. FM-32bits_DARR

4. BT-SN-4bits_RR
5. BT-SN-4bits_FT
6. BT-SN-4bits_DARR

7. BT-3bits_RR
8. BT-3bits_FT
9. BT-3bits_DARR

10. DASC-3bits_RR
11. DASC-3bits_FT
12. DASC-3bits_DARR

13. DASC-2bits_RR
14. DASC-2bits_FT
15. DASC-2bits_DARR

Barnes
Radix

Raytra
ce

Water-N
sq

Average

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Control
Data

1. FM-32bits_RR
2. FM-32bits_FT
3. FM-32bits_DARR

4. BT-SN-4bits_RR
5. BT-SN-4bits_FT
6. BT-SN-4bits_DARR

7. BT-3bits_RR
8. BT-3bits_FT
9. BT-3bits_DARR

10. DASC-3bits_RR
11. DASC-3bits_FT
12. DASC-3bits_DARR

13. DASC-2bits_RR
14. DASC-2bits_FT
15. DASC-2bits_DARR

Cholesky
FMM

Volrend

Unstru
ctured

Mix4
Mix8

Average

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Control
Data

3.3

1. FM-32bits_RR
2. FM-32bits_FT
3. FM-32bits_DARR

4. BT-SN-4bits_RR
5. BT-SN-4bits_FT
6. BT-SN-4bits_DARR

7. BT-3bits_RR
8. BT-3bits_FT
9. BT-3bits_DARR

10. DASC-3bits_RR
11. DASC-3bits_FT
12. DASC-3bits_DARR

13. DASC-2bits_RR
14. DASC-2bits_FT
15. DASC-2bits_DARR

(a) Homogeneous

(b) In-between

(c) Heterogeneous

Fig. 12 Normalized network traffic

which is a very small number taking into account the size of the sharing code (just 2
bits).

In Fig. 10b, c, we show workloads where wider distribution of the pages among
cache banks is required for DARR. This is why FT requires less coherence messages
than DARR (especially for the heterogeneous applications). However, it is important
to remember that this comes at the cost of extra off-chip accesses (as shown in [11]),
which will increase the final execution times as will be discussed in the next section.
Overall, the reduction in the number of coherence messages in DASC when moving
from RR to DARR is considerable, which confirms the synergy between DASC and
DARR (what we call DASC-DIR in this work).

123

DASC-DIR: a low-overhead coherence directory 801

6.3 Execution time

The reductions in execution time that the DARR mapping policy brings along with
the low overhead of the DASC sharing code result in improvements in execution time
with respect to a non-scalable full-map directory with the typical RR mapping policy.

Figure 11 shows the execution time for the configurations evaluated in this work. We
can observe that for the homogeneous workloads (Fig. 11a), a two-bit DASC sharing
code performs very well when used in combination with DARR mapping (what we
call DASC-DIR), and the increase in execution time with respect to a non-scalable
full-map is only 5.7 %. The improvements of this two-bit sharing code with respect to
a traditional full-map employing the typical round-robin policy are 8.4 % on average.
The two-bit DASC sharing code performs similarly to the other compressed sharing
codes.

Regarding the in-between workloads (Fig. 11b), a similar pattern can be observed.
DASC-DIR performs similarly to our base configuration when the two-bit DASC
sharing code is employed. For the three-bit version of DASC improvements of 3.7
% are obtained. Additionally, it can be also observed that the three-bit version of
DASC performs better than the three-bit BT sharing code, even when we do not take
advantage of the opportunities that the simpler implementation provided by DASC
brings (and that were explained in Sect. 3).1 Finally, first-touch and DARR obtain
similar results for these workloads.

Finally, for the heterogeneous workloads (Fig. 11c), first-touch shows performance
degradation with respect to DARR. DARR obtains the lowest execution times out of
the three mapping policies. Additionally, the DASC sharing code is efficient enough
to not increase execution times, being able to achieve reductions in execution time of
4.9 and 3.1 % with respect to the non-scalable base configuration for its three-bit and
two-bit versions, respectively.

6.4 Network traffic

An increase in the number of coherence messages issued due to false positives, when
a compressed sharing code is employed, can considerably affect network traffic, and
consequently increase energy consumption. Figure 12 shows the traffic split in the
number of control and data flits issued by each switch in the network. In general,
we can see that the increase in network traffic due to false positives is lower when
distance-aware mapping policies are employed. Also, the traffic generated by the three-
bit version of DASC is lower than the traffic generated by the three-bit BT sharing
code.

For the homogeneous workloads (Fig. 12a), the traffic required by a DASC-
2bits_DARR is 17.4 % lower than the base configuration (FM-32bits_RR). This is
due to two reasons: first, the low distance obtained by the DARR policy that reduces

1 To have a clearer understanding of the impact that the used compressed sharing code has on the results, we
concentrate solely on the number of unnecessary coherence messages, leaving implementation-dependant
details out of the comparison.

123

802 A. Ros, M. E. Acacio

the number of network hops per message issued; second, the efficiency of the DASC
sharing code that does not generate excessive extra coherence messages.

For the in-between workloads (Fig. 12b), the traffic required by a DASC-
2bits_DARR increases by 39.3 % with respect to the base configuration, since the
distance from sharers to home banks increases for these workloads. A three-bit DASC
sharing code reduces this degradation up to 23.4 %. For the heterogeneous workloads
(Fig. 12c), the traffic is increased by 36.6 and 63.4 %, on average, for the three-bit
and the two-bit versions of DASC, respectively. However, for the multi-programmed
workloads (Mix4 and Mix8) the traffic keeps low, since the distance among sharers
and the home banks keeps low.

6.5 Memory requirements and scalability

The proposed directory scheme (DASC-DIR) is highly scalable because the size of
the sharing code (DASC) it uses does not depend directly on the number of cores in
the system. Obviously in larger systems, it can be advisable to increase the size of the
sharing code to reduce broadcasts, but if system uses a distance-aware mapping policy a
few bits are enough to obtain good performance. Figure 13 shows the memory overhead
of the sharing code with respect to the memory required by the caches (L1 and L2). This
overhead is shown for the different sharing codes: a full-map sharing code, a coarse
vector that employs clusters of four cores [20], a limited pointer scheme that stores two
pointers and when more than two cores share the block employs broadcast [21,22], a
binary tree sharing code both with one symmetric node and without symmetric nodes,
and our DASC sharing code both employing three bits (maximum distance 7) and two
bits (maximum distance 2).

We can observe that only binary tree and DASC are highly scalable, being able to
not incur in more than 1 % overhead for systems with 1,024 cores. Since the size of
DASC does not depend on the number of cores, this sharing code is the one offering
lowest overheads for large-scale systems. Additionally, as discussed in the previous
sections, the combination of DASC with the DARR mapping policy obtains better
results than when the binary tree-based counterparts are used.

4 8 16 32 64 128 256 512 1024

Number of cores

0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

2.4%

2.8%

M
em

o
ry

 o
ve

rh
ea

d

FullMap
CoarseVector (K=4)
LimitedPointers (P=2)
BinaryTree (SN=1)
BinaryTree (SN=0)
DASC (D=7)
DASC (D=2)

Fig. 13 Memory overhead of several sharing codes schemes

123

DASC-DIR: a low-overhead coherence directory 803

7 Related work

7.1 Proposals to reduce latency in NUCA architectures

There are several ways of reducing cache access latency in NUCA caches. The most
relevant ways are data migration, data replication or to perform an intelligent data
mapping to cache banks. Next, we comment on the most important works for these
approaches.

Kim et al. [12] presented non-uniform cache architecture (NUCA) caches. They
studied both a static mapping of blocks to caches and a dynamic mapping based on
spread sets. In such dynamic mapping, a block can only be allocated in a particular
bank set, but this bank set can comprise several cache banks that act as ways of the
bank set. In this way, a memory block can migrate from a bank far from the processor
to another bank closer if the block is expected to be accessed frequently. Chishti
et al. [23] achieved more flexibility than the original dynamic NUCA approach by
decoupling tag and data arrays, and by adding some pointers from tags to data, and
vice versa. The tag array is centralized and accessed before the data array, which is
logically organized as distance groups. Again, memory blocks can reside in different
banks within the same bank set. Differently from the last two proposals, Beckmann
and Wood [24] considered block migration in multi-processor systems. They proposed
a new distribution of the components in the die, where the processing cores are placed
around the perimeter of a NUCA L2 cache. Migration is also performed among cache
banks belonging to the same bank set. The block search is performed in two phases,
both requiring broadcasting the requests. Unfortunately, these proposals have two
main drawbacks. First, there are data placement restrictions because data can only be
allocated in a particular bank set and, second, data access requires checking multiple
cache banks, which increases network traffic and power consumption.

Zhang and Asanovic [4] proposed victim replication, a technique that allows some
blocks evicted from an L1 cache to be stored in the local L2 bank. In this way, the
next cache miss for this block will find it at the local tile, thus reducing miss latency.
Therefore, all L1 cache misses must look for the block at the local L2 bank before the
request is sent to the home bank. This scheme also has two main drawbacks. First,
replication reduces the total L2 cache capacity. Second, forwarding and invalidation
requests must also check the L2 tags in addition to the L1 tags. Later on, in [25], they
proposed victim migration as an optimization that removes some blocks from the L2
home bank when they are frequently requested by a remote core. Now, the drawback
is that an extra structure is required to keep the tags of migrated blocks. Moreover, in
both proposals, write misses are not accelerated because they have to access the home
tile, since coherence information does not migrate along with the data blocks.

Differently from all the previous approaches, and closer to ours, Cho and Jin [8]
proposed using a page-size granularity (instead of block-size). In this way, the OS can
manage the mapping policy, e.g., a first-touch mapping policy can be implemented.
To deal with the unbalanced utilization of the cache banks, they propose using bloom
filters that collect cache access statistics. If a cache bank is pressured, the neighboring
banks can be used to allocate new pages. As discussed in Sect. 2, this proposal has
several implementation issues (e.g., it is difficult to find an accurate metric to decide

123

804 A. Ros, M. E. Acacio

whether a cache is pressured or not) and does not evaluate the cache pressure mecha-
nism with parallel or multi-programmed workloads. In addition, they only distribute
pages among neighboring banks, i.e., at one-hop distance. In contrast, in our pro-
posal, pages are distributed among all banks, if necessary, in an easy way and without
requiring any extra hardware. On the other hand, they do not care about the issue of
the private cache indexing, since they use 16 KB four-way L1 caches, in which the
number of bits used to index them is smaller than the number of bits of the offset of the
8 KB pages considered in that work, and they can use virtually indexed L1 caches. Lin
et al. [26] applied Cho and Jin’s proposal to a real system. They studied the dynamic
migration of pages and the high overheads that it causes. Recently, Awasthi et al. [27]
and Chaudhuri [28] proposed several mechanisms for page migration that reduce the
overhead of migration at the cost of requiring extra hardware structures. Unfortunately,
since migration of pages entails an inherent cost (e.g., flushing caches or TLBs), this
mechanism cannot be performed frequently. Although migration can be used along
with our proposal, this work focuses on the initial mapping of pages to cache banks.
Finally, Awasthi et al. [27] do not consider the private cache indexing issue because
they use small caches that can be virtually indexed, and Chaudhuri [28] do not take
care of the indexing bits despite one bit matches with the home offset bits.

Another direction is to employ a private-shared classification of the accessed data
to reduce the NUCA access latency, as described in the Reactive NUCA proposal
[9]. Private blocks are placed into the local NUCA bank of the requesting core,
enabling low-latency accesses for such blocks, while shared blocks are placed across
all tiles at the corresponding address-interleaved locations. Further optimizations in
the address-interleaved locations for shared blocks were lately studied by García et
al. [29]. Although in Reactive NUCA the classification is done at page level by the
operating system, compile-time classifications have also been proposed to this end
[30,31]. In [30], a data ownership analysis of memory regions is performed at compi-
lation time. This information is transferred to the page table by modifying the behavior
of the memory allocator by means of hooks. This proposal is further improved in [31]
by considering a new class of data, named as practically private, which is mapped
to the NUCA cache according to a first-touch policy. Differently, our approach does
not rely on page classification, but includes pressure metrics to avoid extra off-chip
misses and achieves low latency even for accesses that would be classified by the other
approaches as shared and interleaved across NUCA banks.

7.2 Proposals to reduce the size of the directory

Several proposals aimed at reducing the size of the coherence directory have been
proposed recently [32–36]. Differently from these proposals, DASC-DIR is based
on the use of a very compressed sharing code, DASC. As already explained, DASC
can be easily implemented and does not require complex hardware at the directory
controllers. Other compressed sharing codes, as BT, BT-SN or BT-SuT [14], have more
cost as they need extra hardware to compress/decompress directory information. Apart
from the compressed sharing codes evaluated in this work, others were proposed in
the past with a variety of sizes. Some of the most used compressed sharing codes

123

DASC-DIR: a low-overhead coherence directory 805

are coarse vector [20], which was employed in the SGI Origin 2000 multi-processor,
limited pointers [21,22], employed in FLASH [37] and Alewife [38], tristate [39] and
gray-tristate [40].

8 Conclusions

In this work we propose an efficient and low-overhead coherence directory (DASC-
DIR) which is built around two main ingredients. The first is the use of the DARR
(distance-aware round-robin) mapping policy, an OS-managed policy which tries
to map the pages accessed by a core to its closest (local) bank. At the same time
it introduces an upper bound on the deviation of the distribution of memory pages
among cache banks, which lessens the number of off-chip accesses. The second is
the utilization of a very compressed directory structure which takes advantage of
this mapping policy to represent sharers in a very compact way without increasing
coherence network traffic. Particularly, the new compressed sharing code introduced in
this work, called DASC (Distance-aware sharing code), stores the distance between
the home node and the farther sharer. Thanks to the use of DARR, this distance
keeps usually low, which allows DASC to outperform other compressed sharing codes
previously proposed which are unaware of the mapping policy employed in the system.
Additionally, contrary to previous proposals, DASC does not require the introduction
of extra hardware at the directory controllers for compressing/decompressing sharing
information. This way, this work illustrates for the first time the important synergy
between the sharing code used for the coherence directory and the mapping policy
of the system, two design aspects that should be analyzed together for good system
efficiency and scalability.

Results show that the two-bit version of DASC along with the DARR mapping
policy can outperform in terms of execution time and memory requirements (i.e., area
and energy required for the directory) a traditional non-scalable full-map directory
with the typically used round-robin mapping policy. All of this is achieved without
increasing coherence network traffic. Finally, DASC-DIR scales gracefully to larger
core counts.

Acknowledgments This work has been supported by the Spanish MINECO, as well as European Com-
mission FEDER funds, under grant “TIN2012-38341-C04-03”, and also by the “Fundación Séneca-Agencia
de Ciencia y Tecnología de la Región de Murcia” under grant “18956/JLI/13”.

References

1. Tendler JM, Dodson JS, Fields JS, Le H, Sinharoy B (2002) POWER4 system microarchitecture. IBM
J Res Develop 46(1):5–25

2. Intel Xeon Phi Coprocessor, http://software.intel.com/en-us/mic-developer (2013).
3. Kurian G, Miller JE, Psota J, Eastep J, Liu J, Michel J, Kimerling LC, Agarwal A (2010) Atac: a

1,000-core cache-coherent processor with on-chip optical network. In: 19th international conference
on parallel architectures and compilation techniques (PACT), pp 477–488

4. Zhang M, Asanović K (2005) Victim replication: maximizing capacity while hiding wire delay in tiled
chip multiprocessors. In: 32nd international symposium on computer architecture (ISCA), pp 336–345

123

http://software.intel.com/en-us/mic-developer

806 A. Ros, M. E. Acacio

5. Kalla R, Sinharoy B, Starke WJ, Floyd M (2010) POWER7: IBMs next-generation server processor.
IEEE Micro 30(2):7–15

6. Shah M, Barreh J, Brooks J, Golla R, Grohoski G, Gura N, Hetherington R, Jordan P, Luttrell M,
Olson C, Saha B, Sheahan D, Spracklen L, Wynn A (2007) UltraSPARC T2: a highly-threaded, power-
efficient, SPARC SoC. In: IEEE Asian solid-state circuits conference, pp 22–25

7. Loh GH (2008) 3d-stacked memory architectures for multi-core processors. In: 35th international
symposium on computer architecture (ISCA), pp 453–464

8. Cho S, Jin L (2006) Managing distributed, shared L2 caches through OS-level page allocation. In: 39th
IEEE/ACM international symposium on microarchitecture (MICRO), pp 455–465

9. Hardavellas N, Ferdman M, Falsafi B, Ailamaki A (2009) Reactive NUCA: near-optimal block place-
ment and replication in distributed caches. In: 36th international symposium on computer architecture
(ISCA), pp 184–195

10. Hughes CJ, Kim C, Chen Y-K (2010) Performance and energy implications of many-core caches for
throughput computing. IEEE Micro 30(6):25–35

11. Ros A, Cintra M, Acacio ME, García JM (2009) Distance-aware round-robin mapping for large NUCA
caches. In: 16th international conference on high performance computing (HiPC), pp 79–88

12. Kim C, Burger D, Keckler SW (2002) An adaptive, non-uniform cache structure for wire-delay dom-
inated on-chip caches. In: 10th international conference on architectural support for programming
language and operating systems (ASPLOS), pp 211–222

13. Das S, Fan A, Chen K-N, Tan CS, Checka N, Reif R (2004) Technology, performance, and computer-
aided design of three-dimensional integrated circuits. In: International symposium on physical design,
pp 108–115

14. Acacio ME, González J, García JM, Duato J (2005) A two-level directory architecture for highly
scalable cc-NUMA multiprocessors. IEEE Trans Parall Distrib Syst (TPDS) 16(1):67–79

15. Magnusson PS, Christensson M, Eskilson J, Forsgren D, Hallberg G, Hogberg J, Larsson F, Moestedt
A, Werner B (2002) Simics: a full system simulation platform. IEEE Comput 35(2):50–58

16. Martin MM, Sorin DJ, Beckmann BM, Marty MR, Xu M, Alameldeen AR, Moore KE, Hill MD, Wood
DA (2005) Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset. Comput
Architect News 33(4):92–99

17. Puente V, Gregorio JA, Beivide R (2002) SICOSYS: an integrated framework for studying intercon-
nection network in multiprocessor systems. In: 10th Euromicro workshop on parallel, distributed and
network-based processing, pp 15–22

18. Alameldeen AR, Wood DA (2003) Variability in architectural simulations of multi-threaded workloads.
In: 9th international symposium on high-performance computer architecture (HPCA), pp 7–18

19. Woo SC, Ohara M, Torrie E, Singh JP, Gupta A (1995) The SPLASH-2 programs: characterization and
methodological considerations. In: 22nd international symposium on computer architecture (ISCA),
pp 24–36

20. Gupta A, Weber W-D, Mowry TC (1990) Reducing memory traffic requirements for scalable directory-
based cache coherence schemes. In: International conference on parallel processing (ICPP), pp 312–321

21. Chaiken D, Kubiatowicz J, Agarwal A (1991) LimitLESS directories: a scalable cache coherence
scheme. In: 4th international conference on architectural support for programming language and oper-
ating systems (ASPLOS), pp 224–234

22. Simoni R, Horowitz MA (2001) Dynamic pointer allocation for scalable cache coherence directories.
In: International symposium on shared memory multiprocessing, pp 72–81

23. Chishti Z, Powell MD, Vijaykumar TN (2003) Distance associativity for high-performance energy-
efficient non-uniform cache architectures. In: 36th IEEE/ACM international symposium on microar-
chitecture (MICRO), pp 55–66

24. Beckmann BM, Wood DA (2004) Managing wire delay in large chip-multiprocessor caches. In: 37th
IEEE/ACM international symposium on microarchitecture (MICRO), pp 319–330

25. Zhang M, Asanović K (Oct. 2005) Victim migration: dynamically adapting between private and shared
CMP caches. Tech. rep, Massachusetts Institute of Technology Computer Science and Artificial Intel-
ligence Laboratory

26. Lin J, Lu Q, Ding X, Zhang Z, Zhang X, Sadayappan P (2008) Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and real systems. In: 14th international symposium
on high-performance computer architecture (HPCA), pp 367–378

123

DASC-DIR: a low-overhead coherence directory 807

27. Awasthi M, Sudan K, Balasubramonian R, Carter J (2009) Dynamic hardware-assisted software-
controlled page placement to manage capacity allocation and sharing within large caches. In: 15th
international symposium on high-performance computer architecture (HPCA), pp 250–261

28. Chaudhuri M (2009) PageNUCA: selected policies for page-grain locality management in large shared
chip-multiprocessor caches. In: 15th international symposium on high-performance computer archi-
tecture (HPCA), pp 227–238

29. García-Guirado A, Fernández-Pascual R, Ros A, García JM (2012) Dapsco: distance-aware partially
shared cache organization. ACM Trans Architech Code Opt (TACO) 8(4), 25:1–25:19

30. Li Y, Abousamra A, Melhem R, Jones AK (2010) Compiler-assisted data distribution for chip mul-
tiprocessors. In: 19th international conference on parallel architectures and compilation techniques
(PACT), pp 501–512

31. Li Y, Melhem RG, Jones AK (2012) Practically private: enabling high performance cmps through
compiler-assisted data classification. In: 21st international conference on parallel architectures and
compilation techniques (PACT), pp 231–240

32. Ros A, Acacio ME, García JM (2008) Scalable directory organization for tiled CMP architectures. In:
International conference on computer design (CDES), pp 112–118

33. Zebchuk J, Srinivasan V, Qureshi MK, Moshovos A (2009) A tagless coherence directory. In: 42nd
IEEE/ACM international symposium on microarchitecture (MICRO), pp 423–434

34. Cuesta B, Ros A, Gómez ME, Robles A, Duato J (2011) Increasing the effectiveness of directory caches
by deactivating coherence for private memory blocks. In: 38th international symposium on computer
architecture (ISCA), pp 93–103

35. Ferdman M, Lotfi-Kamran P, Balet K, Falsafi B (2011) Cuckoo directory: a scalable directory for many-
core systems. In: 17th international symposium on high-performance computer architecture (HPCA),
pp 169–180

36. Sanchez D, Kozyrakis C (2012) SCD: a scalable coherence directory with flexible sharer set encoding.
In: 18th international symposium on high-performance computer architecture (HPCA), pp 129–140

37. Kuskin J, Ofelt D, Heinrich M, Heinlein J, Simoni R, Gharachorloo K, Chapin J, Nakahira D, Baxter
J, Horowitz MA, Gupta A, Rosenblum M, Hennessy JL (1994) The stanford FLASH multiprocessor.
In: 21st international symposium on computer architecture (ISCA), pp 302–313

38. Agarwal A, Bianchini R, Chaiken D, Kranz D, Kubiatowicz J, Hong Lim B, Mackenzie K, Yeung D
(1995) The MIT Alewife machine: architecture and performance. In: 22nd international symposium
on computer architecture (ISCA), pp 2–13

39. Agarwal A, Simoni R, Hennessy JL, Horowitz MA (1988) An evaluation of directory schemes for
cache coherence. In: 15th international symposium on computer architecture (ISCA), pp 280–289

40. Mukherjee SS, Hill MD (1994) An evaluation of directory protocols for medium-scale shared-memory
multiprocessors. In: 8th international conference on supercomputing (ICS), pp 64–74

123

	DASC-DIR: a low-overhead coherence directory for many-core processors
	Abstract
	1 Introduction
	2 Background
	2.1 Mapping policies in NUCA caches
	2.2 BT and BT-SN compressed sharing codes
	2.2.1 Binary tree (BT)
	2.2.2 Binary tree with symmetric nodes (BT-SN)

	3 DARR: distance-aware round-robin mapping
	4 DASC: distance-aware sharing code
	5 Simulation environment
	5.1 Benchmarking and characterization

	6 Evaluation results
	6.1 Average distance of sharers to the home banks
	6.2 Number of messages per coherence event
	6.3 Execution time
	6.4 Network traffic
	6.5 Memory requirements and scalability

	7 Related work
	7.1 Proposals to reduce latency in NUCA architectures
	7.2 Proposals to reduce the size of the directory

	8 Conclusions
	Acknowledgments
	References

